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ABSTRACT

We investigated how indexed FOR-loops, such as the ones
found in procedural programming languages, can be imple-
mented in genetic programming. We use them to train pro-
grams that learn the repeating unit string of a given regular
binary pattern string and can reproduce the learnt pattern
to an arbitrary size, specified by a parameter N. We discov-
ered that this particular problem, where the solution needs
to scale with multiple size-instances of the problem, is very
hard to solve without the help of domain knowledge.

Categories and Subject Descriptors: 1.2.2 Artificial In-
telligence: Automatic Programming

General Terms: Algorithms

Keywords: genetic programming, machine learning, philo-
sophical aspects of evolutionary computing, representations,
theory

Summary

Loops are rarely used in genetic programming due to issues
relating to their representation within the program struc-
tures and maintaining semantically valid loops throughout
the evolutionary process [1, 2]. In this work, we present
two ways to represent and use indexed FOR-loops within
genetic programming. We apply these representations on
learning the repeating unit of a regular binary pattern to
obtain programs that can reproduce these patterns to an
arbitrary size.
Our research questions in particular are as follows:

1. How can we represent indexed FOR-loops, similar to
the ones found in procedural programming, in tree-
based genetic programming, while ensuring their struc-
tural validity and termination?

Can we use the above indexed FOR-loops to learn the
repeating unit of a binary pattern so that the pattern
can be reproduced to an arbitrary size?
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3. How can we improve the representation of these proce-
dural programming-based indexed FOR-loops to bet-
ter suit the searching characteristics of genetic pro-
gramming?

We have had some success in evolving program trees with
indexed loops for this challenging class of problems. Some of
the evolved programs are short, elegant and understandable.
However, in order to get success it was necessary to use quite
specific domain knowledge in the GP representation.

To answer our 1st research question, we began with the
following, more general, representation of FOR loops in GP:

LOOP (TIMES BODY)

In our work, an indexed FOR-loop in GP has a subtree for
the number of loop iterations (TIMES) which is a function
of the size of the problem and another subtree for the loop
body statements (BODY), in general. Allowing an index
variable inside this body can result in the body statements
scaling accordingly to different sizes of the problem being
solved.

To answer our 2nd research question, we followed the
above in designing Method 1 for learning regular binary
patterns with repeating unit lengths of 2, 4, 6, 8 and 10.
Method 1 of Figure 1 shows the exact grammar that we
used in this part of our work. In these grammars, N is the
problem length. We use ADD]1 to add 1 to the value at the
array position POS when reproducing the strings. All the
elements of the arrays were initialised to 0.

As the programs need to learn how to repeat the learnt
pattern at various lengths, we trained the programs on ex-
amples of multiple lengths, starting from the length of 1
repeating unit up to 10 repetitions of it at consecutive in-
terger intervals. The fitness calculation was made up of two
components as we need to check the accuracy of the repro-
duction as well as the valid operation of the program. For
accuracy, we calculated the average character difference be-
tween the reproduced and the original patterns, which we
refer to as “distance error”. The validity and the estimated
logical correctness was measured by the “inefficiency” of its
average ADD1 statement usage. The final fitness of an indi-
vidual was formulated such that the selection pressure was
on minimising the “distance error” before minimising the “in-
efficiency”. We performed 80 runs per experiment with a GP
population size of 100 trees that were limited to a maximum
depth of 12 and a maximum generation count of 9000. We
used 70%, 28% and 2% for crossover, mutation and elitism
rates, respectively.



Table 1: Comparison of Method 1 and Method 2 Results

LOOP -> TIMES BODY LOOP -> TIMES BODY
TIMES -> TIMES / TIMES |
RAND_NUM |

N

LOOP -> TIMES CENTER BODY

TIMES -> TIMES / TIMES |
RAND_NUM |

BODY -> BODY BODY | N

ADD1 CENTER -> CENTER + CENTER |

ADDI1 -> POS CENTER * CENTER |

POS -> POS + POS | RAND_CENTER |

POS * POS | INDEX
RAND_POS | BODY -> BODY BODY |
INDEX ADD1_OFFSETx

Figure 1: Grammars for Loops

In Method 1, we obtained 79 solutions (98.75%) for the
problem of size 2 and 2 solutions (2.5%) for the problem of
size 4 but none for the other problems, as shown in Table
1. In general, we had very limited success with Method
1. However, we observed improvements in fitness over the
evolutionary process which indicates that some scalability is
possible for the harder problems. The following is a Method
1 solution program found for problem length 4:

(LooP (/ (/ N 2) 2) ((ADD1 (+ INDEX
(+ INDEX (+ INDEX INDEX)))) (ADD1 (+ INDEX
(+ INDEX (+ INDEX (+ INDEX 3)))))))

By analysing similar solutions of Method 1, we saw how
statements within the body need to cooperate with each
other in such a way that their relative positioning to each
other is not destroyed by evolutionary operations such as
crossover and mutation.

In Method 2 we change our representation and grammar
to include more domain knowledge (refer Figure 1), such
that a loop determines its number of iterations and another
function (CENTER) that gives the array locations that it
will traverse over the iterations. The body statements then
perform their own operations relative to these visited loca-
tions, which leads to a form of cooperation between them.
During crossover and mutation, changes made to CENTER
function influence all the body statements equally and when
body statements are crossed over and mutated, they still
operate relative to the CENTER. This method produced
solutions for every problem size we tested (as shown in Table
1), with 64 solutions (80%) for the problem of length 2 and
7 solution (8.75%) for the problem of length 10. In general,
runs of Method 2 converged faster than that of Method 1,
as shown by Figure 2. The following is a Method 2 solution
found for problem length 4:

(LOOP (/ N 4) (x 4 INDEX)
(ADD1_OFFSET3 ADD1_OFFSETO))

Problem Distance Error Inefficiency Total Error Solution Count

Length Method 1 Method 2 | Method 1 Method 2 | Method 1  Method 2 | Method 1 Method 2
2 0.002045  0.026859 | 0.000750  0.008639 | 0.002795  0.035498 79/80 64/80
4 0.180297  0.103191 | 0.059422  0.037196 | 0.239719  0.140387 2/80 25/80
6 0.223246  0.164907 | 0.054189  0.046602 | 0.277434  0.211510 0/80 13/80
8 0.225136  0.178283 | 0.001980  0.016065 | 0.227115  0.194348 0/80 12/80
10 0.225296  0.178009 | 0.009279  0.015430 | 0.234574  0.193439 0/80 7/80

Method 1 Method 2
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We have also presented a fitness function for problems of
this nature that applies pressure for the evolutionary search
to find small and efficienct programs. The solutions that we
have found in our work demonstrated that they met these
fitness criteria.

By the above representations and experiments, we have
shown how indexed FOR-loops can be successfully used in
tree-based GP for learning the repeating unit of a given reg-
ular pattern so that they are able to reproduce the pattern at
least to a specific number of arbitrary sizes, sharing similar
to human-written programs.
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Figure 2: Fitness components of Method 1 com-
pared to Method 2 on problem length 10: Distance
error (top), inefficiency (bottom)
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