
Runtime Analysis of Binary PSO

Dirk Sudholt∗
Fakultät für Informatik, LS 2

Technische Universität Dortmund
Dortmund, Germany

Carsten Witt∗
Fakultät für Informatik, LS 2

Technische Universität Dortmund
Dortmund, Germany

ABSTRACT

We investigate the runtime of the Binary Particle Swarm
Optimization (PSO) algorithm introduced by Kennedy and
Eberhart (1997). The Binary PSO maintains a global best
solution and a swarm of particles. Each particle consists of a
current position, an own best position and a velocity vector
used in a probabilistic process to update the particle’s po-
sition. We present lower bounds for swarms of polynomial
size. To prove upper bounds, we transfer a fitness-level argu-
ment well-established for evolutionary algorithms (EAs) to
PSO. This method is applied to estimate the expected run-
time on the class of unimodal functions. A simple variant
of the Binary PSO is considered in more detail. The 1-PSO
only maintains one particle, hence own best and global best
solutions coincide. Despite its simplicity, the 1-PSO is sur-
prisingly efficient. A detailed analysis for the function One-
Max shows that the 1-PSO is competitive to EAs.

Categories and Subject Descriptors

F.2 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity

General Terms

Theory, Algorithms, Performance

Keywords

Particle swarm optimization, runtime analysis

1. INTRODUCTION
The runtime analysis of randomized search heuristics is

a growing area with many interesting results in the last
decades. The analysis of evolutionary algorithms started
with the investigation of simple evolutionary algorithms on

∗Supported by the Deutsche Forschungsgemeinschaft (DFG)
as a part of the Collaborative Research Center “Computa-
tional Intelligence” (SFB 531).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’08, July 12–16, 2008, Atlanta, Georgia, USA.
Copyright 2008 ACM 978-1-60558-130-9/08/07 ...$5.00.

simple example functions (see, e. g., Droste, Jansen and We-
gener [4]). The theoretical results derived from such analyses
then helped to develop methods to analyze more complex
evolutionary algorithms on more complex problems. The
runtime analysis of evolutionary algorithms can be called a
success story since nowadays analyses are possible for many
problems from combinatorial optimization. This includes,
for example, maximum matchings [5], spanning tree prob-
lems [12], matroid optimization [14] as well as the NP-hard
partition problem [17].

In recent years, the first runtime analyses on swarm in-
telligence algorithms have appeared, following a similar ap-
proach as taken for evolutionary algorithms. Such analyses
are, in general, more difficult than for evolutionary algo-
rithms as the probabilistic model underlying swarm algo-
rithms may depend on a long history of past solutions. Re-
garding ant colony optimization (ACO), first runtime anal-
yses have been presented independently by Gutjahr [6] and
Neumann and Witt [13]. Neumann and Witt defined a sim-
ple ant algorithm called 1-ANT and analyzed its perfor-
mance on the function OneMax. It turned out that the
1-ANT is very sensitive to the choice of the so-called evap-
oration factor that determines the amount of change in the
probabilistic model. Similar results for other functions were
presented by Doerr, Neumann, Sudholt and Witt [3]. On the
other hand, other variants of ACO proved to be quite effec-
tive for simple functions (Neumann, Sudholt and Witt [11]).

Particle swarm optimization (PSO) is another class of
swarm algorithms that is mostly applied in continuous search
spaces. Originally developed by Kennedy and Eberhart [8],
it has become a popular bio-inspired optimization princi-
ple in recent years. A comprehensive treatment is given
in the text books [10, 2]. A typical PSO algorithm main-
tains a swarm of particles where each particle corresponds
to a solution of the problem at hand. Each particle moves
through the search space according to a certain velocity. In
every iteration the velocity of a particle is updated in the
direction of its own best solution and the best individual in
its neighborhood. This kind of behavior is motivated from
social-psychology theory as it combines cognitive and social
effects to determine the behavior of each particle.

Kennedy and Eberhart [9] presented a first binary version
of PSO, called Binary PSO. As in classical PSO, velocities
are used to determine the next position of a particle. How-
ever, as each bit may only obtain discrete values 0 and 1,
velocities are used in a stochastic solution construction pro-
cess. More precise, the velocity value of a bit determines
the probability to set this bit to 1 in the next solution con-

135

struction. This closely relates to the binary ACO algorithms
cited above.

Our aim is to develop a theoretical understanding of Bi-
nary PSO, in particular from the perspective of computa-
tional complexity. We start from the original formulation by
Kennedy and Eberhart [9], where all velocities are clamped
to a fixed interval [−vmax, vmax] to prevent divergence of the
system. We prove in Section 2 that the effect on the perfor-
mance is disastrous if the velocity bound vmax is fixed while
the problem size grows. Instead, we present a formulation of
the Binary PSO with vmax adjusted towards growing prob-
lem dimensions. The new choice of vmax leads to provably
efficient optimization times without alternative approaches
for velocity control.

In Section 3 we present lower bounds on the runtime of the
Binary PSO. Section 4 shows how fitness-level arguments, a
powerful tool for the analysis of evolutionary algorithms, can
be used for the analysis of the binary PSO using only the
social component. We exemplarily apply this technique to
the class of unimodal functions. In Section 5, we consider a
specific variant of Binary PSO in more detail. The 1-PSO
works with a swarm consisting of only one particle. De-
spite its simplicity, the 1-PSO turns out to be surprisingly
efficient. A thorough analysis on the function OneMax in
Section 5 shows that the 1-PSO is competitive to evolu-
tionary algorithms. We conclude in Section 6 with possible
directions for future research.

2. THE BINARY PSO
We consider the original Binary PSO algorithm by Ken-

nedy and Eberhart [9] for the optimization of a pseudo-
Boolean function f : {0, 1}n → R. Generally, the Binary

PSO algorithm maintains µ triples (x(i), x∗(i), v(i)), 1 ≤ i ≤
µ, denoted as particles. Each particle i consists of its current
position x(i) ∈ {0, 1}n, its own best position x∗(i) ∈ {0, 1}n

and its velocity v(i) ∈ R
n. Note that the velocity is from

a continuous domain. In PSO terminology, the three com-
ponents of a particle are often called vectors. Using the
language of optimization, we will refer to particle positions
x(i), x∗(i), and x∗ synonymously as solutions.

The movement for each particle is influenced by the best
particle in its neighborhood. Hence, depending on the neigh-
borhood structure, different particles may be guided by dif-
ferent good solutions. In this work, however, we only use the
trivial neighborhood consisting of the whole swarm. This
means that all particles are influenced by a single global
best particle, denoted as x∗.

The velocities are updated as follows. The velocity vec-
tor is changed towards the particle’s own best solution and
towards the global best solution x∗. Using the language of
social-psychology, the first component is often called cogni-
tive component and the latter is often called social compo-
nent. These impact of these two components is determined
by so-called learning factors c1 and c2 representing param-
eters of the system. The factor c1 is the learning factor
for the cognitive component and c2 is the one for the social
component. A common choice is to set c1 = c2 = 2.

We give a precise definition for the Binary PSO algorithm
with a swarm size of µ and learning factors c1, c2. By lower
indices we address the n components of the three parts of
the particle.

The algorithm starts with an initialization (Step 1), where
all velocities are set to all-zeros vectors and all solutions, in-
cluding own best and global best solutions, are undefined,
denoted by ⊥. The subsequent loop (Steps 2–5) chooses ran-
dom scalars r1 and r2 anew in each iteration. These values
are used as weights for the cognitive and the social compo-
nent, resp. Using the language of evolutionary algorithms,
we refer to iterations synonymously as generations.

In Step 3, the velocity is probabilistically translated into
a new particle position, i. e., a new solution. As proposed in
the original formulation, we use the sigmoid function

s(v) :=
1

1 + e−v
.

Hence positive velocity components bias the corresponding
bit towards 1-values while negative velocities favor 0-values.
At velocity 0n, each bit is completely random, hence the
first created solution is uniformly distributed over {0, 1}n.

Afterwards, the own best and global best solutions are
exchanged if the newly constructed solution is better. Note
that the selection is strict, i. e., a best solution is only ex-
changed in case the new solution has strictly larger fitness.

In Step 4, the Binary PSO updates the velocity vectors
probabilistically in the direction to the particle’s own best
solution and the global best solution. To ensure convergence
of the heuristic, every velocity vector is bounded componen-
twise by minimum and maximum values, i. e., to an interval
[−vmax, vmax]. This reflects the common choice of a max-
imum velocity as studied by Shi and Eberhart [15]. For
practical purposes, often vmax = 4 is proposed. Since we
will however conduct an asymptotic analysis, we allow the
maximum velocity to grow with the problem dimension n
and confine the components to logarithmic values by letting
vmax := ln(n − 1). We will justify this choice later.

Algorithm 1 (Binary PSO).

1. Initialize velocities with 0n and all solutions with ⊥.

2. Choose r1 ∈ U [0, c1] and r2 ∈ U [0, c2].

3. For j := 1 to µ do
For i := 1 to n do

Set x
(j)
i := 1 with probability s(v

(j)
i),

otherwise set x
(j)
i := 0.

If f(x(j)) > f(x∗(j)) or x∗(j) = ⊥ then x∗(j) := x(j).

If f(x∗(j)) > f(x∗) or x∗ = ⊥ then x∗ := x∗(j).

4. For j := 1 to µ do
Set v(j) := v(j) + r1(x

∗(j) − x(j)) + r2(x
∗ − x(j)).

Restrict each component of v(j) to [−vmax, vmax].

5. Goto 2.

We will deal with different parametrizations of the Binary
PSO, differing in the swarm size µ and the learning factors
c1 and c2. In particular, we deal with a remarkably simple
yet effective algorithm, the so-called 1-PSO using just one
particle. With just one particle, the own best solution and
the global best solution coincide. Therefore, it makes sense
to turn off the social component by setting c2 = 0. The
cognitive learning factor is set to the default value c1 = 2.
Note that the same algorithm is described by the choice c1 =
0 and c2 = 2. Dropping the upper index in the notation, the
1-PSO can be stated as follows.

136

Algorithm 2 (1-PSO).

1. Initialize v = 0n and x∗ = ⊥.

2. Choose r ∈ U [0, 2].

3. For i := 1 to n do
Set xi := 1 with probability s(vi),

otherwise set xi := 0.
If f(x) > f(x∗) or x∗ = ⊥ then x∗ := x.

4. Set v := v + r(x∗ − x).
Restrict each component of v to [−vmax, vmax].

5. Goto 2.

There are several good reasons to investigate the 1-PSO.
One is that in the Binary PSO without social component,
i. e., with c2 = 0, all particles behave like independent in-
stances of the 1-PSO. Moreover, by analyzing the 1-PSO we
gain insight into the probabilistic model underlying the Bi-
nary PSO. This then helps to analyze more complex PSO
variants. Finally, the investigation of the 1-PSO is interest-
ing on its own as the 1-PSO turns out to be surprisingly
effective.

Why vmax Should Grow with the Problem Size

If velocity values are allowed to grow arbitrarily large, the
system may become unable to correct previous decisions.
Restricting velocities to [−vmax, vmax] is one way to circum-
vent this problem. However, this method was found to be
difficult to balance and alternative approaches for velocity
control have been developed, like inertia weights and con-
striction [1]. Often constant values for vmax are proposed.
We confirm by theoretical arguments that constant vmax lead
to an extreme decline in performance if vmax is fixed while
the problem size grows. The reason is that then the Binary
PSO is too close to random search and the algorithm fails
badly, even given exponential time and many global optima.

Theorem 1. Consider the Binary PSO with arbitrary val-
ues for µ, c1, and c2, where vmax is redefined to a constant
value. Then there is a constant c = c(vmax) such that the
following holds. If f contains at most 2cn global optima, the
probability that the Binary PSO finds a global optimum on f
within 2cn constructed solutions is at most 2−cn.

Proof. Choose c such that s(vmax) = 2−3c and note that
c is a positive constant if vmax is constant. We estimate
the probability to construct any specific solution x. Since
the Binary PSO treats 0- and 1-bits symmetrically, we can
w. l. o. g. assume that x is the all-ones string 1n. Then even
if all velocities are at vmax, the probability to construct x is
still bounded by (s(vmax))

n = 2−3cn. By the union bound,
the probability to construct any global optimum out of at
most 2cn ones is bounded by 2cn · 2−3cn = 2−2cn. By the
same argument, the probability that this happens at least
once in 2cn solution constructions is at most 2cn · 2−2cn =
2−cn.

The common choice vmax := 4 yields c ≈ 0.00873. As
20.00873·n is small for small n, the bad runtime behavior can
only be observed if the problem size is large enough. This
certainly isn’t the case for n = 100 where 2cn < 2. However,
for a problem size of n = 10000, the claimed bound has
grown to 2cn > 1026 and we would not expect to live long
enough to see the Binary PSO find an optimum.

Theorem 1 rules out a constant default value for vmax

that works well for all problem sizes. We therefore propose
to let vmax scale with the problem size. More precise, we
set vmax = ln(n − 1). As s(−vmax) = 1/n and s(vmax) =
1− 1/n, the probability of setting a bit to 1 is always in the
interval [1/n, 1−1/n]. This is inspired by standard mutation
operators in evolutionary computation, where incorrectly set
bits have a probability of 1/n of being corrected. We will
see in the following that this choice leads to a surprisingly
good runtime behavior.

3. LOWER BOUND FOR BINARY PSO
An important step towards runtime bounds for the Bi-

nary PSO is to understand the dynamics of the probabilistic
model underlying PSO, that is, the behavior of the velocity
vector. Consider a single bit that is set to 1 both in the own
best and in the global best solution. Then, as long as these
solutions are not exchanged, its velocity value v is guided
towards the upper bound vmax. An important observation
is that the velocity is only increased in case the bit is set
to 0 in the next constructed solution. The probability that
this happens is given by

1 − s(v) = 1 −
1

1 + e−v
=

1

1 + ev
,

and we see that this probability decreases rapidly with grow-
ing v. Hence, the closer the velocity is to the bound vmax,
the harder it is to get closer. A symmetric argument holds
for velocities that are guided towards −vmax.

As long as the v-values are not too close to the velocity
bounds −vmax and vmax, the search of the Binary PSO is
too random for it to find single optima with high probability.
We can make this idea precise by the following, general lower
bound, which holds for all practical choices of the learning
factors c1 and c2 and a polynomial swarm size µ.

Theorem 2. Let f be a function with a unique global op-
timum, let µ = poly(n) and let the sum d := c1 + c2 of
the learning factors of the Binary PSO be O(1). Then the
expected number of generations of the Binary PSO on f is
Ω(n/log n).

Proof. W. l. o. g. the global optimum is 1n. Let t :=
cn/ln n for a small constant c > 0 which is chosen later. We
show that the probability of not creating 1n within t gener-
ations is 1 − o(1), which implies the claim of the theorem.

We consider an arbitrary bit in an arbitrary particle. The
event of creating a one at this bit is called success. Let
a bit be called weak if its success probability has been at

most p := 1 − e ln(µn)
n

up to and including the current gen-
eration. Let a set of bits be called weak if it contains only
weak bits. We will show that with probability 1 − 2−Ω(n)

after t generations of the 1-PSO, each particle contains still
a weak subset of bits of size at least n/e. The probability
of setting all bits of such a weak subset to 1 simultaneously
is bounded from above by pn/e ≤ 1/(µn) for each particle.
Note that this event is necessary to create 1n in a parti-
cle. Thus the probability of finding the optimum within t
generations creating µ new solutions each is still less than
tµ/(µn) = O(1/log n) = o(1), which will prove the theorem.

We still have to show that with probability Ω(1), after t
generations, there is a weak subset of size at least n/e in each
particle. One step can increase the velocity by at most d.
Note that p = 1 − O((ln n)/n) since µ = poly(n). To reach

137

success probability at least p, the current velocity must be
between s−1(p) − d = ln(p/(1 − p)) − d and s−1(p) at least
once. Pessimistically assuming the first value as current ve-
locity, the probability of not increasing it in a single step is
at least

1

1 + e− ln(p/(1−p))+d
= 1 −

ed(1 − p)

p + ed(1 − p)
≥ 1 − 2ed(1 − p)

if n is large enough for p ≥ 1/2 to hold. The last expression
equals 1− (2ed ln n)/n by definition of p. Hence, along with
d = O(1) and again µ = poly(n), the probability of not
increasing the velocity within t steps is at least
„

1 −
2ed ln(µn)

n

«t

=

„

1 −
O(ln n)

n

«cn/ln n

≥ 2e−1

if c is chosen small enough. This means that each bit in each
particle independently has a probability of at least 2e−1 of
being weak at generation t. Using Chernoff bounds, the
probability of not having a weak set of size at least n/e in

a specific particle is at most e−Ω(n). As µ = poly(n), the
probability that there exists a particle without weak subset
at generation t is still µe−Ω(n) = e−Ω(n).

4. UPPER BOUND FOR BINARY PSO
In this section we derive an upper bound for the Binary

PSO. Consider the Binary PSO with the cognitive compo-
nent turned off by setting c1 = 0. Then each particle is
driven only by its social behavior, that is, it tries to follow
the leader of the swarm, the global best solution x∗. Note
that this class of algorithms includes the 1-PSO. This sim-
plified setting allows the application of analysis tools known
from evolutionary algorithms.

The lower bound from Theorem 2 relied on the fact that a
velocity that is guided towards vmax doesn’t reach this value
in short time and then the Binary PSO cannot find a sin-
gle target efficiently. On the other hand, if we consider a
longer period of time, the velocities may reach the bounds
−vmax and vmax, respectively. Then the Binary PSO sam-
ples within a promising region of the search space given by
the global best solution.

In case a bit reaches the velocity bound corresponding to
the global best solution, we say that the velocity has been
“frozen” as the only chance to alter the velocity again is
to have an improvement of the global best solution. The
random time F until a bit is frozen is called freezing time.
The following lemma bounds this time by O(n).

Lemma 1. Consider the Binary PSO with c1 = 0 and
c2 = 2. The expected freezing time for a single bit is bounded
by E(F) = O(n). Moreover, for t ≥ 8n(ln n + 1), we have

Prob(F ≥ t) ≤ 2e−t/(16n).

Proof. Since the lemma must hold for arbitrary initial
velocities, we need a worst-case initial value for the velocity
at hand. Intuitively, −vmax should be such a value. More
generally, defining v(t) to be the velocity at time t if the ini-
tial velocity equals v, we would expect some kind of stochas-
tic dominance according to Prob(v(t) ≥ d) ≥ Prob(w(t) ≥ d)
for arbitrary t and d if v ≥ w holds. However, this is true
only at a macroscopic level. Actually, if w is only by a
tiny amount larger than v, the dominance does not hold
due to the above-mentioned slowdown of the process w. r. t.
increasing values.

Fortunately, it can be shown that the dominance holds
for v ≥ w + 2. This means that a decrease of the initial
value by at least 2 certainly slows down the process. We
therefore artificially extend the velocity scale by 2 and arrive
at a simplified Markov process vt, t ≥ 0 called v-process on
[−vmax − 2, vmax] as follows. Initially, v0 := −vmax − 2. For
t ≥ 0, the random state vt+1 is obtained as follows:

vt+1 :=

(

min{vt + r, vmax} with probability 1
1+evt

vt otherwise,

where r ∈ U [0, 2] is drawn independently. Due to the above-
mentioned dominance, the v-process is a pessimistic model
for the real velocities if we are looking for upper bounds on
when to reach a given value.

The probability of increasing a value v is 1− s(v). Hence,
the expected waiting time for an increase is (1 − s(v))−1 =
1 + ev. By definition of r, each increase is bounded from
below by 1 with probability at least 1/2 (or vmax is reached
anyway). Since this is independent of other steps, the ex-
pected waiting time for an increase by at least 1 (or up
to vmax) is bounded from above by 2 + 2ev. We obtain an
upper bound on E(F) if we sum up these waiting times for
all integral values in [⌊−vmax − 2⌋, ⌈vmax⌉]. Since the wait-
ing time is non-decreasing w. r. t. the v-value, this sum can
be estimated by the corresponding integral. Hence, using
the definition of vmax,

E(F) ≤

⌈vmax⌉
X

v=⌊−vmax−2⌋

(2 + 2ev) ≤

Z ⌈vmax⌉

⌊−vmax−2⌋

(2 + 2ev) dv

≤ 2(2vmax + 4 + evmax+1) ≤ 4 ln n + 8 + 2en = O(n),

which proves the first statement.
For the second statement, note that the probability of in-

creasing a non-maximal v-value is always at least 1/n. Since
t ≥ 8n(ln n + 1), we have t/(4n) ≥ 2vmax + 2. Hence, the
following two events together are sufficient to reach vmax by
time t:

• In t steps there are at least t/(2n) increases.

• The total amount of increase in t/(2n) increases is at
least t/(4n).

We finish the considerations prematurely if vmax is reached
with less increases or less total increase.

To bound the probability of failures, we use Chernoff and
Hoeffding bounds. According to standard Chernoff bounds,
the probability of less than t/(2n) increases within t tri-

als is at most e−t/(8n). We can apply the Hoeffding bound
from [7] for upper tails of random variables with bounded
range since the distributions of the considered random vari-
ables are symmetric. Hence, the increase in t/(2n) steps is

less than t/(4n) with probability at most e−t/(16n). Alto-

gether, Prob(F ≥ t) ≤ 2e−t/(16n).

Due to the strict selection in the Binary PSO, x∗ is only
exchanged in case a better solution is discovered. This means
that after some time either the global best solution has im-
proved or all velocities are frozen. In the latter case, since
vmax = ln(n − 1), the probability to create a 1 for any bit
is now either s(−vmax) = 1/n or s(vmax) = 1 − 1/n. The
distribution of constructed solutions equals the distribution
of offspring of the (1+1) evolutionary algorithm, shortly

138

(1+1) EA, with x∗ as the current search point. For the
sake of completeness, we give a definition of the (1+1) EA.

Algorithm 3 ((1+1) EA).

1. Choose an initial solution x∗ uniformly at random.

2. For i := 1 to n do
Set xi := 1 with probability 1 − 1/n if x∗

i = 1
and with probability 1/n if x∗

i = 0.

3. If f(x) ≥ f(x∗) then x∗ := x.

4. Goto 2.

We also refer to the (1+1) EA* as the (1+1) EA with the
condition in Step 3 replaced by f(x) > f(x∗).

If for the 1-PSO all velocity values take their upper or
lower bounds, the 1-PSO behaves like the (1+1) EA* until
a solution with larger fitness is encountered. This similar-
ity between PSO and EAs can be used to transfer a well-
known method for the runtime analysis from EAs to PSO,
the fitness-level method. We present this method, also called
the method of f -based partitions (see, e. g., [16]), in a re-
stricted formulation. Let f1 < f2 < · · · < fm be an enu-
meration of all fitness values and let Ai, 1 ≤ i ≤ m, contain
all solutions with fitness fi. We also say that Ai is the i-th
fitness level. Note that the last fitness level Am contains
only optimal solutions. Now, let si, 1 ≤ i ≤ m − 1, be a
lower bound on the probability of the (1+1) EA (or, in this
case equivalently, the (1+1) EA*) to create an offspring in
Ai+1 ∪ · · · ∪ Am, provided the current population belongs
to Ai. The expected waiting time until such an offspring is
created is at most 1/si and then the i-th fitness level is left
for good. As every fitness level has to be left at most once,
the expected optimization time for the (1+1) EA and the
(1+1) EA* is bounded above by

m−1
X

i=1

1

si
. (1)

A similar bound holds for the Binary PSO using only the
social component.

Theorem 3. Let Ai form the i-th fitness level of f and
let si be the minimum probability for the (1+1) EA to leave
Ai towards Ai+1 ∪ · · · ∪Am. Consider the Binary PSO with
µ = poly(n), c1 = 0, and c2 = 2. Then the expected number
of generations to optimize f is bounded from above by

O

mn log n +
1

µ
·

m−1
X

i=0

1

si

!

.

Note that the right-hand sum is the upper bound obtained
for the (1+1) EA and (1+1) EA* from (1). The factor 1/µ
reflects the fact that a large swarm may decrease the wait-
ing time for an improvement. This behavior resembles a
(1+λ) EA that creates λ = µ offspring in each generation.
Note, however, that the number of f -evaluations is by a fac-
tor of µ larger than the number of generations.

Proof. We only need to prove that the expected number
of generations to increase the fitness from the i-th fitness
level is bounded by O(n log n + 1/(µsi)).

We estimate the expected time until all bits in the swarm
are frozen or an improvement happened anyway. Let t :=

32n(ln n + ln µ). By Lemma 1, the probability that a single
bit has not been frozen after t generations is bounded by
2e−t/(16n) = 2/n2 · 2/µ2. By the union bound, the prob-
ability that all µn bits in the swarm have not been frozen
after t iterations is at most 2/(µn). Considering independent
phases of length t each, the expected number of iterations
until the swarm is frozen is at most 2t = O(n log n).

Once all bits are frozen to the corresponding bounds of
x∗, all particles behave equally until the next improvement.
This implies that the Binary PSO performs µ trials in each
generation to create a solution with higher fitness and the
probability for a success in one trial is bounded below by si.
The probability that the Binary PSO is not successful within
a period of 1/si trials is bounded by

1 − (1 − si)
1/si ≥ 1 − e−1 =

e − 1

e
.

The expected number of periods is therefore bounded by
e/(e − 1). The number of generations needed to have a
period of 1/si trials equals ⌈1/(µsi)⌉. Hence the expected
number of generations to increase the fitness is bounded by

e

e − 1
·

„

1

µsi
+ 1

«

= O

„

1

µsi
+ 1

«

.

Adding the expected freezing time for the swarm yields the
claimed bound O(n log n + 1/(µsi)) for fitness level i.

The additive term O(mn log n) in the bound from Theo-
rem 3 results from the (pessimistic) assumption that on all
fitness levels, the Binary PSO has to wait until all veloci-
ties are frozen in order to find a better solution. Neverthe-
less, fitness-level arguments represent a powerful tool that
can easily be applied to various problems. We exemplarily
present an application for unimodal functions.

A function f is called unimodal if it has exactly one local
optimum w. r. t. Hamming distance. Hence, if the global
best solution x∗ is not the unique optimum, there is always
at least one Hamming neighbor (a solution with Hamming
distance 1 to x∗) with larger fitness. The probability for
the (1+1) EA* to create a specific Hamming neighbor as
offspring equals 1/n · (1 − 1/n)n−1 ≥ 1/(en). We conclude
si ≥ 1/(en) for every non-optimal fitness level. Theorem 3
yields the following bound.

Corollary 1. Let f be a unimodal function with m dif-
ferent function values. Then the expected number of gener-
ations for the Binary PSO with µ = poly(n), c1 = 0, and
c2 = 2 to optimize f is bounded by

O

„

mn log n +
1

µ
· en

«

= O(mn log n).

5. THE 1-PSO ON ONEMAX
Corollary 1 yields a bound O(n2 log n) on the expected

optimization time of the 1-PSO on OneMax, defined by

OneMax(x) :=
n
X

i=1

xi.

Compared to the well-known bound Θ(n log n) that holds
for the (1+1) EA in this setting, this seems relatively rough.
To improve the O(n2 log n) bound, we have to show that
it is not necessary for the 1-PSO to spend Θ(n log n) steps
on each fitness level until all bits have been frozen to the
velocity bounds of the global best solution.

139

In the following, we will improve the optimization time
bound of the 1-PSO on OneMax to O(n log n). This im-
plies that the 1-PSO has the same asymptotic upper runtime
bound as the (1+1) EA. For the proof, we will basically show
that O(log n) steps adjusting the velocity entries are enough
on each fitness level for the 1-PSO to attain almost the same
success probability as the (1+1) EA. Hence, a more careful
inspection of the behavior of the velocities is required.

We reconsider the v-process as defined in the proof of
Lemma 1. The random vt, t ≥ 0, gives us a random prob-
ability Pt of setting the considered bit to 1 (called success)
at time t. Its expectation E(Pt) :=

P

p p · Prob(Pt = p)
equals the actual probability of a success at time t. How-
ever, it is important to study the distribution of Pt and not
only its expectation. The proof of Lemma 1 suggests that
for t = Ω(n), Pt is likely to be close to its maximum value
1 − 1/n. Our following statement is more general.

Lemma 2. Let t ≥ 16(ln n + 2), 1 ≤ i ≤ t/96 and n be
large enough. If vt is not capped by the upper bound vmax

then

Prob(Pt ≥ 1 − 96i/t) ≥ 1 − e−i.

Proof. Define b(t, i) := s−1(1 − 96i/t). We show the
following claim: with probability at least 1 − e−i, it holds
vt ≥ b(t, i) or vt has reached vmax anyway; the latter case
will pessimistically be ignored in the following. Since the
success probability at value b(t, i) is exactly 1 − 96i/t, the
claim implies the lemma.

Recall that the probability of increasing the v-value de-
creases monotonically with the v-value. Therefore, it is
bounded from below by 96i/t before a v-value of at least
b(t, i) has been reached but increases with the distance of
the current value from b(t, i). A negative v-value, recall that
v0 = −vmax − 2 (cf. Section 4, the −2 ensures a worst-case
initial value), even leads to an increase with probability at
least 1/2. Altogether, a total increase by vmax +2+ b(t, i) is
sufficient to reach b(t, i) by time t. We divide the progress

to this boundary value into
p

t/(96i) − 1 phases with geo-
metrically decreasing probabilities. During the k-th phase,

1 ≤ k ≤
l

p

t/(192i)
m

− 1, the current success probability

(i. e., the probability of not increasing the v-value) is within

the interval
h

1 − 96(k+1)2i
t

, 1 − 96k2i
t

i

∩ [1/2, 1]. Since all

success probabilities are at least 1/2 in the phases, it can be
shown by taking the inverse sigmoid function that the length
of an interval, expressed in v-scale, is at most 3 ln(k + 1) if
n is not too small. We will show that with high probability,

we spend at most t ln(k+1)

4k2 steps in a phase. If this holds
for all phases, the total time spent in all phases is less than
P∞

k=1
t ln(k+1)

4k2 ≤ t/2.
The times where the success probability of the v-process

is less than 1/2, i. e., where an increase happens with prob-
ability at least 1/2, are treated separately. Arguing simi-
larly as in the proof of Lemma 1, the following events to-
gether are sufficient to reach the desired v-value. Consider-
ing the second event, we use t ≥ 16(ln n + 2), which implies
t/16 ≥ vmax + 2. Note that Condition (3b) suffices to leave
any considered interval of success probabilities.

1. In the first t/2 steps, there are at least t/8 increases,
or a positive v-value is reached.

2. The total increase in t/8 increases is at least t/16, or
a positive v-value is reached.

3. For k = 1, . . . ,
lq

t
192i

m

− 1 it holds

(a) If the current success probability is in the interval
h

1 − 96(k+1)2i
t

, 1 − 96k2i
t

i

∩ [1/2, 1] then t ln(k+1)

4k2

steps contains at least 12i ln(k + 1) increases.

(b) The total increase in 12i ln(k + 1) increases is at
least 3 ln(k + 1).

We may finish the considerations prematurely if the desired
v-value is reached within less steps or less total increase.

According to Chernoff bounds, the failure probability for
the first event is at most e−t/32, which is less than e−3i since
i ≤ t/96. According to Hoeffding bounds, the failure proba-

bility for the second event is at most e−t/64 ≤ e−3i/2. Simi-
larly, the failure probabilities for the third and fourth event
are at most e−3i ln(k+1) and e−27i ln(k+1)/8, in sum at most
2e−3i ln(k+1). Since

P∞
k=1 e−3 ln(k+1) ≤ 1/4, the sum of the

failure probabilities is at most e−i if n is large enough.

Instead of speaking of velocities at times t or later, we
introduce a handy notion.

Definition 1. A random velocity is called t-strong,
t ∈ N0, iff it stochastically dominates the v-process at time t.

We also say that a bit is t-strong if this holds for its ve-
locity. We summarize a simple fact: if a bit is currently
t-strong, it will be t + t′-strong after another t′ steps pro-
vided the x∗-entry for this bit is 1 during these times.

Using Lemma 2, we know enough about the distribution
of a t-strong bit to show the following claim. We consider
this bit in the v-process where the x∗-entry never changes.

Lemma 3. The expected time for a success at a t-strong
bit, 384 ln n ≤ t ≤ n2, is bounded by 1 + O(1/t + 1/n).

Proof. We ignore the upper bound 1 − 1/n on success
probabilities and allow a probability to become arbitrarily
close to 1. Since the expected time for a success at success
probability 1 − 1/n equals 1/(1 − 1/n) = 1 + O(1/n), the
asymptotic upper bound of the lemma is not affected.

We consider a random variable P̃ with support {1−96i/t |
1 ≤ i ≤ t/192} and distribution

Prob(P̃ = 1 − 96/t) = 1 − e−1,

Prob(P̃ = 1 − 96i/t) = e−i+1 − e−i for 2 ≤ i ≤ t/192,

and Prob(P̃ = 1/n) = e−t/192.

Obviously, all probabilities sum up to 1. Since t ≥ 384 ln n,
the last assignment implies Prob(P̃ = 1/n) ≤ 1/n2.

Using Lemma 2, is follows that the success probability of
the t-strong bit stochastically dominates P̃ . It is therefore
enough to bound the expected time for a success according
to P̃ from above. Given that P̃ has the value p, the wait-
ing time for a success follows a geometric distribution with
expectation 1/p. We can bound the reciprocals of the single
success probabilities according to 1/(1 − 96i/t) ≤ 1 + 97i/t
if n is not too small. By the law of total probability, the
unconditional expected waiting time is at most

(1 − e−1) ·

„

1 +
97

t

«

+

t/192
X

i=2

“

e−i+1 − e−i
”

·

„

1 +
97i

t

«

+
1

n2
· n

140

≤

„

1 +
97

t

«

+

t/192
X

i=2

“

e−i+1 − e−i
” 97i

t
+ O

„

1

t
+

1

n

«

≤

„

1 +
97

t

«

+

t/192
X

i=2

e−i+1 97i

t
+ O

„

1

n

«

= 1 + O

„

1

t
+

1

n

«

,

which proves the lemma.

Using a very similar calculation, we can show the following
lower bound on the expected success probability at time t.
Note that this lower bound is basically the reciprocal of
the expected success time we have just derived. However,
since we are dealing with random probabilities, the following
lemma does not imply the preceding one.

Lemma 4. The expected success probability of a t-strong
bit, 384 ln n ≤ t ≤ n2, is at least 1 − O(1/t).

In the following analysis, we will consider k random ve-
locities of 1-bits gained while optimizing OneMax. Freshly
gained 1-bits tend to have a weaker velocity than older ones.
Sorting the bits from weak to strong, this will be reflected
by the following layering.

Definition 2. The values v1, . . . , vk of k velocities form
an m-layer, m ∈ N, iff vj, 1 ≤ j ≤ k, is jm-strong. A set
of k velocities forms an m-layer iff it can be arranged as an
m-layer.

We also say that bits form an m-layer if their velocities
form such a layer. Again it is helpful to summarize a simple
fact: given that i bits form an m-layer, we can consider
any other bit and wait for it to become m-strong. If x∗

remains fixed for these i+1 bits, they form an m-layer after
at most m steps.

For the following theorem, we will consider layers where
the j-th bit is basically Θ(j lnn)-strong. Defining that a set
of bits is successful if all, independently processed, have suc-
cesses simultaneously, we show the following lemma. Note
that we again consider these bits in the v-process and assume
x∗ to be fixed to 1 for these bits.

Lemma 5. Let k ≤ n independent bits form a (384 ln n)-
layer. Then the expected time until all have a success simul-
taneously is bounded by O(1).

Proof. Due to the independence, it suffices to multiply
the expected success times for the single bits. According
to our assumption, the j-th bit, 1 ≤ j ≤ k, is 384j ln n-
strong. By Lemma 3, its expected success time is bounded
by 1 + κ

384j ln n
+ κ

n
for some large constant κ. Taking the

product over all j, we obtain

k
Y

j=1

„

1 +
κ

384j ln n
+

κ

n

«

≤ e
Pn

j=1
κ

384j ln n
+ κ

n ,

which is O(1) since
Pn

j=1 1/j = O(ln n).

Now we can state the improved bound for OneMax.

Theorem 4. The expected optimization time of the
1-PSO on OneMax is O(n log n).

Proof. The basic proof idea is to keep track of the ve-
locities of the newly gained 1-bits after improvements of the
best-so-far solution x∗. We wait on average O(log n) steps

after an improvement and show that after that, the proba-
bility of improving is at least in the same order as for the
(1+1) EA.

A difficulty with these arguments is that 1-bits in x∗ may
be set to 0 if the best-so-far solution is exchanged. We call
this a reset of a bit. Resets may disturb the velocity increase
on 1-bits as strong 1-bits may be replaced by weaker 1-bits.

In order to simplify the argumentation, we first describe
an analysis for an idealized setting and then argue how to
extend the arguments to the real setting. Assume in the
following that the 1-PSO does not accept resets of 1-bits,
i. e., an improvement of the OneMax-value is only accepted
in case all 1-bits are set to 1 in the new best-so-far solution.

We now divide a run of the 1-PSO into phases. Phase 0
only contains the initialization step. Phase i for 1 ≤ i ≤ n
starts with the end of the previous phase and it ends when
the following two conditions are met:

1. The best-so-far OneMax-value is at least i.

2. At least i 1-bits form an m-layer for m := 384 ln n.

Note that the second condition will be fulfilled throughout
the run as all 1-bits are maintained forever in our idealized
setting and hence their velocities are monotone over time.

We claim that the expected time spent in Phase i can be
bounded by O(ln n+n/(n−i)) for each 1 ≤ i ≤ n. Note that
phases may be empty. Moreover, when finishing Phase n the
global optimum has been found. Hence, the expected time
to find a global optimum is bounded by

n
X

i=1

O

„

ln n +
n

n − i

«

= O(n log n) + O(n) ·
n
X

i=1

1

i

= O(n log n).

Consider the 1-PSO at the time it enters Phase i. As
Phase i − 1 has been completed, i − 1 1-bits form an m-
layer. According to Lemma 5, all these bits are set to 1
simultaneously after an expected number of O(1) steps. In-
dependently of these bits, the 1-PSO turns each 0-bit into a
1-bit with probability at least 1/n, hence the probability of
turning at least one 0-bit into 1 is at least Ω((n− i)/n). The
expected waiting time for this event is O(n/(n − i)). Due
to the independence, we can multiply expectations. Alto-
gether the expected time until constructing a solution with
OneMax-value at least i has been bounded from above by
O(n/(n − i)).

Once the best-so-far OneMax-value has increased to at
least i, the velocities on i 1-bits are monotone increasing.
Since currently i − 1 bits form an m-layer, the i 1-bits by
definition form an m-layer after at most m = O(ln n) steps.
Together, the claimed bound O(ln n + n/(n − i)) follows for
the expected time in Phase i. This also finishes the analysis
for the idealized setting without resets.

A reset of a bit can destroy the velocity layers as a strong
1-bit with might be exchanged by a weak 1-bit. In the worst
case, such a new 1-bit is only 0-strong. If an improvement
resets d bits, an m-layer of i bits may shrink to an m-layer
of i − d 1-bits. By an amortized analysis, we wait for the
velocities to recover so that we end up with an m-layer of i
bits again.

Consider an improvement in a setting where k bits form
an m-layer. A t-strong bit is reset with probability at most
O(1/t) according to Lemma 4. The expected number of bits

141

among these k layered bits reset during this improvement is
therefore bounded from above by

k
X

j=1

O(1)

384j lnn
= O(1).

Hence, an improvement prolongs the time spent in the cur-
rent phase in expectancy by O(ln n). Note that we can re-
peat the argumentation if another improvement occurs in
the meantime since we only consider reset probabilities for
all bits in a layer. As we can only have n improvements, we
obtain an additional term O(n log n) in our runtime bound,
which proves the time bound O(n log n) for the real set-
ting.

6. CONCLUSIONS AND FUTURE WORK
We have considered the runtime behavior of the Binary

PSO algorithm by Kennedy and Eberhart. Thereby, we
adapted the choice of the maximum velocity vmax to growing
problem sizes and justified why this adaptation is essential
when dealing with different problem sizes. For the resulting
Binary PSO we have proved a lower bound Ω(n/log n) on
the expected number of generations for any function where
the global optimum is unique. This bound holds for almost
any choice of the swarm size and the learning factors c1 and
c2 for the cognitive and the social component of PSO.

We also assessed the impact of these two PSO compo-
nents. The Binary PSO using only the social component
behaves similar to a (1+λ)-evolutionary algorithm with pop-
ulation size 1 and an offspring population of size λ as all
particles are guided by one global best particle. Due to this
similarity, we were able to transfer a fitness level argument
from the analysis of evolutionary algorithms (EAs) to PSO.
The upper bounds derived from this method do not differ
much from bounds known for EAs. An exemplary applica-
tion to the class of all unimodal functions showed that the
Binary PSO is effective on these functions.

On the other hand, if only the cognitive component is used
in the Binary PSO, all particles behave independently and
can be seen as many instances of the simple 1-PSO, a Bi-
nary PSO using just one particle. Our results on the 1-PSO
may be applied in such a setting. Despite its simplicity,
the 1-PSO is surprisingly efficient. A detailed analysis on
the function OneMax revealed the bound O(n log n) for the
expected runtime of the 1-PSO and hence the same upper
bound as known for the (1+1) EA.

Future work should focus on the following aspects. Al-
ternative approaches for velocity control should be analyzed
such as inertia weights and constriction [1]. Moreover, the
runtime of the Binary PSO should be studied when cognitive
and social effects melt and the Binary PSO performs an up-
date both towards the own best and towards the global best
solution. This is particularly challenging if (as demanded
in [1]) there is a local topology for the neighborhood struc-
ture in the swarm.

Acknowledgment

The authors thank Tobias Friedrich, Frank Neumann, and
Pietro Oliveto for discussions that started the present paper.

7. REFERENCES
[1] D. Bratton and J. Kennedy. Defining a standard for

particle swarm optimization. In Proc. of Swarm
Intelligence Symposium (SIS 2007), pages 120–127.
IEEE Press, 2007.

[2] M. Clerc. Particle Swarm Optimization. ISTE, 2006.

[3] B. Doerr, F. Neumann, D. Sudholt, and C. Witt. On
the runtime analysis of the 1-ANT ACO algorithm. In
Proc. of GECCO ’07, pages 33–40. ACM, 2007.

[4] S. Droste, T. Jansen, and I. Wegener. On the analysis
of the (1+1) evolutionary algorithm. Theor. Comput.
Sci., 276:51–81, 2002.

[5] O. Giel and I. Wegener. Evolutionary algorithms and
the maximum matching problem. In Proc. of
STACS ’03, volume 2607 of LNCS, pages 415–426,
2003.

[6] W. J. Gutjahr. First steps to the runtime complexity
analysis of Ant Colony Optimization. Computers and
Operations Research, 2008. To appear.

[7] W. Hoeffding. Probability inequalities for sums of
bounded random variables. American Statistical
Association Journal, 58(301):13–30, 1963.

[8] J. Kennedy and R. C. Eberhart. Particle swarm
optimization. In Proc. of the IEEE International
Conference on Neural Networks, pages 1942–1948.
IEEE Press, 1995.

[9] J. Kennedy and R. C. Eberhart. A discrete binary
version of the particle swarm algorithm. In Proc. of
the World Multiconference on Systemics, Cybernetics
and Informatics (WMSCI), pages 4104–4109, 1997.

[10] J. Kennedy, R. C. Eberhart, and Y. Shi. Swarm
intelligence. Morgan Kaufmann, 2001.

[11] F. Neumann, D. Sudholt, and C. Witt. Comparing
variants of MMAS ACO algorithms on pseudo-boolean
functions. In Proc. of SLS 2007, volume 4638 of
LNCS, pages 61–75, 2007.

[12] F. Neumann and I. Wegener. Randomized local
search, evolutionary algorithms, and the minimum
spanning tree problem. Theor. Comput. Sci.,
378(1):32–40, 2007.

[13] F. Neumann and C. Witt. Runtime analysis of a
simple Ant Colony Optimization algorithm. In Proc.
of ISAAC ’06, volume 4288 of LNCS, pages 618–627.
Springer, 2006. Extended version to appear in
Algorithmica.

[14] J. Reichel and M. Skutella. Evolutionary algorithms
and matroid optimization problems. In GECCO ’07,
pages 947–954, 2007.

[15] Y. Shi and R. C. Eberhart. Parameter selection in
particle swarm optimization. In Proc. of the Seventh
Annual Conference on Evolutionary Programming,
pages 591–600, 1998.

[16] I. Wegener. Methods for the analysis of evolutionary
algorithms on pseudo-boolean functions. In R. Sarker,
X. Yao, and M. Mohammadian, editors, Evolutionary
Optimization, pages 349–369. Kluwer, 2002.

[17] C. Witt. Worst-case and average-case approximations
by simple randomized search heuristics. In Proc. of
STACS ’05, volume 3404 of LNCS, pages 44–56, 2005.

142

