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ABSTRACT 
For artificial entities to achieve high degrees of autonomy they 
will need to display appropriate adaptability. In this sense 
adaptability includes representational flexibility guided by the 
environment at any given time. This paper presents the use of 
constructivism-inspired mechanisms within a neural learning 
classifier system which exploits parameter self-adaptation as an 
approach to realize such behaviour. The system uses a rule 
structure in which each is represented by an artificial neural 
network. It is shown that appropriate internal rule complexity 
emerges during learning at a rate controlled by the system. 
Further, the use of computed predictions is shown possible. 

Categories and Subject Descriptors 
I.2.6 [Artificial Intelligence]: Learning – knowledge acquisition, 
parameter learning, connectionism and neural nets. 

General Terms 
Experimentation. 

Keywords 
Constructivism, Learning Classifier Systems, Neural Networks, 
Reinforcement Learning, Self-Adaptation. 

1. INTRODUCTION 
The neural constructivist (NC) [14] explanation for the emergence 
of reasoning within brains postulates that the dynamic interaction 
between neural growth mechanisms and the environment drives 
the learning process. This is in contrast to related evolutionary 
selectionist ideas which emphasize regressive mechanisms 
whereby initial neural over-connectivity is pruned based on a 
measure of utility [7]. The scenario for constructivist learning is 
that, rather than start with a large neural network development 
begins with a small network. Learning then adds appropriate 
structure, particularly through growing/pruning dendritic 
connectivity, until some satisfactory level of utility is reached. 
Suitable specialized neural structures are not specified a priori; 
the representation of the problem space is flexible and tailored by 
the learner's interaction with it. We are interested in the feasibility 

of a constructive approach to realize flexible learning within 
Learning Classifier Systems (LCS) [10], exploiting its genetic 
algorithm (GA) [9] foundation. In this paper we present a form of 
neural LCS [2] based on XCS [19] and XCSF [20]. In particular, 
we explore the success of extensions to the XCS-based neural 
LCS, N-XCS [3], including the use of self-adaptive search 
operators, neural constructivism (to grow hidden layer neurons), 
and prediction computation on versions of two well-known maze 
tasks. 
 
We shall refer to the three systems presented using the following 
nomenclature: non-adaptive N-XCS (naN-XCS), self-adaptive N-
XCS (saN-XCS), neural constructive and self-adaptive XCS 
(ncN-XCS). To our knowledge, this is the first implementation of 
XCS which uses self-adaptive parameters alongside NC to 
perform goal finding in simulated maze environments, as well as 
the first implementation of XCSF functionality within this self-
adaptive, constructivist framework. 
 
The paper is ordered as follows:  the next section provides a brief 
overview of related work.  Section 3 describes the modifications 
made to the XCS framework for the neural rule representation. 
Section 4 presents the results of naN-XCS in solving two maze 
environments, and compares the results with the same 
experiments attempted by saN-XCS, and ncN-XCS. Versions of 
these systems are then extended to include prediction 
computation, i.e., XCSF implementations are then explored. 

2. RELATED WORK 
The use of constructivism within neural learning classifier 
systems was first described by Bull [2], using Wilson’s ZCS [18] 
as a basis. Hurst and Bull [11] later extended this work to include 
parameter self-adaptation and used it for real mobile robot 
control. In both cases it is reported that networks of different 
structure evolve to handle different areas of the problem space 
thereby identifying the underlying structure of the task. In this 
paper we take the principles of self-adaptation and constructivism 
and explore them within the accuracy-based XCS and XCSF 
systems.  
 
As we are experimenting with rules based on neural networks, 
work on alternate representations which compute actions based on 
inputs are closely related: fuzzy logic (e.g., see [6] for an 
overview); Lisp S-Expressions [1]; and parameterized functions 
[13][21]. 
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3. IMPLEMENTATION 

3.1 Maze environments 
The mazes in traditional LCS research are encoded as binary 
strings that represent the local topology of the maze. The length 
of the string depends upon the number of exclusive object types 
represented in the maze. For example, a maze with three 
exclusive object types requires each object to be represented by 
two bits (e.g. 00 = empty, 01 = obstacle, 11=food) giving a 16-bit 
string representing the eight cells surrounding the agent. The 
maze environments used in this paper are the benchmarks 
Woods1 and Maze4 [12].  Performance is chiefly gauged by a 
“Step-to-goal” count – the number of discrete movements 
required to reach the goal state from a random starting position in 
the maze. In Woods1 the optimal figure is 1.69 steps and in Maze 
4 it is 3.5, these are shown on the step-to-goal graphs as dashed 
lines. Figure 1 and 2 shows the layout of the toroidal Woods1 and 
bounded Maze4 respectively.  Here, “O” represents an obstacle, 
“*” an empty space and “G” the goal state.  
 

* * * * * 

* O O G * 

* O O O * 

* O O O * 

* * * * * 

 
Figure 1. The Woods1 Environment 
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Figure 2. The Maze4 Environment 

 

3.2 A Neural XCS 
Following Bull & O`Hara [3], a number of changes were made to 
the standard XCS algorithm to accommodate the use of artificial 
neural network rules. The reader is referred to Butz & Wilson [5] 
for an algorithmic description of XCS. As in [3], we use multi-
layered perceptrons (MLP) [15] in place of ternary strings. 

Firstly, the environmental representation was altered - the binary 
string normally used to represent a given state S is replaced with a 
real-valued counterpart in the same way as in [2]. That is, each 
exclusive object type the agent could encounter is represented by 
a random real number within a specified range ([0.0, 0.1] for free 
space, [0.4, 0.5] for an obstacle and [0.9, 1.0] for the goal state). 
This bounded randomness attempts to loosely emulate the sensory 
noise that a real robot invariably encounters - increasing the 
difficulty of learning the environment.    
 
The real-valued input vector, S, is processed by each member of 
[P] in turn. Each classifier is represented by a vector that 
represents the connection weights of an MLP. Each weight is 
initialized randomly as a uniform number in the range [-1, 1].  
Each network is fully connected, and comprises of 8 input 
neurons, representing the environmental state in the 8 directions 
surrounding the agent, a fixed number of hidden layer neurons, 
which varies between experiments, and 3 output neurons. The 
first two output neurons represent the strength of action passed to 
the left and right motors of the robot respectively, and the third 
output neuron is a “don’t-match” neuron, that excludes the 
classifier from the match set if it has the highest activation of the 
three.  This is necessary as the action of the classifier must be re-
calculated for each state the classifier encounters, so each 
classifier “sees” each input. A sigmoid function is used to 
constrain output values between 0 and 1. The formation of [M] 
and [A] proceed as in XCS - if the classifier does match, the 
outputs at the other two neurons (real numbers) are mapped to a 
discrete movement in one of eight compass directions.  This takes 
place in a way similar to [2], where three ranges of discrete output 
are possible: 0.0<x<0.4 (low), 0.4<x<0.6 (medium), and 
0.6<x<1.00 (high).  The unequal partitioning is used to counteract 
the insensitivity of the sigmoid function to values within the 
extreme reaches of its range.  The combined actions of each 
motor translate to a discrete movement according to the two 
motor output strengths – (high, high) = north, (high, med) = 
northeast, (high, low) = east, and so on.  It should be noted that 
the final two motor pairings – (low, medium) and (low, low) both 
produce a move to the northwest. Covering is achieved by 
repeatedly generating random MLPs with a fixed number of 
hidden layer neurons until the MLP’s action matches the desired 
output for a given input state. After each matching classifier’s 
action is determined an action selection policy is invoked and all 
classifiers that advocate the chosen action form [A].  If the goal 
state is found, reward is distributed as in XCS and the task is 
reset. 
 
GA crossover is removed, due to the potential competing 
conventions problem and the difficulty in crossing over variable-
length representations. In the non-adaptive case, mutation occurs 
with probability µ per allele, and alters a weight by a uniform 
number +/- 0.0 – 0.1.  Two further changes are employed to 
increase the efficiency of the system. A mechanism known as 
teletransportation[12] is enforced on both explore and exploit 
trials, to ensure that the agent is exposed more evenly to different 
areas of the environment.  Teletransportation imposes a timeout 
on the system, resetting the trial if the agent has not reached the 
goal state after 50 discrete movements. Additionally, an explore 
trial is based on roulette wheel selection rather than random 
action selection, to discourage time-wasting movements by the 
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agent since we envisage using the system with a real robot 
platform in the near future [17].  

4. EXPERIMENTATION 
4.1 naN-XCS 
Each experiment consists of 50,000 trials, each consisting of one 
exploration cycle and one exploitation cycle. An additional 
knowledge test is also undertaken after these two. Following 
notation seen in [20], parameters used are: N=2000 for Woods1, 
N=3000 for Maze4, β=0.2, γ=0.71, ε0=10, ν=5, θGA=25, σ=0.1. 
Each experiment is repeated 10 times, and the results are averaged 
for all parameters. To allow the non-adaptive experiments the best 
chance to solve each maze, hidden layer sizes were selected based 
on preliminary investigations into the maximum (9) and average 
(2 for Woods1, 3 for Maze4) hidden layer sizes used to 
successfully solve each maze. Similarly, the values of µ were 
taken from self-adaptive experimental trials, and are presented in 
Table 1.  
 

Table 1. µ values for non-adaptive experiments 
Experiment µ value 

naN-XCS 9 neurons, 
Woods1 

0.03 

naN-XCS 9 neurons, 
Maze4 

0.05 

naN-XCS 2 neurons, 
Woods1 

0.06 

naN-XCS 3 neurons, 
Maze4 

0.08 

 

 
Figure 3. naN-XCS 9-neuron Woods1 performance 

 

 
Figure 4. naN-XCS 2-neuron Woods1 performance 

Figure 3 shows a steep decline towards the optimal step-to-goal 
value in Woods 1 for the basic N-XCS, followed by a more 
gradual descent until the solution stabilizes at around 7500 trials.  
An overabundance of neurons and an experimentally-determined 
µ parameter ensure that the maze is solvable, with all runs 
reaching optimality. However, the solution obtained for a network 
of two hidden layer neurons (Figure 4) is suboptimal throughout.  
This suggests that additional mechanisms are required to solve 
Woods1 with two hidden layer neurons, as only five of the ten 
runs reached optimality.  Figures 5 and 6 show that, with an 
experimentally-determined µ value and a large hidden layer 
network size, a neural XCS with the selected parameters cannot 
solve Maze4.  In each case, only a small number of the 
experiments reached optimality.   
 

 
Figure 5. naN-XCS  9-neuron Maze4 performance 

 

 
Figure 6. naN-XCS 3-neuron Maze4 performance 

4.2 Self-Adaptive Mutation: saN-XCS 
Bull et al. [4] describe how self-adaptive mutation can be used to 
dynamically control the amount of genetic search (the frequency 
of mutation events) taking place within a given niche. This 
provides stability to parts of the problem space that are already 
“solved” as the mutation rate for a niche is typically directly 
proportional to its distance from the goal state during learning; 
generalization learning, along with the value function learning, 
occurs faster nearer the goal state. Self-adaptive mutation is here 
applied as in [11], where the µ value of each classifier is 
initialized uniformly randomly in the range [0,1]. During a GA 
cycle, a parent’s µ value is modified in the following way before 
being copied to its offspring:  µ  µ * e N(0,1)  ,clipping the result 
in the range [0,1] (see [16] for the effect of this update).  The 
offspring then applies its own µ to itself before being inserted into 
the population.   
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(a) 

 
(b) 

Figure 7. saN-XCS  9 neuron (a) performance and (b) µ value 
in Woods1 

 

 
(a) 

 
(b) 

Figure 8. saN-XCS 2 neuron (a) performance and (b) µ value 
in Woods1 

 
 

 
(a) 

 
(b) 

Figure 9. saN-XCS 9 neuron (a) performance and (b) µ value 
in Maze4 

 

 
(a) 

 
(b) 

Figure 10. saN-XCS 3 neuron (a) performance and (b) µ value 
in Maze4 
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Figure 7 confirms the previous result for naN-XCS in figure 3 
wherein the system with 9 hidden layer nodes is capable of 
optimal performance. Figure 8 shows that a network limited to 
two hidden layer neurons can reach optimality in Woods1, thanks 
to the use of self-adaptive mutation rates (contrast with the static 
mutation rate in figure 4).  Figures 9(a) and 10(a) demonstrate 
that, in a more complex maze environment, self-adaptive mutation 
allows optimal solutions to be found for the two fixed 
architectures used, in contrast to the results in figures 5 and 6.  
The difference in final µ values seen in figures 9(b) and 10(b) can 
be attributed to the differing number of genes per classifier (9 
hidden layer nodes vs. 3 hidden layer nodes); the self-adaptation 
process is context sensitive.   
 
Examination of optimal solutions confirms results reported in [3] 
whereby rules evolve which match all or many of the states at a 
given prediction level. Thus rules generate different actions based 
upon the input. 

4.3 Self-Adaptive Constructivism: ncN-XCS 
In principle, NC allows optimal solutions to be found without 
over-fitting to the problem space by including an excess of hidden 
layer neurons. As shown above, using a static hidden layer size 
for the solution may cause either under- or over-fitting 
representations of too few or too many neurons respectively.  
Under NC networks can evolve to match the complexity of the 
environment (subspaces of the problem space) they are presented 
with [2]. 
 
The use of evolutionary computing techniques to allow for the 
emergence of appropriate complexity in neural networks was first 
introduced by Harvey et al. [8]. An evolutionary gradualism 
mechanism was used such that the length of the genotypes could 
increase to an appropriate size over time; extra nodes could be 
added to the network through a mutation-like operator during 
reproduction. Implementation of NC in this system is based on 
that described by Hurst and Bull [11]. Each rule has a varying 
number of hidden layer neurons (initially 1, and always >= 1), 
with additional neurons being added or removed from the hidden 
layer depending on the constructivism element of the system.  
Constructivism takes place during discovery, after mutation.  Two 
new self-adaptive parameters, ψ and ω, are added. Here, ψ 
represents the probability of performing a constructivism event 
and ω is the probability of adding a neuron; removal occurs with 
probability 1- ω. As with self-adaptive mutation, both are initially 
randomly generated uniformly in the range [0,1], and offspring 
classifiers have their parents’ ψ and ω values multiplied by eN(0,1) 
during reproduction, with the results clipped to the range [0,1]. 
Much like self-adaptive mutation, this has the potential to give a 
gradient to the amount of constructivism that takes place within 
any given niche, with the effect of keeping optimal/fit solutions 
stable whilst altering non-optimal niches more frequently until 
they reach optimality.  
 
Figure 11(a) shows that ncN-XCS reaches optimality within 2500 
trials. A high initial step-to-goal value can be observed as 
networks of sufficient complexity must be grown from one 
neuron (Figure 11(b)), and a steep gradient of descent is 
encountered once networks are evolved to handle that complexity. 
The process of constuctivism adds further variable interaction, 
and especially early in the experiment this can be observed in the 

unsteady gradient in figure 11(c), as mutation rates interact with 
the addition of new neurons. 
 

 
(a) 

 
(b) 

 
(c) 

Figure 11. ncN-XCS (a) performance,  (b) average hidden 
layer size and (c) self-adaptive parameters in Woods1 

 
Figure 12(a) shows that the system is capable of performing 
optimally in Maze4 as all runs eventually reach optimality. There 
is a correlation at around 20,000 trials between the system 
reaching optimal performance, the value of µ levelling off (Figure 
12(c)), and the average number of hidden layer nodes per network 
reaching stability (Figure 12(b)).  
 
Note the the average number of hidden layer nodes are different 
in the two cases, as are the dynamic and final values of the search 
parameters. Further, as reported in [2] and [3], examination of 
solutions finds rules with different numbers of hidden layer nodes 
matching in different parts of a given maze. 
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(a) 

 
(b) 

 
(c) 

Figure 12. ncN-XCS (a) performance,  (b) average hidden 
layer size and (c) self-adaptive parameters in Maze4 

 

5. STATISTICAL SIGNIFICANCE 
As noted in Section 4.1, after each explore-exploit cycle, an 
additional knowledge test trial is held with the agent always 
starting in the closest available location to the top-left hand corner 
of the maze, and the steps-to-goal count recorded. Under the 
standard maze scenario used above, and in the LCS literature, it is 
not possible to perform standard statistical tests for significant 
differences in performance as performance is plotted as a 50-point 
moving average due to the random start location. Using an extra 
exploit trial from a fixed position eases statistical comparison.  
 
As each modification is added to the system (MLP  self 
adaptive, self-adaptive  self-adaptive & constructive), the 
average stability of a system’s performance is ascertained. 
Stability is defined as follows:  A solution can be said to be stable 
if, for each of 50 consecutive knowledge test trials - interspersed 
between standard explore and exploit trials - from a constant 

location in the maze, the solution always finds the optimal path to 
the goal. The first trial at which each run of a system reaches 
stability is recorded, and this set of 10 numbers is compared to the 
sets produced by the other variants of the system using a standard 
t-test. The outcome is therefore a probability of whether the two 
sets of numbers belong to the same overall distribution, (p-value > 
0.01), or different distributions (p-value ≤ 0.01).  If the latter is 
the case, the two sets of numbers are said to be statistically 
significantly different.  Only systems that reached optimality 
during experimentation are compared.  Averages are provided as a 
point of reference. 
 

Table 2. T-test results on Woods1 N-XCS variants 
Systems 
compared 

Different? System 
1 Avg 

System 
2 Avg 

P-value 

naN-XCS 9 node 
saN-XCS 9 node 

No 169 368 0.02 

saN-XCS 2 node 
ncN-XCS 

Yes 325 1091 0.0001 

saN-XCS 9 node 
ncN-XCS 

Yes 368 1091 0.0003 

 
The results in Table 2 show that self-adaptation does not 
significantly affect the performance of the system in reaching 
stability when sufficient hidden layer nodes are present (although 
the p-value of 0.02 is close to the boundary), whereas the addition 
of constructivism gives the system a performance overhead. This 
can be attributed to the necessity of the NC system to evolve 
networks of sufficient complexity before a stable solution can be 
found.   
 

Table 3. T-test results on Maze4 N-XCS variants 
Systems 
compared 

Different? System 
1 Avg 

System 
2 Avg 

P-value 

saN-XCS 3 node 
ncN-XCS 

No 13770 18199 0.16 

saN-XCS 9 node 
ncN-XCS 

No 13955 18199 0.08 

 
As neither non-adaptive system reached stability, they cannot be 
compared for Maze 4. Table 3 shows no statistically significant 
difference between saN-XCS and ncN-XCS with regards to 
reaching optimality in the Maze4 environment. This can be 
explained as follows: the overhead involved in growing networks 
of sufficient complexity is larger in Maze4 than in Woods1 as the 
environment is more complex. However, the flexible 
representations allowed by NC allow the system to become stable 
more quickly once this complexity has been reached. This 
suggests that, in more complex environments, the benefits of 
representations afforded by NC may offset the computational 
start-up cost of evolving the networks in the first place. 

6. A NEURAL XCSF 
In XCSF [20], a classifier’s prediction is computed. This attempts 
to alleviate a drawback of XCS; that a classifier’s prediction is 
constant in the entire problem subspace covered by its condition, 
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which can limit generalization capabilities.  Utilizing XCSF may 
lead to the discovery of classifiers within the population that 
generalize not only within a payoff level, but also between payoff 
levels.  Let us call this system N-XCSF.   
 
At the start of each experiment, classifiers are initialized as in 
XCS, except that each classifier is augmented by a weight vector, 
w. This vector has one element for each input (8 in this case), plus 
an additional element w0 which corresponds to x0, a constant input 
that is set as a parameter of XCSF. Each vector element is 
initialized as 0.  At each time step, XCSF builds a match set as 
normal. Note that most implementations alter the traditional 
ternary environmental inputs to real numbers but we are already 
using real-valued inputs so need no modifications. An action is 
chosen via the formation of a prediction array. Each classifier 
prediction (cl.p) is calculated as a product of the environmental 
input (or state, st) and the weight vector (w) associated with each 
classifier, specifically:   
 

 
These predictions are summed to form the prediction array as a 
fitness-weighted average of all classifiers in the match set that 
specify a given action. The prediction array is then used as in 
regular XCS to decide on an action to take (in our version, this is 
deterministic during an exploit trial and roulette during an explore 
trial). The action is then performed and reward returned from the 
environment. During reinforcement, the weight vector of each 
classifier in the action set is updated using a version of the delta 
rule, rather than updating the classifiers’ prediction value.  Here, 
the vector x is the state st augmented by the parameter x0. 
 

 
Each weight is then updated.  
 

 
Finally, prediction error is calculated. 
 

 
 
Discovery proceeds as in XCS. During reproduction, the weight 
vector of a parent is copied unmodified to its offspring, with self-
adaptation applied to µ, ψ and ω as normal.  All parameters were 
as before except the population size N=7000 in Maze4, N=6000 
in Woods1, the experimentally-determined x0 parameter is set to 
10 and the correction rate η to 0.2.  These parameters are based on 
the work of [20]. Each classifier begins with or has a hidden layer 
size of 2, as a 1-neuron N-XCSF of any version failed to reach 
optimality reliably.   Figure 14(a) shows that ncN-XCSF is 
capable of optimal performance in the real-valued Maze4. 
Observation of the action sets produced indicate that ncN-XCSF 
has the potential to evolve classifiers that generalize between 
different payoff levels, resulting in a more compact solution and 
increased generalization capability. Figure 14(b) shows a decline 

to approximately 1.5 neurons per classifier, suggesting that the 
inclusion of computed prediction allows less complex neural 
representations to perform optimally. However, we note that 
initialization with one node in the hidden layer for Maze 4, as 
used above, was found to give sub-optimal performance in one 
out of ten runs (not shown) with the same parameters. Current 
work is exploring why this was the case, although it is interesting 
to note that the constructivism process is able to prune solutions 
as well as grow them.  The results of t-tests between ncN-XCSF 
and other variants in Maze4 (Table 4) show that there is no 
statistically significant difference between the compared systems 
with regards to reaching stability. 
 

 
(a) 

 
(b) 

 
(c) 

Figure 14. ncN-XCSF (a) performance, (b) average hidden 
layer size and (c) self-adaptive parameters in Maze4. 

 
Table 4. T-Test results of N-XCSF in Maze4 

Systems compared Different? System 
1 Avg 

System 
2 Avg 

P-value 

ncN-XCS 
ncN-XCSF 

No 18199 9615 0.02 

saN-XCSF 2 node 
ncN-XCSF 

No 8228 9615 0.51 
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With respect to steps-to-goal, ncN-XCSF and ncN-XCS initially 
reach optimality in comparable time. However Figure 14(a) 
shows a slight “hump” at around 25,000 trials which was caused 
by one of the ten experiments briefly becoming sub-optimal, and 
because of this, comparison to Figure 12(a) shows that ncN-XCSF 
takes longer to reach an optimal step-to-goal figure than ncN-
XCS. This can be explained by the complexity of interactions 
between self-adaptive constructivism and prediction computation, 
and improving this interaction is a future aim of this work. To our 
knowledge, this is the first time XCSF has been used with noise 
included in the inputs and this may be a partial explanation; the 
sensitivity of the piece-wise linear approximations to noise is 
empirically unknown at this stage.  The inclusion of NC within 
the XCSF framework can be seen to have a performance impact 
on the system.  For example, Table 4 shows over a 50% 
probability that ncN-XCSF and saN-XCSF come from the same 
distribution, but a 98% certainty that ncN-XCS and ncN-XCSF 
are from different distributions (p-value 0.02).  This can be 
attributed to the performance overhead involved in constructivism 
being offset/superceded by the benefits of computed prediction 

7. CONCLUSIONS 
We have shown that a self-adaptive neural XCS employing 
constructivism can perform optimally in noisily-encoded real-
valued versions of two well-known simulated maze environments. 
The system evolves a population of MLPs to cover the problem 
space, the result being a complete payoff map of the entire 
problem space, where one MLP can cover a large homogenous 
region, i.e., where the payoff landscape is identical. Further, using 
the prediction computation of XCSF, we have seen that one MLP 
can cover several disparate regions of the problem space, 
typically where the action required is identical, but the payoff 
levels are different. We are now moving this work to a real robot 
platform. 
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