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ABSTRACT

Recent advances in XCS technology have shown that self-
adaptive mutation can be highly useful to speed-up the evo-
lutionary progress in XCS. Moreover, recent publications
have shown that XCS can also be successfully applied to
challenging real-valued domains including datamining, func-
tion approximation, and clustering. In this paper, we com-
bine these two advances and investigate self-adaptive mu-
tation in the XCS system for function approximation with
hyperellipsoidal condition structures, referred to as XCSF
in this paper. It has been shown that XCSF solves function
approximation problems with an accuracy, noise robustness,
and generalization capability comparable to other statistical
machine learning techniques and that XCSF outperforms
simple clustering techniques to which linear approximations
are added. This paper shows that the right type of self-
adaptive mutation can further improve XCSF’s performance
solving problems more parameter independent and more re-
liably. We analyze various types of self-adaptive mutation
and show that XCSF with self-adaptive mutation ranges, dif-
ferentiated for the separate classifier condition values, yields
most robust performance results. Future work may further
investigate the properties of the self-adaptive values and may
integrate advanced self-adaptation techniques.

Categories and Subject Descriptors

F.1.1 [Models of Computation]: Genetics Based Machine
Learning, Learning Classifier Systems

General Terms

Algorithms, Performance, Generalization.
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LCS, XCS, Mutation, Self-Adaptation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’08, July 12–16, 2008, Atlanta, Georgia, USA.
Copyright 2008 ACM 978-1-60558-130-9/08/07…$5.00. 

1. INTRODUCTION
Michigan-style learning classifier systems (LCSs) [2, 11]

are distributed learning systems that evolve a set of rules,
the so-called population of classifiers. Classifiers usually
consist of conditions, which cluster the problem input space
into problem niches, actions, which propose an appropri-
ate action or classification in the specified niche, and pre-
dictions, which reflect the appropriateness of the action or
classification in the niche. Generally, LCSs can be charac-
terized as distributed problem solvers that use genetic algo-
rithms for rule structure evolution and local approximation
techniques for rule evaluation.

The classifier system XCS [15] was shown to approximate
target functions maximally accurate—be it Q-value func-
tions, discrete constant functions, or real-valued functions.
In either case, XCS evolves rules that partition the prob-
lem space in such a way that maximally accurate, maxi-
mally general function approximation is possible, that is,
maximally accurate approximations with the least number
of maximally general classifiers [7]. XCS has been shown to
also be modifiable to approximate real-valued functions [16,
17], then called XCSF. In this case, the classifier structure
consists of a condition and a prediction only (although also
the encoding of an action part is possible). As before, the
condition specifies the input subspace in which the classifier
is applicable and the prediction approximates the function
in this subspace with a linear approximation given the in-
put values. Throughout this paper, we use hyperellipsoidal
condition structures [8].

Besides successfully approximating various real-valued
functions, recent research has shown that the evolutionary
progress in XCS can be improved by adding self-adaptive
mutation to the system [4, 12]. In these cases, each classifier
in the addressed LCS (XCS or ZCS) maintained its own mu-
tation rate that self-adapted upon offspring generation by a
random value uniformly chosen within a pre-specified range.
Results showed that learning became more independent of
initial parameter settings and was advantageous in dynamic
environments and environments where long reward-chains
had to be learned. Most recently, it was also shown that
self-adaptive mutation can be useful for a neural learning
classifier system [13] as well as for anticipatory LCSs, for
which the mutation rate was adapted for condition, action,
and anticipation parts separately [3].

In this paper, we combine these two advances and show
that XCSF’s learning reliability can be further enhanced by
adding self-adaptive mutation mechanisms. We show that
the simple addition of a self-adaptive mutation rate alone in-
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creases the system’s independence on initial mutation rate
settings, but it does not increase accuracy compared to the
best fixed mutation rate runs. More fruitful performance
improvements are gained if the range in which mutation
changes classifier values is self-adapted. Since these ranges
again are dependent on the part of the classifier condition
they modify, we show that the self-adaptation of mutation
ranges of center, stretch, and angle of a classifier condition
yields the most accurate learning results in the problems in-
vestigated. Moreover, we show that self-adaptive mutation
ranges enhance learning accuracy and reliability not only
when the initial mutation values were set unsuitably but
also when compared with the best mutation value settings.

For further information on XCS and XCSF, the reader is
referred to the cited literature [15, 17, 7]. The XCSF im-
plementation and parameter settings used herein are taken
from [8] 1. We now first evaluate simple self-adaptive mu-
tation in XCSF. Next, we introduce parameter-relative self-
adaptive mutation ranges and evaluate their performance
verifying superior performance. A final discussion concludes
the paper.

2. SIMPLE SELF-ADAPTIVE MUTATION
A first approach to self-adaptive mutation in XCSF is sim-

ply to adapt the mutation rate μ in XCSF. The mutation
rate specifies the probability of mutating a real-valued entry
in a classifier condition in XCSF. However, it does not spec-
ify how strong the mutation will be, that is, within which
range the mutated value may lie.

The range of the mutation of a value was previously speci-
fied as follows. A classifier’s hyperellipsoidal condition spec-
ifies center, stretch, and rotation values [8]. For the center
values, each center was mutated in such a way that the re-
sulting center point still lies within the specified hyperellip-
soid for each dimension. For the stretch values, each stretch
value was maximally increased or decreased by 50% of its
previous value. Finally, the rotation values were mutated by
a uniform random number between −.5π and .5π.

Simple self-adaptation now modifies the individual muta-
tion rate μcl upon offspring generation of individual classi-
fiers. That is, each classifier cl now maintains its own muta-
tion rate μcl. A classifier generated during covering sets this
values to the initial mutation rate μ. Upon offspring gen-
eration, the mutation rate μcl′ of the offspring is randomly
changed by either increasing or decreasing the value by a
certain factor (step-based adaptation), that is

μcl′ =

(
μcl(1 + x) with 50% probability

μcl/(1− x) otherwise
, (1)

where x is a specified fixed value. Alternatively, a Gaussian
distribution is used for the adaptation process (Gaussian-
based adaptation), in which case the value is mutated as
follows,

μcl′ = μcl(1 + x), (2)

where x is chosen from a Gaussian distribution with a spec-
ified standard deviation σx. Finally, the condition values
1All results reported show averages and estimated standard
deviations from 20 independent runs, for which problem in-
stances were sampled uniformly randomly. The parameter
settings (if not stated differently) were N = 6400,β = .1,
α = 1, ε0 = .01, ν = 5, θGA = 50, χ = 1.0, μ = .025, r0 = 1,
θdel = 20, δ = .1, θsub = 20.

of the offspring are mutated dependent on μcl′ . The mu-
tation rate values of individual classifiers were additionally
constraint to lie within 0 and 2, that is, if self-adaptation
increases to a value above 2 or decreases to a value below
zero, it is set to 2 or to the absolute value, respectively2.
The application of crossover does not affect the individual
mutation rates.

Performance of self-adaptive mutation (SAM) was tested
in in the oblique sine function problem (cf. [8]):

f1(x1, ..., xn) = a sin(2bπ
X

i

xi), (3)

where the function modification parameters were set to
a = 1 and b = 2 throughout the experiments. Figure 1(a,b)
shows that when the initial mutation rate is set to a small
value (μini = .025) performance of XCSF with SAM does
not beat performance without it. Rather, no SAM is ad-
vantageous, since, as it appears, SAM is not necessary in
this problem so that the additional search space due to the
self-adaptation decreases learning speed as well as final accu-
racy (although the targeted accuracy of ε0 = .01 is met in all
cases). If the initial mutation rate is set higher (μini = .1),
SAM shows to perform equally well dependent on the type
and strength of the self-adaptation. The comparison in Fig-
ure 1 (c,d) shows that Gaussian-based self-adaptation with
a standard deviation of σ = .5 yields best performance. Fi-
nally, a high mutation rate of μini = .5 prevents XCSF with-
out SAM to reach an error level below ε0 = .01. SAM fixes
this problem by suitably adjusting the mutation rate.

Figure 2 shows how the mutation rate adapts (averaged
over all classifiers in the population) with different mutation
initialization settings and different self-adaptation methods.
It can be seen that there is a general initial trend to increase
the mutation rate. This trend is stronger when step-based
adaptation is applied, which is also due to the fact that
Equation 1 yields higher mutation values on average. Ulti-
mately, though, independent of the initial mutation rate set-
ting and the adaptation method applied, the self-adaptation
rates converge to small values. Due to the setting of ε0 = .01
the mutation rate adaptation pressure seizes once the error
threshold is reached (cf. performance curves in Figure 1).

In sum, the results so-far show that SAM can alleviate the
problem of inappropriate initial parameter settings. This
has also been shown for SAM experiments with XCS [12].
Moreover, the analysis of the evolving mutation rates shows
that first the rates increase—consequently enhancing the
breadth of the search—and then decrease and converge to
a low level—consequently ensuring sufficient convergence.
These observations strongly relate to research in evolution
strategies and SAM approaches, such as the 1/5-rule [1].

Despite these promising results that show that SAM
makes XCSF independent from unsuitable initial mutation
rates, there is a concern in problems in which the different
condition parameters, and, in particular, center, stretch, and
rotation values, need to be adapted with different speeds and
strengths. In this case, a self-adaptive mutation rate would
not have a direct impact since all three values are affected
similarly. Moreover, the self-adaptive mutation rate only

2This method results in a slight bias towards larger mutation
rates. However, setting a value to zero would result in no
mutation and the self-adaptive approach used prevents the
recovery from a zero entry. Any value above one means that
mutation is applied to all condition parameters.

1366



 0.001

 0.01

 0.1

 1

 0  20  40  60  80  100  120  140

pr
ed

. e
rr

or
, m

ac
ro

 c
l. 

(/2
5.

6k
)

number of learning steps (1000s)

XCSF, HyperEllipsoid in f1(x,y,z), a=1, b=2, µini=.025, SAM-rate

No SAM: pred.error
macro cl.

SAM 0.5: pred.error
macro cl.

SAM 1: pred.error
macro cl.

(a) μini = .025, Step-based SAM-rate
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(c) μini = .1, Step-based SAM-rate
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(d) μini = .1, Gaussian-based SAM-rate
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(e) μini = .5, Step-based SAM-rate
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(f) μini = .5, Gaussian-based SAM-rate

Figure 1: In the oblique sine function, XCSF with simple self-adaptive mutation (SAM) benefits only when the
initial mutation rates are set very high (e,f). In an intermediate setting of μini = .1, Gaussian-based adaptation
appears to be able to pick up the signal slightly faster (c,d) and it yields more accurate performance than
without self-adaptation (d,f) and in comparison to step-based self-adaptation (a,b; c,d; e,f).
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Figure 2: During self-adaptation, the mutation rate
first increases and then converges to a suitable, low
level.

adapts the probability if a value is mutated but not to what
extend it is mutated.

These concerns led us to test XCSF on a radial-sine func-
tion that requires the evolution of different stretches and
angles dependent on the problem subspace identified by the
center of the condition:

f2(x1, ..., xn) = ae−8
P

i
(xi−.5)2cos(2bπ

X
i

(xi − .5)2) (4)

where a and b are function constants that allow further mod-
ifications. Here, we set a = 1 and b = 6 and the population
size N = 12800 throughout the experiments. As in the sine
function, the defined problem input space is in [0, 1]n. Fig-
ure 3 shows that both, XCSF without SAM and XCSF with
SAM-rate solve the problem reaching an error level of .05
or worse. Again, we see a strong influence of initial muta-
tion rate, yielding best performance with a mutation rate of
.1. With SAM-rate, the error does not even drop below .07.
Learning does not decrease the function approximation error
but stalls on a constant, high (macro classifier) population
size level.

To improve performance on this problem, we now enhance
SAM individuating self-adaptation for the different types
of condition values. Moreover, we self-adapt the mutation
ranges rather than the mutation rates. We show that this
methodology does achieve both, it alleviates inappropriate
parameter settings and yields better solutions to the harder
radial-sine function, in which conditional variations are de-
pendent on the problem subspace the condition applies in.

3. SELF-ADAPTIVE MUTATION RANGES
While the last section has confirmed the applicability of

SAM in the real-valued domain, so far, performance only
outperformed the runs with fixed mutation rates when the
rates were set inappropriately. Moreover, one mutation rate
was evolved for rather different condition parameters of the
specified hyperellipsoids, that is, condition center, stretch,
and orientation. Thus, we now enhance the self-adaptation
capabilities and adapt mutation ranges, that is, the range
within which a value may change when mutation is applied.

Moreover, since center, stretch and orientation are rather
different values with different value ranges and effects on

the hyperellipsoidal structure, we maintain separate muta-
tion range parameters for center, stretch, and angles. These
values are set to one initially—effectively yielding the ex-
act same mutation effects that result in the setting without
SAM.

In principle, SAM-ranges are adapted as the SAM-rate
adaptation described above. We distinguish between step-
based and Gaussian-based SAM-ranges. When a new clas-
sifier is generated via covering, each mutation range param-
eter ri

cl of a classifier cl is set to a specified value r0. When
a classifier has offspring, the offspring ranges are modified
according to equations 1 or 2. Then, the condition values
are mutated.

Each condition value is mutated with a probability μ (or
μcl, given adaptive mutation rate is applied as well). If a
value is mutated, then it is mutated in the following way.
If a center value is adapted, then its new value is uniformly
randomly chosen amongst the values that lie within r1

cl times
the width of the ellipsoidal bound of the parent. If a stretch
value is mutated, it is set uniformly randomly in the interval
of size 50% times r2

cl around the parental value. If an angle is
mutated, the new angle is chosen uniformly randomly within
an interval of −.5πr3

cl to .5πr3
cl plus the parental value. For

example, given rcl = (.1, 2, .5) and the parental values for
center, stretch, and angle are (.5, .4), (.1, .6), and (π), re-
spectively, then the first center value will be chosen uni-
formly randomly in the interval [.49, .51], the second one
will lie within [.34, .46], the first stretch value will lie within
[0, .2] and the second within [0, 1.2], and the angle will lie
within [.75π, 1.25π]. As done elsewhere [6], the center is
constrained to lie within problem boundaries, stretch values
may not be smaller than zero, and angles are constraint to
rotate within 0 and 2π. Moreover, as for the SAM-rate val-
ues, the mutation range values were constraint to lie within
0 and 2.

3.1 Parameter Independence
We now first evaluate XCSF’s performance with self-adap-

tive mutation ranges similar to the one conducted for the
SAM-rates. We again evaluate step-based and Gaussian-
based mutation in the oblique sine function with various
parameter settings.

Figure 4 shows the resulting performance. As in the
case of SAM-rates, XCSF with SAM-ranges alleviates high
initial mutation rates (e,f). XCSF with step-based self-
adaptation outperforms XCSF without self-adaptation in all
runs (a,c,e). XCSF with Gaussian-based adaptation, on the
other hand, requires a strong-enough signal, that is, a high-
enough mutation rate, in order to self-adapt appropriately
and thus solve the problem successfully (b,d,f). In sum, the
results show that XCSF with step-based SAM-ranges solves
the oblique sine problem most robustly and rather parame-
ter independent. The best parameter settings are to allow
maximum mutation rates (μ = 1) and high self-adaptation
(.5 or above).

3.2 Distributed Self-Adaptation
While the oblique sine function is an interesting problem,

which demands a proper stretch and angular orientation of
all classifiers, the whole problem space generally demands a
similar strong stretch and orientation. Thus, both stretch
and orientation need to adapt to a certain level independent
of the problem subspace covered (cf. [6]). The radial-sine
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(d) XCSF with Gaussian-based self-adaptive mutation rates

Figure 3: When no self-adaptive mutation rate is applied, XCSF cannot approximate the radial function
problem (a,b). Even with self-adaptive mutation, performance hardly improves over time (c,d). Shown are
the best runs, which had an initial mutation rate of μini = .5.

function introduced above (f2) is harder because it demands
a subspace-dependent ellipsoidal orientation and stretch.

Figure 5 shows that XCSF with SAM is able to approxi-
mate the radial-sine function problem with higher accuracy,
reaching a level of .035. The results indicate performance
influences of two parameters, the mutation rate μ and the
scaling parameter x for the SAM-ranges (cf. equations 1 and
2). Given a low mutation rate μ, the mutation range adap-
tation needs to be small as well to be successful. With larger
mutation range adaptation values, the ranges may adapt to
unsuitable values because the mutation ranges adapt also
when no values are mutated. If a large mutation rate μ is
chosen, however, larger mutation range adaptation values
yield faster learning. In this case the slow adaptation of the
range values may simply be too slow decreasing the learning
speed.

Thus, to adapt suitably, SAM-ranges need to be balanced
with the mutation rates. Small mutation rates can only work
together with small mutation range adaptations. Larger
mutation rates require larger range adaptations to main-
tain a good learning speed. As in the oblique sine func-
tion, the results further indicate that the mutation rate can
be safely set to one when mutation ranges are self-adapted

and self-adaptation is sufficiently strong to apply swiftly
and effectively. In sum, the results show that parameter-
dependent SAM-ranges can further improve XCSF’s perfor-
mance in function approximation problems. Performance
becomes more independent of the chosen mutation rate and
learning success becomes more reliable.

4. SUMMARY AND CONCLUSIONS
While self-adaptive parameters had been added to the

ZCS and XCS classifier systems previously [4, 12], as well
as to an anticipatory learning classifier system [3], this pa-
per investigated self-adaptive mutation (SAM) in XCSF [16,
17]. It was shown that SAM-rates can alleviate the problem
of inappropriate initial mutation rate settings. However,
it was also shown that XCSF without or with SAM-rates
evolves mediocre approximations for a more complex radial-
sine function problem. The approximation can be further
improved when SAM-ranges were applied. When mutation
ranges were adapted independently for location, stretch, and
orientation of ellipsoidal classifier conditions, then XCSF
performance reached most accurate approximation results.

The results, in general, are promising making XCSF fur-
ther independent of parameter settings by enabling it to
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(a) μini = .025, Step-based SAM-range
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(c) μini = .1, Step-based SAM-range
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(f) μini = .5, Gaussian-based SAM-range

Figure 4: In the oblique sine function, XCSF with SAM-ranges and step-based adaptation performs equally
well or better than without self-adaptation (a,c,e). With Gaussian-based adaptation, the mutation rate needs
to be sufficiently high (that is, at least μini = .1) in order to adapt suitably (b,d,f). Given this is the case,
though, also the Gaussian-based SAM-ranges outperform XCSF without self-adaptation.
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(b) μini = .1, Gaussian-based SAM-range

 0.1

 1

 0  50  100  150  200  250  300  350  400

pr
ed

. e
rr

or
, m

ac
ro

 c
l. 

(/5
1.

2k
)

number of learning steps (1000s)

XCSF, HyperEllipsoid in f2(x1,x2,x3), a=1, b=6, µini=.5, SAM-range

SAM 0.1: pred.error
macro cl.

SAM 0.5: pred.error
macro cl.

SAM 1: pred.error
macro cl.

(c) μini = .5, Step-based SAM-range
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(d) μini = .5, Gaussian-based SAM-range
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(e) μini = 1, Step-based SAM-range
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Figure 5: XCSF with SAM-ranges successfully approximates the Radial function reaching an error level of
.02 as long as the overall mutation rate is sufficiently high and the scaling factor for the self-adaptation is
sufficiently high as well.
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self-adapt mutation ranges and thus necessary variational
influences in the evolutionary process. The results and con-
clusions point towards a strong link between the evolution-
ary process in XCSF and evolution strategies [1]. The real-
valued condition attributes in XCSF yield improved learn-
ing success when self-adaptation is enabled. Even more ad-
vanced self-adaptation techniques, such as covariance matrix
adaptation (CMA) [10], may be included in XCSF. However,
since XCSF is a distributed learning system that optimizes
solutions within problem sub-niches, advanced CMA tech-
niques such as multi-objective CMA [14] are likely to be
necessary for a successful integration into the XCSF system.
It could also be possible to include further information in the
classifier adaptation process, such a informed specializations
[5] or advanced recombination techniques [9]. Moreover, it
remains to be shown if further differentiated self-adaptive
mutation mechanisms such as self-adaptive mutation values
for each conditional parameter might yield even better learn-
ing. Further experimental investigations as well as mathe-
matical facet-wise models are necessary to solve these open
research questions.
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