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ABSTRACT 
This paper presents an efficient hybrid feature selection model 
based on Support Vector Machine (SVM) and Genetic Algorithm 
(GA) for large healthcare databases. Even though SVM and GA 
are robust computational paradigms, the combined iterative nature 
of a SVM-GA hybrid system makes runtime costs infeasible when 
using large databases. This paper utilizes hierarchical clustering to 
reduce dataset size and SVM training time, multi-resolution 
parameter search for efficient SVM model selection, and 
chromosome caching to avoid redundant fitness evaluations. This 
approach significantly reduces runtime and improves 
classification performance.  

Categories and Subject Descriptors 
I.2.6 [Artificial Intelligence]: Learning – concept learning, 
induction, knowledge acquisition, parameter learning.  

General Terms 
Algorithms, performance, experimentation. 

Keywords 
Classifier systems, data mining, machine learning, optimization, 
parameter tuning, genetic algorithms, support vector machines. 

INTRODUCTION 
1.1 Background 
The rising rate of medical expenditures warrants effective and 
efficient healthcare clinical and administrative decisions [1]. 
These decisions are enhanced by selecting important features that 
are associated with length of stay, a critical indicator of patient 
care and clinical and financial outcomes. A typical national 
healthcare database consists of millions of records and each 

record consists of hundreds of features that profile patients, 
hospitals, procedures and other factors. Feature selection allows 
providers to focus on factors that are most relevant for achieving 
effective healthcare outcomes.  

Support Vector Machine (SVM) is a robust supervised learning 
machine model that solves linearly non-separable classification 
problems by mapping an input space into a high-dimensional 
feature space using a kernel function [2, 3]. Genetic Algorithm 
(GA) is a class of algorithms that mimics Nature’s evolution 
strategy to evolve a population of chromosomes as potential 
solutions to optimization problems such as feature selection [4].  

This study presents an efficient approach for reducing runtime 
costs of a SVM-GA hybrid feature selection system for large 
databases without sacrificing classification performance. Our 
approach utilizes GA to select relevant features and SVM 
classifiers to evaluate the importance of those features.   

1.2 Problem Statement 
A traditional SVM-GA feature selection system, while robust, is 
computationally infeasible with large datasets. A GA run involves 
many generations; each GA generation requires numerous SVM 
model selections for chromosome fitness evaluation; each SVM 
model selection searches numerous parameters; each parameter 
set requires a SVM training with runtime complexity of O(n3). 
Based on simulation projections with a dataset containing about 
3,000 records, this combined complexity requires almost 100 
years to complete the feature selection process using a 2.4 GHz 
Core 2 Duo processor. 

1.2.1 Computational Cost of SVM Trainings 
A single SVM training has a runtime cost of O(n3) where n is the 
size of the dataset [2]. A typical national healthcare database 
consists of millions of patient records per year. Even for a specific 
classification problem, such as classifying diabetes patients based 
on the length of stay at the hospital, the number of records of 
interest could still be in the thousands per year for a specific age 
group alone.  The sheer size of these datasets is a major 
contributor to the runtime complexity problem. 

1.2.2 Parameter Search for SVM Model Selection 
A SVM model selection requires an expensive search for a set of 
optimal SVM training parameters. For example, a SVM with a 
radial basis function (RBF) kernel requires the optimization of 
two crucial parameters, C and γ, where C is a penalty parameter 

 
 
Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that copies 
bear this notice and the full citation on the first page. To copy otherwise, 
or republish, to post on servers or to redistribute to lists, requires prior 
specific permission and/or a fee. 
GECCO’08, July 12–16, 2008, Atlanta, Georgia, USA. 
Copyright 2008 ACM  978-1-60558-130-9/08/07...$5.00. 

  

1373



for classification errors and γ affects the width of the Gaussian 
functions of the RBF kernel. The parameter search involves about 
366 unique C-γ pairs or SVM trainings [5]. Also, classifier 
trainings are usually repeated k times using a k-fold cross 
validation (CV) process to reduce the bias. If the parameter search 
requires p SVM training runs with a k-fold CV, the runtime 
overhead is increased to O(p·k·n3) where the p·k constant term is 
rather large. 

1.2.3 Combined Computational Cost of a Traditional 
SVM-GA System  
The runtime cost is multiplied over the entire population and 
evolution process. Assume the following: 1) GA maintains c 
chromosomes and runs for g generations; 2) the SVM model 
selection step for fitness evaluation involves a parameter search 
that requires p SVM trainings; 3) each training has a runtime 
complexity of O(n3) for n samples; and 4) a k-fold CV process is 
used in a SVM training. The overall runtime complexity would be 
O(c·g·p·k·n3 ) with a large constant term c·g·p·k. The high runtime 
time complexity renders a traditional SVM-GA system 
computationally infeasible. 

1.3 Outline of the New Approach 
We introduce an innovative combination of techniques to 
overcome the runtime challenges. A major bottleneck of runtime 
cost for traditional SVM-GA systems is the SVM training 
complexity of O(n3) because SVM trainings are repeated in every 
step of the evolutionary process. First, we partition the original 
large dataset into smaller clusters of size m << n, effectively 
reducing the SVM training time for a cluster. After the dataset is 
partitioned, individual SVM classifiers are trained for each 
cluster. The trainings are processed in parallel; shortening the 
overall processing time for the entire dataset. This partitioning 
strategy is very scalable to increases in dataset size because more 
clusters can be created for larger datasets.  

Second, we employ an adaptive multi-resolution parameter search 
based on Uniform Design [6] that reduces the time to search for 
optimal parameters. For example, the number of SVM trainings 
for optimizing the C-γ parameters can be reduced more than 12 
times, from 366 to just 30.  

Finally, we use caching to reduce the number of redundant 
trainings in a GA run. GA generates identical chromosomes from 
time to time, especially when the population is nearly convergent. 
The proposed caching mechanism eliminates about 30% of the 
SVM trainings in the experiments. 

Details of the new approach are presented in Section 3. 

1.4 Previous Work 
As a comparison, many traditional SVM-GA hybrid approaches 
address the SVM training complexity of O(n3) in ad-hoc ways. 
For example, in [7], the original dataset for text-mining is 
comparable in size to the healthcare datasets. However, the 
authors manually select a subset of features and reduce their 
dataset from over 800,000 samples to about 7,000. Other prior 
SVM-GA approaches deal with very small datasets with as few as 
42 samples [8, 9, 10, 11] and therefore, they do not face the 
challenge of high runtime complexity caused by large datasets.  

For the SVM runtime training parameters, some prior SVM-GA 
approaches arbitrarily choose only one set of parameters [8, 12] 
but such arbitrary choice of parameters may not be optimal. In 
[13], a greedy gradient descent method is proposed to search for 
an optimal C-γ pair and it assumes that the C-γ space is concave 
but this is definitely not the case for most applications. Other 
SVM-GA approaches perform exhaustive parameter searches 
because their datasets are small [9, 10, 11]. GA is employed to 
optimize SVM parameters in [14] by encoding those parameters 
as chromosomes but feature selection is not part of the system.  

Finally, our approach not only uses the Least Recently Used 
caching strategy in [15] but also employ dirty bits to update the 
chromosome cache. 

The rest of the paper is organized as follows. In section 2, the 
technical background of SVM, GA, and a traditional SVM-GA 
hybrid system are introduced. Section 3 covers the details of the 
new approach. Experimental results are presented in Section 4. 
Finally, conclusion and future work are discussed in Section 5.  

2. Technical Background 
2.1 Support Vector Machine (SVM) 
Support Vector Machine (SVM) is a robust learning machine 
model that has a wide range of applications in classification and 
regression problems [2, 3]. This section also introduces two 
important SVM training parameters C and γ, which are used in the 
experiments to demonstrate the parameter search for SVM model 
selection. 

Consider a classification problem with a dataset consisting of n 
instance-label pairs, S = {(xi, yi)} where i = 1,…, n, N

i Rx ∈ is an 
instance vector and { }1,1 +−∈iy  is a class label. Classifier 
training is essentially a process that finds a hyperplane that 
separates the positive (+1) samples from the negative (−1) 
samples. The training process involves the optimization of the 
following expression:  

∑
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where w is the normal vector of the hyperplane, 
iξ , i=1,…,n are 

the slack variables for measuring classification errors, C is a 
positive constant or penalty parameter for the error term ∑

=

n

i
i

1

ξ , 

and Φ is a function that maps the input space to a higher 
dimensional feature space [3, 16]. The transformation of space is 
actually a transformation of a linearly non-separable problem to 
an easier linearly-separable problem in higher dimensions. SVM 
relies on a kernel function for the transformation: 
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K(xi , xj) ≡ Φ(xi)T·Φ (xj). (4) 

In this study, the radial basis function (RBF) kernel is used 
because it is robust and effective for a wide range of applications. 
The RBF kernel is defined as 

K(xi , xj) = exp(−γ║xi  −  xj║2),   γ > 0 (5) 

where γ is a constant for adjusting the width of Gaussian functions 
of the kernel.  

The constants C in Equation (1) and γ in Equation (5) are two 
important parameters for SVM model selection and are being 
used in this study to demonstrate the efficacy of the adaptive 
multi-resolution parameter search. An optimal setting of C and γ 
ensures an optimal SVM classifier model. However, finding an 
optimal C-γ pair involves a computationally expensive grid search 
on the C-γ plane [5].  

For example, consider Figure 1, which is generated from one of 
our experiments. The classification accuracies of SVMs trained 
with different C-γ parameters are plotted against log2(C) and 
log2(γ). The C-γ search space is non-convex with multiple local 
optima. The accuracy rates vary greatly from about 52% to 74% 
and hence a thorough parameter search is essential for finding an 
optimal classifier model. Prior approaches that arbitrarily select 
one point on the grid [8, 12] or employ a gradient descent search 
[13] do not work in general. 

 
Figure 1: Accuracy of a SVM Plotted on a C-γ Grid  

2.2 Genetic Algorithm (GA) 
Genetic Algorithm (GA) maintains and evolves a population of 
chromosomes as potential solutions to an optimization problem. A 
new population of chromosomes is reproduced by applying 
genetic operators such as mutation and crossover on the parent 
chromosomes in a reproduction step. In the fitness evaluation 
step, the new chromosomes are assigned fitness values based on 
an objective function. After that, the population undergoes a 
“natural” selection process that selects the fittest individuals to 
mate and reproduce. The above steps are repeated until a specified 
number of generations is reached. GA has been applied 
effectively to solve a wide spectrum of optimization problems, 

including feature selection problems in bioinformatics or 
biomedical areas [8, 9, 10, 12] and in data mining [7].  

2.3 A Traditional SVM-GA Hybrid System 
A typical setup of a SVM-GA hybrid system to perform feature 
selection is depicted in Figure 2. The GA part of the system is 
responsible for evolving chromosomes as sets of selected features 
that are important for classification outcomes. In the fitness 
evaluation step, the classification performance of a SVM 
classifier model is assigned as the fitness of a chromosome using 
the following steps: 

1. The selected features are used to reduce the dimension of the 
data by removing unimportant features from the dataset.  

2. The reduced dataset is used as training data for a SVM 
model selection process. 

3. SVM model selection involves a parameter search that trains 
multiple SVMs using different sets of parameters. 

4. The best SVM classifier model is selected based on 
classification performance, which is assigned as the fitness 
value of the corresponding chromosome.  

For a chromosome to survive, it must select relevant features that 
are essential to SVM classification performance. Hence, at the 
end of the evolution, the most important set of features are 
selected. 

 
Figure 2: A Traditional SVM-GA Hybrid System 

3. Methodology 
This study employs a deliberate and novel combination of 
techniques to reduce the runtime costs of implementing a SVM-
GA hybrid system for feature selection. The computational 
challenges are met with techniques discussed in this section. 

3.1 Hierarchical Clustering for Reducing 
SVM Training Time 
Since the training time of SVM is in the order of O(n3), the most 
effective way to reduce that complexity is to reduce n, the size of 
the dataset. Our approach is to apply hierarchical clustering [17] 
on the original dataset to partition the dataset into smaller clusters 
based on specified features such as procedure codes. If the size of 
a cluster m is much smaller than n, the SVM training time for 
each cluster will be much shorter. Moreover, trainings for the 
clusters can be done in parallel to shorten the processing time for 
the entire dataset. Clustering is essential to the scalability of this 
approach. Larger datasets may simply be partitioned into more 
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clusters that are processed in parallel. The turnaround time can be 
kept at O(m3) if there are enough processors available. 

3.2 Multi-resolution Parameter Search for 
SVM Model Selection 
An experiment design technique called Uniform Design (UD) is 
proposed to reduce the number of SVM trainings required in a C-γ 
search [18]. Uniform Design was originally proposed to reduce 
the number of experiments required to maintain minimal 
discrepancy in experiment results [6]. The main goal is to obtain 
good results without conducting a large number of experiments.  

Given a s-dimensional domain, Us, and a set of m sampling points 
Pm = {θ1,…, θ1} ⊂  Us. The points in Pm are uniformly scattered 
on Us such that the following L2-discrepancy of non-uniformity of 
Pm is minimized: 

2/1
2

2 )()(),(
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−= ∫

sU
mm

s dFFPUD θθθ , (6) 

where F(θ) is the cumulative distribution function over Us and 
Fm(θ) is the empirical cumulative distribution function of Pm. 
Intuitively, the goal is to spread the sampling points over the 
experiment domain as uniformly as possible. Figure 3 illustrates 
two sets of sampling points on a 2-dimensional domain using 5 
and 30 sampling points, respectively. Minimization of Equation 
(6) is a NP-Complete problem; luckily, the sampling points can be 
pre-computed ahead of time and used in different kinds of 
experiments. Templates of pre-computed points may be 
downloaded from: 

http://www.math.hkbu.edu.hk/UniformDesign 

 

 
(a) 5-Point UD 

 
(b) 30-Point UD 

Figure 3: Example of Uniform Designs 
Preliminary experiments were set up to employ the 30-point UD 
on the C-γ grid to reduce SVM trainings in a SVM-GA system, 
with each point representing a C-γ pair. However, the models 
obtained from 30-point grid searches are still not optimal because 
the resolution is too coarse. Since it takes 2 to 3 days to process 
one cluster with 30 points, increasing the number of UD points is 
not an attractive option either. Hence, we employ a new adaptive 
multi-resolution strategy using a global grid and several local 
grids.  

First, during a GA run, a complete 30-point global grid search is 
performed on the entire C-γ plane every 10 generations. Each C-γ 
point corresponds to a SVM model. The top 6 distinct points from 

the 30-point global search are selected based on the classification 
performance of the SVM models averaged over the population. 
Subsequently, each of the top 6 points is used as the center of a  
2-unit×2-unit local grid using the 5-point UD template. These 6 
local grids are used in the next 9 generations for selecting the best 
SVM model for each chromosome. With 6 local grids and 5 
points per grid, a total of 30 points are still being searched per 
generation but the searches are now capable of focusing on 
promising local regions on the C-γ plane. This is an adaptive 
multi-resolution grid search because the search alternates between 
a global scale and a local scale. The resolution is reset to the 
global 30-point grid every 10 generations to adapt to changes in 
the global C-γ landscape over time. By doing periodic global 
searches, global changes can be detected and yet the local grids 
still enable the search to zero-in to the local optimal points. 

Using this method, the total number of SVM trainings per 
chromosome per generation is reduced from 1,464 (4×366 for a 4-
fold Cross Validation) to 120. Suppose the population size is 
maintained at 200 and the number of generations is set at 250. 
The adaptive multi-resolution search reduces the total number of 
SVM trainings from 73.2 million to 6 million for each GA run.  

3.3 Reducing Computational Cost of GA by 
Caching 
As GA generally converges over time, the chromosome 
population exhibits more occurrences of identical chromosomes 
towards the end of the evolution. To further speed up the 
evolutionary process, a caching system is employed to avoid 
redundant SVM trainings. A chromosome and its optimal SVM 
model for a particular C-γ are stored in the cache. While 
evaluating the fitness of a new chromosome, if a copy of the same 
chromosome is found in the cache, the fitness value of an existing 
SVM model will be used directly without any further training. In 
addition, a dirty bit is associated with each chromosome. If a 
chromosome is reproduced as a clone of its parent, the parent’s 
fitness and SVM model will be directly inherited without any 
cache search. The cache is also updated continuously to remove 
the least frequently used entries. This turns out to be a very 
effective cost saving strategy. As shown in the experimental 
results section, the average cache hit rate is about 30%, reducing 
the number of trainings by almost a third. 

3.4 Fitness Function for Feature Selection 
Accuracy is used as the fitness measure in many traditional SVM-
GA hybrid approaches [8, 9, 12]. However, accuracy alone is not 
measuring other important factors such as true positive rates. This 
study utilizes Accuracy, Recall, Precision, and F-Measures for 
performance measurements [19].  

Let TP (True Positive) be the number of positive samples that are 
classified correctly; FP (False Positive) be the number of negative 
samples that are classified as positive incorrectly; TN (True 
Negative) be the number of negative samples that are classified 
correctly; and FN (False Negative) be the number of positive 
samples that are classified as negative incorrectly. Hence, 
Accuracy of a classifier is defined as 

FNFPTNTP
TNTPAccuracy

+++
+

= . (7) 
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Accuracy measures the percentage of samples that are classified 
correctly. Precision measures how many of the positively 
classified samples are indeed positive, and is defined as: 

Precision =  
FPTP

TP
+

. (8) 

Recall measures how many of the actual positive samples are 
classified correctly as positive. Recall is defined as: 

Recall = 
FNTP

TP
+

. (9) 

Precision and Recall can be combined into a single term called F-
Measure where 

F-Measure =  2×Precision ×Recall .   
                     (Precision + Recall) (10) 

F-Measure is essentially a harmonic mean of Precision and 
Recall. The F-Measure enforces a trade-off between Precision 
and Recall to ensure a good balance between false positives (FP) 
and false negatives (FN). Finally, the fitness function ψ for 
chromosome fitness evaluation balances Accuracy, Precision, and 
Recall and is defined as  

ψ = (Accuracy + F-Measure) / 2 (11) 

4. Experimental Results 
4.1 Dataset 
This study utilizes the Healthcare Cost & Utilization Project 
(HCUP-3) database, which is the largest and most robust U.S. 
national inpatient database [20]. An outpatient record in HCUP 
consists of more than a thousand variables including patient 
demographic data, hospital profile, patient diagnoses and 
procedures, total hospital charges, and length of stay. The SVM-
GA systems in the experiments are designed to use only treatment 
procedures to classify patient records with respect to length of 
stay. Based on a total of 231 possible procedure codes, records of 
type-2 diabetes patients with at least two procedure codes for the 
year 2004 are included in the experiments. The dataset is further 
restricted to include records for patients 65 years or older and on 
Medicare. The coding for patients on Medicare is more accurate 
due to federal reimbursement guidelines [21]. Data cleaning is 
also performed to remove records with incomplete or invalid 
information. The resulting dataset consists of a total of 3,115 
records; although larger datasets will scale well with more 
clusters being processed in parallel. As noted earlier, even without 
using GA, regular SVM trainings on such a dataset are expensive 
because of the O(n3) complexity. Furthermore, this is a two-class 
classification problem. Samples with length of stay less than 9 
days, the median length of stay for the dataset, are labeled as 
positive samples; otherwise, they are labeled as negative samples. 

4.2 Experiment Setup 
The original dataset of 3,115 samples is first clustered into 11 
clusters based on procedure codes using hierarchical clustering.  
The sizes of the clusters are as shown in Table 1. The average 
cluster size is 283.18. 

Table 1: Summary of Cluster Sizes 

Cluster ID No. of Samples 
0 258 

1 330 

2 299 

3 280 

4 308 

5 267 

6 263 

7 258 

8 319 

9 264 

10 269 

Average 283.18 

 
The GA experiments are repeated for each of the clusters. The 
chromosome population size is set at 200, the maximum number 
of generations is set at 250, the crossover rate is 0.6 and the 
mutation rate is 0.01. The natural selection process involves a 
tournament selection [22] that selects three-fourths of the next 
population. The remaining one-fourth of the population is selected 
by a roulette wheel selection [4]. Each GA experiment is repeated 
five times per cluster and the results are tallied and averaged. In 
this study, an average performance measure is calculated as a 
weighted average over all clusters based on the number of 
samples in each cluster:  

,1_ ∑ ⋅=
i

ii mp
n

averageweighted  (12) 

where pi is a performance measure and mi is the number of 
samples in Cluster i, respectively, and n is the total number of 
samples in the original dataset. The weighted average ensures fair 
and proportional contributions from clusters of different sizes. 
The SVM Light software package [5] is used for SVM modeling 
selection. 

4.3 Feature Selection Results 
The average numbers and percentages of features selected are 
listed in Table 2. The results are based on the average number of 
features of the best chromosomes over 5 GA runs. Out of a total 
of 231 procedure codes, the overall weighted average number of 
selected features is 27.78 (or 12.02%). The percentages of 
features selected for the clusters vary between 8% and 17%. The 
results support our initial conjecture that only certain features are 
associated with length of stay.  

4.4 Comparisons of Classification 
Performance 
To confirm that the features are selected because of their 
importance for classification performance, a control experiment is 
set up to verify that the new approach selects relevant features 
while maintaining classification performance. Classification 
performance of the new approach is defined as the weighted 
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average of the performance of each cluster’s SVM classifier 
model.  

Table 2: Feature Selection Results 

Cluster ID 
# of Selected 

Features 
% of Selected 

Features 
0 25.43 11.01% 

1 39.20 16.97% 

2 19.00 8.23% 

3 24.40 10.56% 

4 26.56 11.50% 

5 19.20 8.31% 

6 22.80 9.87% 

7 32.20 13.94% 

8 35.00 15.15% 

9 35.50 15.37% 

10 23.67 10.25% 

Weighted Average 27.78 12.02% 
 

The control experiment uses a single classifier to train on the 
entire dataset without feature selection to set up a baseline 
expectation for classification performance. The optimal classifier 
model in the control experiment is selected using a two-stage 366-
point grid search based on the findings of Hsu, Chang, and Lin 
[5]. The weighted averages of the fitness value, Accuracy, 
Precision, and Recall of the new approach and the control 
experiment are summarized as percentages in Figure 4.  
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Figure 4: Classification Performance Comparisons of 
 New Approach vs. Control 

The overall classification performance of the new approach 
outperforms the control even when a small subset of features is 
selected. The fitness value ψ, Accuracy, Precision, and F-
Measure of the new approach exceed those of the control system 
by 6.09, 6.59, 7.17 and 5.67 percentage points, respectively. 
Although the new approach shows 2.1 percentage points less on 
Recall, the F-Measure indicates that the new system has a better 
balance of Precision and Recall. The new approach not only 
maintains classification performance, it actually exceeds the 
classification performance of the control. This may be attributed 
to the fact that the unimportant features are noise; once the noise 

is removed from the dataset, SVMs trainings become more 
effective. Therefore, the new approach is successful in selecting 
relevant features that are most important for classification. 

4.5 Adaptive Multi-Resolution Search 
To illustrate the adaptive multi-resolution search of the new 
approach, the local grids from an all-time best chromosome for a 
cluster are overlaid on the cluster’s C-γ plane, see Figure 5. To 
generate a more complete global C-γ fitness map, additional SVM 
classifiers are trained over the entire C-γ plane after GA 
terminates. The fitness values of the classifiers are plotted in the 
background to show where the promising regions are located. A 
lighter color indicates a higher fitness region whereas a darker 
color indicates a lower fitness region. The local grids of the all- 
time best chromosomes from one of the GA runs for Cluster 3 are 
displayed as black dots. Figure 5 demonstrates that the local grids 
of the multi-resolution search migrate to the promising regions on 
the C-γ plane.  

 
Figure 5: Adaptive Multi-Resolution Search on the C-γ Plane 

4.6 Comparison of Multi-Resolution Search 
and Arbitrary Parameter Selection 
Some previous SVM-GA approaches [8, 12] use a pre-selected set 
of parameters in SVM trainings. To demonstrate that arbitrary 
selections of SVM training parameters are insufficient to produces 
optimal performance, a second control experiment is set up to 
replicate the new approach. This experiment uses a pre-selected 
C-γ point for SVM model selection instead of using the multi-
resolution C-γ search. 

To pre-select a C-γ point for each cluster, an arbitrarily large 
number (1,100) of SVM classifiers are first trained corresponding 
to 1,100 points on the C-γ plane. A specific C-γ point is chosen by 
selecting the best SVM classifier model out of 1,100 SVM 
classifiers. The pre-selected C-γ point is then used in the control 
system to train SVMs throughout the evolutionary process. The 
weighted averages of fitness, Accuracy, Precision, and Recall for 
the new approach and the control are charted in Figure 6. Clearly, 
the performance of the control system is inferior to the new 
approach across the board despite the laborious effort to pre-select 
C-γ. Using an arbitrarily fixed set of parameters to train SVM is 
really not appropriate because it is essentially selecting an a priori 
SVM model without examining the changing solution space 
during the evolutionary feature selection process.  
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Figure 6: Classification Performance Comparison of Multi-
Resolution Parameter Search vs. Arbitrary Parameter 

Selection 

4.7 Chromosome Caching  
The average cache hit rates are listed in Table 3. The cache hit 
rates are calculated as the total number of fitness evaluations 
cached divided by the total number of fitness evaluation required. 
An actual fitness evaluation is cached if a chromosome is found in 
the cache or if it is a direct clone of its parent. The weighted 
average of cache hit rate is 30.17% over all clusters. The caching 
algorithm reduces the runtime of the system by almost a third. 
Some clusters achieved high hit rates, such as 54.50% and 
44.71% for Clusters 2 and 5, respectively.  
 

Table 3: Cache Hit Rates Summary 

Cluster ID Cache Hit Rate 
0 32.91% 
1 19.64% 
2 54.40% 
3 26.98% 
4 31.07% 
5 44.71% 
6 28.06% 
7 20.55% 
8 24.25% 
9 21.49% 

10 28.21% 
Weighted Average 30.17% 

 

4.8 Execution Time 
The execution time required for the new approach to process the 
clusters is listed in Table 4. The maximum execution time for a 
cluster is 2.38 days (cluster 8) using a Core 2 Duo 2.4 GHz 
processor. When all 11 clusters are processed in parallel, this 2.38 
day maximum execution time is the turnaround time for the new 
approach. 

By comparison, the control system described in Section 4.4 took 
17.42 hours to select a single SVM classifier model using the 
entire dataset of 3,115 samples. If a traditional GA is added to the 
control system to perform feature selection, it is projected that 
turnaround time would be 99.4 years (17.42 hours per SVM 

model selection × 200 chromosomes × 250 generations). As a 
result, no experiments can feasibly process the entire data set 
using a traditional SVM-GA hybrid system.  

Nevertheless, any large dataset can be partitioned into small 
enough clusters that can be processed in parallel. The new 
approach is very scalable and the turnaround time is relatively 
low given a small cluster.  

Table 4: Execution Time for GA Runs 

Cluster ID Execution Time 
(Days) 

0 1.61 

1 1.84 

2 1.55 

3 1.62 

4 1.72 

5 1.48 

6 1.63 

7 1.43 

8 2.38 

9 2.22 

10 1.86 

 

5. Conclusion and Future Work 
This paper presents an efficient and effective SVM-GA hybrid 
model to perform feature selection for large datasets. The new 
approach successfully selected important features for a healthcare 
dataset involving 3,115 hospital discharge records and 231 
features. This approach is scalable for any large dataset.  
 
The major bottleneck in a traditional SVM-GA system is caused 
by the size of the dataset because the SVM training complexity is 
O(n3). As long as the size of each cluster is reasonably small, the 
proposed techniques of using an adaptive multi-resolution 
Uniform Design to perform parameter search and chromosome 
caching can greatly reduce the runtime costs of GA and yet 
maintain strong classification performance. A very large dataset 
could be partitioned into many small clusters of size m. As long as 
m << n and parallel machines are available to process the clusters, 
the system performance will scale well with the data size. 
 
Future study will extend this framework using more features such 
as diagnosis, patient profiles, and hospital profiles in order to 
improve feature selection performance. Features selected in the 
experiment will be evaluated for their clinical significance and 
implications. This project shows promise for developing decision 
support systems that will assist healthcare professionals in making 
better clinical and administrative decisions. 
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