
An Analysis of Matching in Learning Classifier Systems

Martin V. Butz⋆, Pier Luca Lanzi†‡, Xavier Llorà‡, Daniele Loiacono†

⋆Department of Cognitive Psychology, University of Würzburg, 97070 Würzburg, Germany
†Artificial Intelligence and Robotics Laboratory, Politecnico di Milano, I20133, Milano, Italy

‡Illinois Genetic Algorithm Laboratory, University of Illinois at Urbana Champaign, IL 61801, USA

butz@psychologie.uniwuerzburg.de, pierluca.lanzi@polimi.it, xllora@uiuc.edu,
loiacono@elet.polimi.it

ABSTRACT

We investigate rule matching in learning classifier systems
for problems involving binary and real inputs. We consider
three rule encodings: the widely used character-based en-
coding, a specificity-based encoding, and a binary encoding
used in Alecsys. We compare the performance of the three
algorithms both on matching alone and on typical test prob-
lems. The results on matching alone show that the popula-
tion generality influences the performance of the matching
algorithms based on string representations in different ways.
Character-based encoding becomes slower and slower as gen-
erality increases, specificity-based encoding becomes faster
and faster as generality increases. The results on typical
test problems show that the specificity-based representation
can halve the time required for matching but also that bi-
nary encoding is about ten times faster on the most difficult
problems. Moreover, we extend specificity-based encoding
to real-inputs and propose an algorithm that can halve the
time require for matching real inputs using an interval-based
representation.

Categories and Subject Descriptors

F.1.1 [Models of Computation]: Genetics Based Machine
Learning, Learning Classifier Systems

General Terms

Algorithms, Performance.

Keywords

LCS, XCS, RL, Matching.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’08, July 12–16, 2008, Atlanta, Georgia, USA.
Copyright 2008 ACM 978-1-60558-130-9/08/07…$5.00.

1. INTRODUCTION
Learning classifier systems [11, 10, 20] are methods

of genetics-based machine learning that can solve both
classification and reinforcement learning problems. They
compute solutions consisting of condition-action-prediction
rules, called classifiers; they apply (i) temporal difference
or supervised learning to estimate rule quality in terms of
problem solution and (ii) a genetic algorithm to discover bet-
ter rules that may improve the current solution. In learn-
ing classifier systems, the target problem is viewed as an
unknown environment that provides feedback in terms of
numerical reward. Accordingly, a classifier system solves a
problem by interacting with it and by trying to obtain as
much reward as possible from it.

A learning classifier system maintains a rule base, called a
population of classifiers, which represents the current solu-
tion. At each time step, the classifier system receives a prob-
lem instance which requires a decision (that is, an action
to be performed next). It matches the incoming instance
against the rule base and computes a match set containing
the rules that apply to the current situation. Based on the
value of the actions in the match set, the system decides
which action to execute. As a consequence of the executed
action, the system receives a numerical reward that is dis-
tributed to the rules accountable for it so as to improve the
estimates of the action values. While the classifier system is
interacting with the problem, a genetic algorithm is applied
to the rule base to discover better rules, which may improve
the current solution.

In learning classifier systems, matching is the most com-
putationally demanding part of the overall process, which
can occupy up to the 65%-85% of the overall time [18]. As a
consequence, fast matching algorithms can lead to dramatic
speedups. A recent study by Llorà and Sastry [18] compared
the typical character-based encoding of rule conditions, an
encoding based on the underlying binary arithmetic, and
a version of the same binary encoding optimized via vec-
tor instructions. The results show that binary encodings
combined with optimizations based on the underlying inte-
ger arithmetic can speedup the matching process up to 80
times. The analysis in [18] focuses on the cost of matching
the entire population but does not consider the influence of
rule generality, which, nonetheless, has a significant impact
on the cost of matching. In the most typical implementa-
tions (see for instance, [2, 15]), the matching of a rule stops
as soon as it is determined that the rule does not apply to
the current problem instance. Therefore, matching a pop-
ulation of highly specific rules takes much less than match-

1349

ing a population of highly general rules. In addition, the
analysis in [18] considers matching alone: a population of
random rules was generated, several match operations were
performed using a random set of inputs, and the perfor-
mance was measured as the time needed to match one rule
set. However, in learning classifier systems the generality
of the population can change dramatically during learning.
Accordingly, the number of rules involved in the matching
process and the cost of matching changes during evolution.

This paper is a follow-up of the work of Llorà and Sas-
try [18]. It extends their early analysis in various respects.
The first and foremost extension regards the influence of
rule generality on the cost of matching, which has not been
considered in [18]. As we show in the next section, with the
mostly used character-based encoding, the cost of matching
depends on the rule generality and it is generally lower for
specific conditions and larger for general conditions. Sec-
ondly, in this work we consider two additional encodings
that were not considered in [18]: one was used in some im-
plementations of Alecsys which, similarly to the encod-
ing discussed in [18], exploits the underlying integer arith-
metic; one is a specificity-based encoding that has been dis-
tributed in some versions of XCS-C [2]. We compare the
widely used character-based encoding and these two encod-
ings on matching alone (as it was done in [18]) and on typ-
ical testbeds used in the learning classifier system litera-
ture (Boolean multiplexer, hidden parity, and woods prob-
lems [20, 4]). The first set of experiments, involving match-
ing alone, shows the influence of population generality on
the cost of matching: character-based encoding becomes
slower and slower as generality increases, specificity-based
encoding becomes faster and faster as generality increases,
binary encoding is not influenced. The second set of exper-
iments, involving known test problems, confirms the results
of Llorà and Sastry [18]: binary encoding is the fastest en-
coding, being on a typical problem around ten times faster
than character-based encoding; specificity-based encoding
can solely halve the time require to solve a typical problem.
At the end, we exploit the knowledge we acquired on binary
problems and present a specificity-based encoding for the
well-known interval-based representation. We compare the
original matching algorithm for interval-based representa-
tion with our specificity-based encoding and show that the
latter can speed up matching up to 50%, in populations that
contain highly general rules.

2. CHARACTERBASED ENCODING
Learning classifier systems often assume that the problem

space is binary, that is, the problem instances (the inputs)
are binary strings and the decisions (the actions) are binary
strings. Accordingly, rule conditions are usually strings de-
fined over the ternary alphabet {0,1,#}. The match proce-
dure scans all the input bits to check whether the condition
contains a don’t care symbol (#) or an input bit is equal to
the corresponding character in the condition. This ternary
representation of rule conditions can be encoded in several
ways [12, 18]. Among others, character-based encoding is
probably the most straightforward and therefore the most
widely spread approach to implement ternary conditions and
matching. It defines conditions as strings (or arrays) of ’0’,
’1’, ’#’ symbols. Inputs are strings of 0s and 1s. Matching
scans all the input characters and checks whether the condi-
tion contains a don’t care symbol (#) or an input character

Algorithm 1 Character-based encoding and matching.

// representation of classifier condition
string condition;

// representation of classifier inputs
string inputs;

// matching procedure
int pos = 0;
bool result = true;

while ((result) && (pos<condition.size()))
{

result = ((condition[pos]==’#’) ||
(condition[pos]==inputs[pos]));

pos++;
}
return result;

is equal to the corresponding character in the condition. Al-
gorithm 1 reports, using a C-like syntax, a typical implemen-
tation of character-based encoding with the corresponding
matching procedure [15, 7]. In the worst case, the cost of
matching using character-based encoding is O(n) to match
one condition of length n and it is O(Nn) when a popu-
lation of N classifiers is considered. In the average case,
however, the cost of matching is proportional to the per-
centage of # symbols in the classifier condition, or classifier
generality. In fact, matching typically stops as soon as it is
clear that the condition does not cover the current problem
instance—when in Algorithm 1 the variable result becomes
false. Thus, matching will perform more comparisons when
applied to conditions that have many #s and fewer compar-
isons on conditions with fewer #s, since specific conditions
apply to fewer situations.

3. OTHER ENCODINGS
Character-based encoding is very simple and for this rea-

son widely used but it is also highly inefficient in that (1)
it wastes 75% of the memory by using 8 bits characters to
encode three symbols and (2) it processes input information
that is in principle useless. We now examine two alternative
encodings, which try to improve the character-based encod-
ing by focusing the matching process only on the relevant
input information and try to reduce memory and compu-
tational burden by exploiting the underlying integer arith-
metic.

3.1 Specificitybased Encoding and Matching
Character-based encoding scans the entire condition, but

checking the don’t care symbols (#s) is actually useless since
they will match anyway. Accordingly, matching can be lim-
ited to the specific bits and a condition can be represented
by a list of position-digit pairs 〈pi, di〉, which specify which
specific bits should be matched. A pair 〈pi, di〉 indicates that
the input position pi must be equal to di. For instance, the
condition #1##0# is represented by the set {〈2, 1〉, 〈5, 0〉},
which indicates that the condition will apply when the sec-
ond input is 1 and the fifth input is 0. By limiting the con-
dition representation to the specific bits, this representation
can reduce the memory occupation and the computational
cost when the conditions involved are sufficiently general. If
σ is the average specificity of the rules in the population [5]

1350

Algorithm 2 Specificity-based encoding and matching.

// representation of classifier condition
vector<int> condition_vector;

// representation of classifier inputs
string inputs;

...

//
// matching procedure
//
int pos = 0;
bool result = true;

// match ends when a pos did not match or
// all the integers have been considered
while (result && pos<condition_vector.size())
{

result = inputs[condition_vector[pos]/2] ==
’0’+condition_vector[pos]%2;

pos++;
}
return result;

(i.e., the percentage of specific positions in the population
conditions), the cost matching is on average O(σn) for one
rule and O(σNn) when a population of N classifiers is con-
sidered; if sc and si are respectively the number of bytes
required to store a character and an integer, the memory
occupation for this representation is O(σnN(sc +si)), which
makes the representation useful when σ ≤ sc/(sc + si). For
instance, if sc is 1 and si is 2, as in many C compilers,
specificity based is convenient when the conditions have a
specificity lower than the 33% (a rather typical situation in
classifier systems). This specificity-based encoding is, for
example, used in an implementation of XCS-C, where con-
ditions are represented as lists of position-digit pairs [2].
Here, we propose an even slightly simpler implementation
of the same idea. A condition c is represented as a set (an
array) of integers {c1, . . . , ci, . . . } that encodes both the po-
sition and digit information: the position pi is obtained by
the integer division ci/2 while the digit di is obtained by
the corresponding remainder (i.e., ci mod 2)1. The con-
dition #1##0# is now represented by the set {5, 10}: 5 en-
codes 〈2, 1〉, 10 encodes 〈5, 0〉. This implementation is very
compact and requires O(σnNsi) bytes to store the entire
population. It occupies less than the usual character-based
representation when σ ≤ sc/si, that is, typically when less
than 50% of the condition is specified. Algorithm 2 reports
the implementation of this version of specificity encoding
with the corresponding matching procedure. The condition
is now a vector of integers (vector<int>), while the inputs
are still represented as strings. Matching scans the integers
in the vector and checks the corresponding condition posi-
tions against the inputs.

1The representation can be immediately generalized for an
input space defined over an χ−ary alphabet: pi = ci/χ and
di = ci mod χ

Algorithm 3 Binary representation and matching.

// representation of classifier condition
bitset fp;
bitset sp;

// representation of classifier inputs
bitset inputs;

// matching procedure

bitset result = ((input^fp) & (input^sp));
return result.none();

3.2 Encoding and Matching in Alecsys
The representations considered so far use built-in types (a

character or an integer) to represent each condition symbol.
As noted by Llorà and Sastry [18], this approach wastes
most of the allocated memory (character-based encoding
wastes up to the 75% of the memory [18]) and it also pre-
vents the use of bitwise (register-level) logical operations,
which can dramatically speed-up the matching process [18].
The memory and speed constraint were particularly strict
in the early days of learning classifier system research. So,
we went back to one of the first successful learning clas-
sifier systems, Alecsys, developed by Dorigo, Colombetti
and colleagues [9] and found out that rule conditions were
implemented using arrays of bits packed up inside unsigned
integers. In Alecsys, a condition was represented by two
arrays, fp and sp, of unsigned integers, each array repre-
sented part of the condition. A one in the rule condition
is represented by a bit set to one in the same position of
fp and sp; a zero is represented by a bit set to zero in the
same position of fp and sp; a don’t care (#) can be either
represented by a 0 in fp and a 1 in sp or by a 1 in fp and a 0
in sp. Given the bit encoded inputs i, a condition matches
if fp^i & sp^i returns a set of zero bits, where ^ is the
bitwise exclusive or and & is the bitwise logical and. Algo-
rithm 3 shows our implementation of the encoding used in
Alecsys and the corresponding matching. The condition is
represented as two variables, fp and sp, using the Standard
Template Library (STL) bitset class [13], which encodes a
set of bits, the condition matches if the resulting bitset has
all the bits set to zero, i.e., if result.none() returns true.
While Llorà and Sastry [18] implemented conditions as ar-
rays of integers to reach the maximum speedup possible, we
preferred an implementation based on the language layer,
which consequently depends on the capabilities of the lan-
guage layer itself and on the optimization options provided
by the compiler.

4. MATCHING ALONE
We performed two sets of experiments aimed at evaluat-

ing (i) the performance of the three encodings on match-
ing alone and (ii) the performance of the three encodings
on typical classifier system testbeds, namely Boolean mul-
tiplexer, hidden parity, and woods environments [20, 21, 4].
All the experiments were conducted with xcslib [15] (ac-
cording to Llorà and Sastry [18], matching is more relevant
in xcslib [15] than it is in XCS-C [2]) and machines with
AMD Opteron CPUs and 1GB of memory, while all the
programs have been compiled using g++ 4.1.2 with the -O3

option.

1351

Algorithm 4 Procedure to test match performance.

// P is a set of N conditions
condition P[N];

// generate the population
for(i=0; i<N; i++)
{

// the i-th condition is randomly generate
// with a dont care probability dcp
P[i] = condition.random(dcp);

}

// tt is the total time
tt = 0;

// test 2000 input instances
for(ins=0; ins<2000; ins++)
{

// generate a random input of size n
input in = random(n);

// save the current time
start = timer();

// matching time evaluation for all classifiers
for(i=0; i<N; i++)
{

// test if the ith classifier matches
P[i].match(in);

}

// save the end time
end = timer();

// update tt
tt = tt + (end-start);

}

// return the total time spent for matching
return tt

The first set of experiments was performed following the
design of Llorà and Sastry [18]. We generated a set of
N ternary conditions of length n with different generality
and 2000 random inputs. We matched each random input
against the N conditions using one of the three algorithms
previously discussed and measured the average CPU time
required to perform all the match operations. This proce-
dure was repeated 50 times. The performance was measured
as the average CPU time to perform the 2000 matches over
the N conditions. Algorithm 4 shows the pseudocode of the
overall procedure.

Table 1 reports the results when the condition length n
is 32; N is the population size, gen is the population gen-
erality (or one minus the specificity σ, 1-σ), char is the
average CPU time for the character-based encoding, spec

is the average CPU time for the specificity-based encoding,
and bin is the average CPU time for the binary encoding
used in Alecsys. The population generality gen was set
by tuning the don’t care probability parameter P#, see [20]
for details. Conditions are short so the time differences are
small. Binary encoding is always faster, at most, it is from
30% to 50% faster than character-based encoding depend-
ing on the population generality. Since binary encoding is
not influenced by rule generality, the time is basically the
same, independent of the value of gen. As we anticipated,
character-based encoding is between 11% and 36% faster

N gen char(µ ± σ) spec(µ ± σ) bin (µ ± σ)
1000 0.0 0.11 ± 0.02 0.12 ± 0.03 0.08 ± 0.02
1000 0.25 0.13 ± 0.03 0.11 ± 0.03 0.07 ± 0.02
1000 0.5 0.14 ± 0.03 0.12 ± 0.02 0.08 ± 0.03
1000 0.75 0.15 ± 0.03 0.12 ± 0.03 0.08 ± 0.02
1000 0.99 0.17 ± 0.03 0.09 ± 0.02 0.08 ± 0.02
5000 0.0 0.74 ± 0.07 1.14 ± 0.09 0.41 ± 0.05
5000 0.25 0.72 ± 0.06 1.13 ± 0.09 0.44 ± 0.06
5000 0.5 0.82 ± 0.07 1.11 ± 0.08 0.43 ± 0.08
5000 0.75 0.87 ± 0.08 0.94 ± 0.09 0.40 ± 0.05
5000 0.99 0.90 ± 0.08 0.55 ± 0.07 0.44 ± 0.07
10000 0.0 1.69 ± 0.12 2.80 ± 0.11 0.87 ± 0.09
10000 0.25 1.77 ± 0.12 2.83 ± 0.12 0.88 ± 0.09
10000 0.5 1.89 ± 0.1 2.73 ± 0.13 0.89 ± 0.07
10000 0.75 1.94 ± 0.09 2.13 ± 0.14 0.81 ± 0.08
10000 0.99 1.90 ± 0.1 1.53 ± 0.12 0.87 ± 0.08

Table 1: Time required to match 2000 instances

when the problem size is 32 bits, the population

size N is 1000, 5000, or 10000, and the population

generality gen is 0.00, 0.25, 0.50, 0.75, or 0.99. Data

are averages over 50 runs.

when the population is more specific (when generality gen

is low). In contrast, specificity-based encoding is slower in
highly specific populations where there is a small probability
that a rule will match (in fact, the experiments show that
none of the problem instances matched) and therefore very
few comparisons are performed. Accordingly, the overhead
introduced by this representation slows down the matching.
However, when conditions are general, character-based en-
coding will scan almost all the condition whereas specificity-
based encoding will just compare the very few specific con-
dition elements and therefore will perform faster than plain
character-based encoding.

We repeated the same set of experiments with conditions
consisting of 1024 symbols (Table 2). In general, the three
encodings (alone) perform as in the previous experiment.
Character-based encoding becomes slower as generality in-
creases, specificity-based encoding becomes faster as gener-
ality increases, while binary encoding takes the same amount
of time no matter what the generality is. With very spe-
cific conditions, both character-based and specificity-based
encodings are faster than binary encoding. This can be ex-
plained by considering that with a generality between 0.0
and 0.5 almost no condition matches an input and few po-
sitions are checked. In contrast, binary encoding always
checks all the 1024 positions (encoded in 128 bytes). With a
high generality, character-based encoding is extremely slow
but specificity-based encoding is faster, even faster than bi-
nary encoding. Again, this is easily explained by noting
that, with high generality, the specificity-based encoding will
require very few comparisons. In contrast, character-based
and binary encoding will check the entire condition.

This set of experiments confirms that when considering
the cost of matching in learning classifier systems, in some
encodings the generality of the rule population matters and
the matching time may be significantly influenced by rule
generality. When considering these results we should also
note that the binary encoding considered here is not highly
optimized (as the one considered in [18]) and it exploits the
C++ language layer to encapsulate the underlying integer
representation. These two aspects surely have a significant
influence on the matching time for the binary encoding,

1352

N P# char(µ ± σ) spec(µ ± σ) bin (µ ± σ)
1000 0.0 0.13 ± 0.03 0.15 ± 0.03 0.29 ± 0.04
1000 0.25 0.14 ± 0.03 0.15 ± 0.04 0.27 ± 0.04
1000 0.5 0.15 ± 0.03 0.14 ± 0.03 0.27 ± 0.04
1000 0.75 0.16 ± 0.03 0.14 ± 0.03 0.27 ± 0.04
1000 0.99 0.93 ± 0.05 0.12 ± 0.04 0.30 ± 0.04
5000 0.0 1.50 ± 0.09 1.97 ± 0.12 2.77 ± 0.10
5000 0.25 1.56 ± 0.10 1.91 ± 0.11 2.77 ± 0.11
5000 0.5 1.61 ± 0.12 1.82 ± 0.11 2.76 ± 0.12
5000 0.75 1.77 ± 0.10 1.74 ± 0.11 2.72 ± 0.09
5000 0.99 6.29 ± 0.16 1.11 ± 0.07 2.83 ± 0.12
10000 0.0 3.15 ± 0.11 4.14 ± 0.14 5.60 ± 0.17
10000 0.25 3.33 ± 0.15 4.08 ± 0.17 5.45 ± 0.30
10000 0.5 3.56 ± 0.16 4.02 ± 0.13 5.64 ± 0.14
10000 0.75 3.97 ± 0.15 3.69 ± 0.14 5.69 ± 0.19
10000 0.99 12.73 ± 0.22 2.40 ± 0.14 5.54 ± 0.16

Table 2: Time required to match 2000 instances

when the problem size is 1024 bits, the population

size N is 1000, 5000, or 10000, and the population

generality gen is 0.00, 0.25, 0.50, 0.75, or 0.99. Data

are averages over 50 runs.

explaining the slower matching performance in comparison
with character- and specificity-based encoding.

Despite this fact, the results may still seem to contra-
dict what had been reported by Llorá and Sastry [18], who
showed that the binary encoding is at least an order of mag-
nitude faster than the character-based encoding. However,
the character-based match used for comparison by Llorà and
Sastry [18], available for download at [17], checks all the

condition symbols whereas the match considered here for
character-based encoding stops as soon as the match fails
(see the result flag in Algorithm 1). Accordingly, the com-
parison performed by Llorà and Sastry [18] does not take
into account classifier specificity/generality.

5. MATCHING WHILE LEARNING
In the previous set of experiments, we compared the three

encodings on matching alone and noted that the time re-
quired for matching, for some encodings, depends on the
generality of the rule population. With character-based
encoding, matching is faster on specific populations and
slower on more general ones; in contrast, with specificity-
based encoding, matching is slower on specific populations
and faster on general ones; while with binary encoding the
cost of matching solely depends on the condition length. In
learning classifier systems, the generality of the rules in the
population changes during learning. Initially, the popula-
tion contains rules of a predetermined generality [5]. When
the exploration of the solution space begins, the population
often contains many overly specific rules. As learning pro-
ceeds and effective problem representations are developed,
the population converges to a compact, general set of rules.
Therefore, the cost of matching changes during the evolution
both because the population generality changes and also be-
cause the number of rules in the population changes. The
character-based encoding will be favored by more specific
populations and will be penalized by general populations.
For specificity-based encodings, the pattern is reversed. Bi-
nary encodings always keep the same matching speed.

The second set of experiments aimed at evaluating the
three encodings on well-known problems taken from the
learning classifier system literature: Boolean multiplexer,
hidden parity, and woods problems [20, 21, 4]. We selected
these problems because they were available in one or more
learning classifier system distributions and more precisely,
we used the configuration files available with xcslib [15],
the only parameter we changed is the number of runs per-
formed for each problem—originally it was set to ten, here it
is twenty. Since the encoding also influences how the genetic
operators are implemented, to study the effect of the condi-
tion encoding on matching, we used rules with two encod-
ings: the character-based encoding, as implemented in the
original source code [15] (which was used for covering and
for the genetic algorithm [20]), and the encoding used for
matching only (that is, the character-based, the specificity-
based, or the binary encoding). Accordingly, the genetic
operators were not redefined for each representation so that
the analysis does not take into account the time required by
each representation for crossover and mutation.

The Boolean multiplexer is defined over binary strings
of length n where n = k + 2k; the first k bits, x0, . . . , xk−1,
represent an address which indexes the remaining 2k bits,
y0, . . . , y2k−1; the function returns the value of the indexed
bit. For instance, in the 6-multiplexer function, mp6, we
have that mp6(100010) = 1 while mp6(000111) = 0.

Hidden parity was first used with XCS in [14] to relate the
problem difficulty to the number of accurate maximally gen-
eral classifiers needed by XCS to solve the problem. Hidden
parity problems are defined over binary strings of length n
in which only k bits are relevant; the hidden parity function
(HPn,k) returns the value of the parity function applied to
the k relevant bits, that are hidden among the n inputs. For
instance, given the hidden parity function HP6,4 defined over
inputs of six bits (n = 6), in which only the first four bits
are relevant (k = 4), then we have that HP6,4(110111) = 0
while HP6,4(001111) = 1.

Woods problems are grids with obstacles, goal positions,
and empty positions. The system can stay in any of the
empty positions and it is able to move to any adjacent po-
sition that is empty. The system has to learn how to reach
a goal position from any empty position. Woods1 [20] and
Woods2 [21] are the first two woods problems that were used
to test the performance of Wilson’s XCS.

Table 3 reports the time required to perform 20 runs for
each problem using the parameter settings included in the
original distribution. In the problems considered, the num-
ber of inputs is rather limited, in that the condition size
n ranges from 6 to 37, therefore the settings are similar
to those discussed for Table 1, where binary encoding per-
formed better. In fact, in all the problems binary encoding is
the fastest, achieving a speedup of 91% for the most difficult
problem, the 37-multiplexer, while specificity-based encod-
ing yields speedups of about 50% on average. The result in
Table 3 suggests that, metaphorically speaking, learning is
like a marathon: it is better to keep the same (fast) match-
ing pace, as binary encoding does, since the overhead time
spent matching specific conditions earlier (as done by the
specific-based encoding) piles up and significantly weighs on
the overall matching speed.

1353

settings char spec bin

n N #probs t (µ ± σ) t (%) t (µ ± σ) t (%) t (µ ± σ) t (%)

mp6 6 400 20000 0.54±0.03 100.0 0.35±0.02 64.8 0.21±0.01 38.9
mp11 11 1000 20000 2.85±0.20 100.0 1.54±0.10 54.0 0.41±0.02 14.4
mp20 20 2000 400000 66.82±2.24 100.0 35.43±0.88 53.0 9.24±0.24 13.8
mp37 37 5000 2000000 1893.87±376.37 100.0 804.85±123.39 42.5 169.34±24.76 8.9
par20-5 20 2000 600000 121.65±19.52 100.0 58.64±9.02 48.2 14.40±1.38 11.8
woods1 16 1600 4000 15.00±1.71 100.0 8.51±0.94 56.7 2.90±0.28 19.3
woods2 24 1600 20000 22.09±2.58 100.0 11.79±1.25 53.3 4.88±0.22 22.1

Table 3: Time required to solve each problem 20 times using the configuration available in the xcslib

distribution. Data are averages over 20 runs.

6. BEYOND BINARY DOMAINS
Over the recent years, an increasing number of studies

have applied learning classifier systems to real-valued prob-
lems. For this purpose, several other condition representa-
tions have been used, including center-based intervals [22],
simple intervals [23, 19], convex hulls [16], ellipsoids [3], and
hyper-ellipsoids [6]. All these representations came with
their own matching algorithm and, to our knowledge, there
has not been any work that tried to speedup matching for
real inputs. Character-based and binary encodings do not
provide any hint about how to speed up the matching for
real inputs, but specificity-based encoding actually suggests
a way to speed up matching in real domains by dealing
with more specific information first. In binary domains,
the specificity-based encoding considers specific bits first
and ignores the generalized positions. Although the distinc-
tion between specified and generalized position is blurred
in real domains, we can still exploit the same principle and
extend the widely used interval-based representation by a
specificity-based encoding.

6.1 Interval Based Representation &
SpecificityBased Matching

In the interval-based case [23], a condition is represented
by a concatenation of n real interval predicates, int i =
(li, ui); given an input ~x consisting of n real numbers, a
condition matches ~x if, for every i ∈ {1, . . . n}, the predicate
li ≤ xi∧xi ≤ ui is verified. The matching is straightforward
and its pseudocode is reported as Algorithm 5: the condi-
tion (identified by the variable condition) is represented as
a vector of intervals; the inputs are a vector of real values
(in double precision); the n inputs (i.e., inputs.size()) are
scanned and each input is tested against the correspond-
ing interval; the process stops either when all the inputs
matched or as soon as one of the intervals does not match
(when result in Algorithm 5 becomes false).

This matching procedure can be sped-up by changing the
order in which the inputs are tested: if more specific inter-
vals are tested first, the match is more likely to fail early
so as to speed up the matching process. As an example,
consider a condition represented by a set of intervals of de-
creasing generality (i.e., (ui − li) > (ui+1 − li+1) for all
i ∈ {1, . . . , n− 1}); for each i, the interval i is more likely to
match than the interval i+1. Therefore, the typical match-
ing procedure, which scans the intervals one after another,
is more likely to fail as it moves from testing interval i to
interval i+1. However, if we reverse the order and scan the
condition from interval n to interval 1, the match is likely to

Algorithm 5 Matching for interval-based conditions.

// representation of classifier condition
vector<interval> condition;

// representation of classifier inputs
vector<double> inputs;

// matching procedure
int pos = 0;
bool result = true;

while ((result) && (pos<inputs.size()))
{

result =
((inputs[pos]>=condition[pos].lower) &&
(condition[pos].upper>=inputs[pos]));

pos++;
}
return result;

fail earlier since interval i + 1 is more specific than interval
i. Note however that, how much earlier matching will fail
cannot be estimated, since this depends on the distribution
of the interval specificities and on the input distribution.

We generalize this principle and improve the interval-
based encoding by adding a match index vector mi that
represents the sorting of the intervals from the more spe-
cific interval to the most general one, i.e., mi[0] is the index
of the most specific interval, mi[1] is the index of the second
most specific interval, etc. The match vector mi is computed
only once when the condition is created and then used for
matching purposes. This specificity-based encoding for the
interval-based representation and the corresponding match-
ing procedure is shown as Algorithm 6: the match vector mi
is a vector of integers; matching works as before but the in-
terval to be tested is determined by the match index vector
mi.

6.2 Matching Alone
We compared the standard matching algorithm for

interval-based conditions in [23] with the introduced
specificity-based encoding (cf. Algorithm 6), using the same
experimental design already used for the binary problems in
Section 4. We generated random populations of 1000 and
10000 rules of different generalities and 20000 instances; we
measured the time required to match all the 20000 instances
against the 10000 rules in the population. The generality
of a random population was determined by setting an ade-
quate value of the parameter r0 (see [23] for details). Ta-

1354

Algorithm 6 Specificity-based matching for interval-based
conditions.
// representation of classifier condition
vector<interval> condition;

// matching index
vector<int> mi;

// representation of classifier inputs
vector<double> inputs;

// matching procedure
int pos = 0;
bool result = true;

while ((result) && (pos<condition.size()))
{
result =
((inputs[mi[pos]]>=condition[mi[pos]].lower) &&
(condition[mi[pos]].upper>=inputs[mi[pos]]));

pos++;
}
return result;

ble 4 reports the data from this set of experiments: n is
the number of inputs, gen is the population generality, N is
the number of conditions involved, plain is the CPU time
required by the standard matching algorithm [23], spec is
the CPU time required by the specificity-based matching
algorithm [23]. The results reported in Table 4 are simi-
lar to those reported for the binary case. The cost of the
usual matching, which scans the whole condition in a prede-
termined order, increases with generality whereas the cost
of specificity-based matching decreases as the generality in-
creases and as the number of inputs n increases. Accord-
ingly, in populations with less general rules the usual match-
ing is faster whereas the specificity-based matching is faster
(up to 60%), when applied to populations containing rules
of high generality.

7. CONCLUSIONS
We analyzed matching in learning classifier systems in bi-

nary and real domains. Our aim was to extend the previ-
ous analysis of Llorà and Sastry [18] in two respects. We
wanted to analyze the role of population generality on the
cost of matching and we also wanted to evaluate the perfor-
mance of the different algorithms on typical testbeds taken
from the literature. We considered three encodings and
the corresponding matching algorithms: the widely used
character-based encoding, a specificity-based encoding used
in some XCS-C implementations [2], and the binary encod-
ing used in some implementations of Alecsys [9]. Our
results on matching alone show the influence of popula-
tion generality on character-based and specificity-based en-
codings: as generality increases (that is, as specificity de-
creases), the character-based encoding becomes slower and
slower, whereas specificity-based encoding becomes faster
and faster. Overall, specificity-based matching is 50% faster
than character-based encoding when general populations are
involved, but it can be slower than character-based encoding
if more specific populations are considered. Binary encod-
ing confirms to be the fastest options, as previously shown
in [18]. Our results on typical testbeds show that binary en-
coding provides the highest speedup of up to 90% compared

n gen N plain spec

10 0.25 1000 0.07± 0.02 0.07± 0.02
10 0.50 1000 0.08± 0.01 0.08± 0.02
10 0.75 1000 0.10± 0.01 0.08± 0.03
10 0.90 1000 0.13± 0.02 0.11± 0.02
10 0.95 1000 0.13± 0.03 0.13± 0.02
50 0.25 1000 0.37± 0.03 0.41± 0.06
50 0.50 1000 0.42± 0.06 0.41± 0.06
50 0.75 1000 0.54± 0.04 0.42± 0.04
50 0.90 1000 0.75± 0.05 0.44± 0.06
50 0.95 1000 1.07± 0.06 0.59± 0.04
100 0.25 1000 0.84± 0.07 0.82± 0.06
100 0.50 1000 0.88± 0.08 0.83± 0.05
100 0.75 1000 1.04± 0.07 0.80± 0.06
100 0.90 1000 1.45± 0.08 0.84± 0.08
100 0.95 1000 2.21± 0.10 0.95± 0.08

10 0.25 10000 0.72± 0.08 0.81± 0.04
10 0.50 10000 0.80± 0.07 0.88± 0.04
10 0.75 10000 1.05± 0.05 1.07± 0.06
10 0.90 10000 1.23± 0.05 1.25± 0.06
10 0.95 10000 1.32± 0.11 1.88± 0.12
50 0.25 10000 4.08± 0.10 4.45± 0.20
50 0.50 10000 5.69± 0.16 4.86± 0.15
50 0.75 10000 9.38± 0.42 6.03± 0.67
50 0.90 10000 11.92± 0.17 7.39± 2.21
50 0.95 10000 15.86± 0.81 13.30± 0.25
100 0.25 10000 8.46± 0.34 8.39± 0.22
100 0.50 10000 13.02± 1.96 8.76± 0.42
100 0.75 10000 16.93± 2.17 8.83± 0.29
100 0.90 10000 27.49± 2.04 9.23± 0.28
100 0.95 10000 36.48± 0.34 13.56± 0.38

Table 4: Time required to match 20000 instances

when the problem consists of 10, 50 or 100 real in-

puts, the population size N is 1000 or 10000, and

the population generality gen varies between 0.00

and 0.99. Data are averages over 20 runs.

to the usual character-based encoding, while specificity-
based encoding is twice as fast as the character-based encod-
ing. Specificity-based encoding provides limited speedups
when compared to the binary encoding, but it can be easily
extended to real domains. We compare the usual interval-
based representation for real-valued inputs with our simple
specificity-based representation for real domains on match-
ing alone. The results presented show that, by focusing
matching on the more specific part of a condition first, the
time required for matching can be almost halved. We also
performed some initial experiments, not reported here, with
typical testbeds introduced in the learning classifier system
literature such as the learning of sum predicates [23] and
the checker board [1]. The initial results show basically no
significant difference between the time required using stan-
dard and specificity-based matching, but more experiments
are still needed and they are a topic for future research.

1355

8. REFERENCES
[1] E. Bernadó-Mansilla and T. K. Ho. Domain of

competence of XCS classifier system in complexity
measurement space. IEEE Trans. Evolutionary

Computation, 9(1):82–104, 2005.

[2] M. V. Butz. XCS (+ tournament selection) classifier
system implementation in c, version 1.2. Technical
Report 2003023, Illinois Genetic Algorithms
Laboratory – University of Illinois at
Urbana-Champaign, 2003.

[3] M. V. Butz. Kernel-based, ellipsoidal conditions in the
real-valued XCS classifier system. In H.-G. Beyer and
U.-M. O’Reilly, editors, GECCO, pages 1835–1842.
ACM, 2005.

[4] M. V. Butz. Rule-Based Evolutionary Online Learning

Systems: A Principled Approach to LCS Analysis and

Design. Studies in Fuzziness and Soft Computing.
Springer Verlag, Berlin-Heidelberg, Germany, 2006.

[5] M. V. Butz, T. Kovacs, P. L. Lanzi, and S. W.
Wilson. Toward a theory of generalization and
learning in XCS. IEEE Transaction on Evolutionary

Computation, 8(1):28–46, Feb. 2004.

[6] M. V. Butz, P. L. Lanzi, and S. W. Wilson.
Hyper-ellipsoidal conditions in XCS: rotation, linear
approximation, and solution structure. In Cattolico
[8], pages 1457–1464.

[7] M. V. Butz and S. W. Wilson. An algorithmic
description of XCS. Journal of Soft Computing,
6(3–4):144–153, 2002.

[8] M. Cattolico, editor. Genetic and Evolutionary

Computation Conference, GECCO 2006, Proceedings,

Seattle, Washington, USA, July 8-12, 2006. ACM,
2006.

[9] M. Dorigo and M. Colombetti. Robot Shaping: An

Experiment in Behavior Engineering. MIT
Press/Bradford Books, 1998.

[10] D. E. Goldberg. Genetic Algorithms in Search,

Optimization, and Machine Learning. Addison-Wesley,
Reading, Mass., 1989.

[11] J. H. Holland and J. S. Reitman. Cognitive systems
based on adaptive algorithms. 1978. Reprinted in:
Evolutionary Computation. The Fossil Record. David
B. Fogel (Ed.) IEEE Press, 1998. ISBN: 0-7803-3481-7.

[12] K. A. D. Jong and W. M. Spears. Learning Concept
Classification Rules using Genetic Algorithms. In
Proceedings of the Twelfth International Conference

on Artificial IntelligenceIJCAI-91, volume 2, 1991.

[13] N. M. Josuttis. The C++ Standard Library: A

Tutorial and Reference. Addison-Wesley Professional,
1999.

[14] T. Kovacs and M. Kerber. What makes a problem
hard for XCS? In P. L. Lanzi, W. Stolzmann, and
S. W. Wilson, editors, Advances in Learning Classifier

Systems, volume 1996 of LNAI, pages 80–99.
Springer–Verlag, Berlin, 2001.

[15] P. L. Lanzi. The XCS library. 2002.

[16] P. L. Lanzi and S. W. Wilson. Using convex hulls to
represent classifier conditions. In Cattolico [8], pages
1481–1488.

[17] X. Llorá and K. Sastry. Software for fast rule
matching using vector instructions. http://www.
illigal.uiuc.edu/web/xllora/2006/01/19/, Last
checked on March 21th 2008.

[18] X. Llorà and K. Sastry. Fast rule matching for
learning classifier systems via vector instructions. In
Cattolico [8], pages 1513–1520.

[19] C. Stone and L. Bull. For real! XCS with
continuous-valued inputs. Evolutionary Computation,
11(3):298–336, 2003.

[20] S. W. Wilson. Classifier Fitness Based on Accuracy.
Evolutionary Computation, 3(2):149–175, 1995.

[21] S. W. Wilson. Generalization in the XCS classifier
system. In Genetic Programming 1998: Proceedings of

the Third Annual Conference, pages 665–674. Morgan
Kaufmann, 1998.

[22] S. W. Wilson. Get real! XCS with continuous-valued
inputs. In P. L. Lanzi, W. Stolzmann, and S. W.
Wilson, editors, Learning Classifier Systems, volume
1813 of Lecture Notes in Computer Science, pages
209–222. Springer, 1999.

[23] S. W. Wilson. Mining oblique data with XCS. In P. L.
Lanzi, W. Stolzmann, and S. W. Wilson, editors,
IWLCS, volume 1996 of Lecture Notes in Computer

Science, pages 158–176. Springer, 2000.

1356

