
Self-Adaptive Constructivism in Neural XCS and XCSF
Gerard David Howard

University of the West of England
Frenchay Campus
Bristol, Avon, UK

(00) 44 117 965 6261

gerard2.howard@uwe.ac.uk

Larry Bull
University of the West of England

Frenchay Campus
Bristol, Avon, UK

(00) 44 117 965 6261

larry.bull@uwe.ac.uk

Pier-Luca Lanzi
Politecnico di Milano

Piazza Leonardo da Vinci, 32
I-20133 Milano, Italy

(00) 39 02 2399 3472

pierluca.lanzi@polimi.it

ABSTRACT
For artificial entities to achieve high degrees of autonomy they
will need to display appropriate adaptability. In this sense
adaptability includes representational flexibility guided by the
environment at any given time. This paper presents the use of
constructivism-inspired mechanisms within a neural learning
classifier system which exploits parameter self-adaptation as an
approach to realize such behaviour. The system uses a rule
structure in which each is represented by an artificial neural
network. It is shown that appropriate internal rule complexity
emerges during learning at a rate controlled by the system.
Further, the use of computed predictions is shown possible.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning – knowledge acquisition,
parameter learning, connectionism and neural nets.

General Terms
Experimentation.

Keywords
Constructivism, Learning Classifier Systems, Neural Networks,
Reinforcement Learning, Self-Adaptation.

1. INTRODUCTION
The neural constructivist (NC) [14] explanation for the emergence
of reasoning within brains postulates that the dynamic interaction
between neural growth mechanisms and the environment drives
the learning process. This is in contrast to related evolutionary
selectionist ideas which emphasize regressive mechanisms
whereby initial neural over-connectivity is pruned based on a
measure of utility [7]. The scenario for constructivist learning is
that, rather than start with a large neural network development
begins with a small network. Learning then adds appropriate
structure, particularly through growing/pruning dendritic
connectivity, until some satisfactory level of utility is reached.
Suitable specialized neural structures are not specified a priori;
the representation of the problem space is flexible and tailored by
the learner's interaction with it. We are interested in the feasibility

of a constructive approach to realize flexible learning within
Learning Classifier Systems (LCS) [10], exploiting its genetic
algorithm (GA) [9] foundation. In this paper we present a form of
neural LCS [2] based on XCS [19] and XCSF [20]. In particular,
we explore the success of extensions to the XCS-based neural
LCS, N-XCS [3], including the use of self-adaptive search
operators, neural constructivism (to grow hidden layer neurons),
and prediction computation on versions of two well-known maze
tasks.

We shall refer to the three systems presented using the following
nomenclature: non-adaptive N-XCS (naN-XCS), self-adaptive N-
XCS (saN-XCS), neural constructive and self-adaptive XCS
(ncN-XCS). To our knowledge, this is the first implementation of
XCS which uses self-adaptive parameters alongside NC to
perform goal finding in simulated maze environments, as well as
the first implementation of XCSF functionality within this self-
adaptive, constructivist framework.

The paper is ordered as follows: the next section provides a brief
overview of related work. Section 3 describes the modifications
made to the XCS framework for the neural rule representation.
Section 4 presents the results of naN-XCS in solving two maze
environments, and compares the results with the same
experiments attempted by saN-XCS, and ncN-XCS. Versions of
these systems are then extended to include prediction
computation, i.e., XCSF implementations are then explored.

2. RELATED WORK
The use of constructivism within neural learning classifier
systems was first described by Bull [2], using Wilson’s ZCS [18]
as a basis. Hurst and Bull [11] later extended this work to include
parameter self-adaptation and used it for real mobile robot
control. In both cases it is reported that networks of different
structure evolve to handle different areas of the problem space
thereby identifying the underlying structure of the task. In this
paper we take the principles of self-adaptation and constructivism
and explore them within the accuracy-based XCS and XCSF
systems.

As we are experimenting with rules based on neural networks,
work on alternate representations which compute actions based on
inputs are closely related: fuzzy logic (e.g., see [6] for an
overview); Lisp S-Expressions [1]; and parameterized functions
[13][21].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
GECCO’08, July 12–16, 2008, Atlanta, Georgia, USA.
Copyright 2008 ACM 978-1-60558-130-9/08/07…$5.00.

1389

3. IMPLEMENTATION

3.1 Maze environments
The mazes in traditional LCS research are encoded as binary
strings that represent the local topology of the maze. The length
of the string depends upon the number of exclusive object types
represented in the maze. For example, a maze with three
exclusive object types requires each object to be represented by
two bits (e.g. 00 = empty, 01 = obstacle, 11=food) giving a 16-bit
string representing the eight cells surrounding the agent. The
maze environments used in this paper are the benchmarks
Woods1 and Maze4 [12]. Performance is chiefly gauged by a
“Step-to-goal” count – the number of discrete movements
required to reach the goal state from a random starting position in
the maze. In Woods1 the optimal figure is 1.69 steps and in Maze
4 it is 3.5, these are shown on the step-to-goal graphs as dashed
lines. Figure 1 and 2 shows the layout of the toroidal Woods1 and
bounded Maze4 respectively. Here, “O” represents an obstacle,
“*” an empty space and “G” the goal state.

* * * * *

* O O G *

* O O O *

* O O O *

* * * * *

Figure 1. The Woods1 Environment

O O O O O O O O

O * * O * * G O

O O * * O * * O

O O * O * * O O

O * * * * * * O

O O * O * * * O

O * * * * O * O

O O O O O O O O

Figure 2. The Maze4 Environment

3.2 A Neural XCS
Following Bull & O`Hara [3], a number of changes were made to
the standard XCS algorithm to accommodate the use of artificial
neural network rules. The reader is referred to Butz & Wilson [5]
for an algorithmic description of XCS. As in [3], we use multi-
layered perceptrons (MLP) [15] in place of ternary strings.

Firstly, the environmental representation was altered - the binary
string normally used to represent a given state S is replaced with a
real-valued counterpart in the same way as in [2]. That is, each
exclusive object type the agent could encounter is represented by
a random real number within a specified range ([0.0, 0.1] for free
space, [0.4, 0.5] for an obstacle and [0.9, 1.0] for the goal state).
This bounded randomness attempts to loosely emulate the sensory
noise that a real robot invariably encounters - increasing the
difficulty of learning the environment.

The real-valued input vector, S, is processed by each member of
[P] in turn. Each classifier is represented by a vector that
represents the connection weights of an MLP. Each weight is
initialized randomly as a uniform number in the range [-1, 1].
Each network is fully connected, and comprises of 8 input
neurons, representing the environmental state in the 8 directions
surrounding the agent, a fixed number of hidden layer neurons,
which varies between experiments, and 3 output neurons. The
first two output neurons represent the strength of action passed to
the left and right motors of the robot respectively, and the third
output neuron is a “don’t-match” neuron, that excludes the
classifier from the match set if it has the highest activation of the
three. This is necessary as the action of the classifier must be re-
calculated for each state the classifier encounters, so each
classifier “sees” each input. A sigmoid function is used to
constrain output values between 0 and 1. The formation of [M]
and [A] proceed as in XCS - if the classifier does match, the
outputs at the other two neurons (real numbers) are mapped to a
discrete movement in one of eight compass directions. This takes
place in a way similar to [2], where three ranges of discrete output
are possible: 0.0<x<0.4 (low), 0.4<x<0.6 (medium), and
0.6<x<1.00 (high). The unequal partitioning is used to counteract
the insensitivity of the sigmoid function to values within the
extreme reaches of its range. The combined actions of each
motor translate to a discrete movement according to the two
motor output strengths – (high, high) = north, (high, med) =
northeast, (high, low) = east, and so on. It should be noted that
the final two motor pairings – (low, medium) and (low, low) both
produce a move to the northwest. Covering is achieved by
repeatedly generating random MLPs with a fixed number of
hidden layer neurons until the MLP’s action matches the desired
output for a given input state. After each matching classifier’s
action is determined an action selection policy is invoked and all
classifiers that advocate the chosen action form [A]. If the goal
state is found, reward is distributed as in XCS and the task is
reset.

GA crossover is removed, due to the potential competing
conventions problem and the difficulty in crossing over variable-
length representations. In the non-adaptive case, mutation occurs
with probability µ per allele, and alters a weight by a uniform
number +/- 0.0 – 0.1. Two further changes are employed to
increase the efficiency of the system. A mechanism known as
teletransportation[12] is enforced on both explore and exploit
trials, to ensure that the agent is exposed more evenly to different
areas of the environment. Teletransportation imposes a timeout
on the system, resetting the trial if the agent has not reached the
goal state after 50 discrete movements. Additionally, an explore
trial is based on roulette wheel selection rather than random
action selection, to discourage time-wasting movements by the

1390

agent since we envisage using the system with a real robot
platform in the near future [17].

4. EXPERIMENTATION
4.1 naN-XCS
Each experiment consists of 50,000 trials, each consisting of one
exploration cycle and one exploitation cycle. An additional
knowledge test is also undertaken after these two. Following
notation seen in [20], parameters used are: N=2000 for Woods1,
N=3000 for Maze4, β=0.2, γ=0.71, ε0=10, ν=5, θGA=25, σ=0.1.
Each experiment is repeated 10 times, and the results are averaged
for all parameters. To allow the non-adaptive experiments the best
chance to solve each maze, hidden layer sizes were selected based
on preliminary investigations into the maximum (9) and average
(2 for Woods1, 3 for Maze4) hidden layer sizes used to
successfully solve each maze. Similarly, the values of µ were
taken from self-adaptive experimental trials, and are presented in
Table 1.

Table 1. µ values for non-adaptive experiments
Experiment µ value

naN-XCS 9 neurons,
Woods1

0.03

naN-XCS 9 neurons,
Maze4

0.05

naN-XCS 2 neurons,
Woods1

0.06

naN-XCS 3 neurons,
Maze4

0.08

Figure 3. naN-XCS 9-neuron Woods1 performance

Figure 4. naN-XCS 2-neuron Woods1 performance

Figure 3 shows a steep decline towards the optimal step-to-goal
value in Woods 1 for the basic N-XCS, followed by a more
gradual descent until the solution stabilizes at around 7500 trials.
An overabundance of neurons and an experimentally-determined
µ parameter ensure that the maze is solvable, with all runs
reaching optimality. However, the solution obtained for a network
of two hidden layer neurons (Figure 4) is suboptimal throughout.
This suggests that additional mechanisms are required to solve
Woods1 with two hidden layer neurons, as only five of the ten
runs reached optimality. Figures 5 and 6 show that, with an
experimentally-determined µ value and a large hidden layer
network size, a neural XCS with the selected parameters cannot
solve Maze4. In each case, only a small number of the
experiments reached optimality.

Figure 5. naN-XCS 9-neuron Maze4 performance

Figure 6. naN-XCS 3-neuron Maze4 performance

4.2 Self-Adaptive Mutation: saN-XCS
Bull et al. [4] describe how self-adaptive mutation can be used to
dynamically control the amount of genetic search (the frequency
of mutation events) taking place within a given niche. This
provides stability to parts of the problem space that are already
“solved” as the mutation rate for a niche is typically directly
proportional to its distance from the goal state during learning;
generalization learning, along with the value function learning,
occurs faster nearer the goal state. Self-adaptive mutation is here
applied as in [11], where the µ value of each classifier is
initialized uniformly randomly in the range [0,1]. During a GA
cycle, a parent’s µ value is modified in the following way before
being copied to its offspring: µ µ * e N(0,1) ,clipping the result
in the range [0,1] (see [16] for the effect of this update). The
offspring then applies its own µ to itself before being inserted into
the population.

1391

(a)

(b)

Figure 7. saN-XCS 9 neuron (a) performance and (b) µ value
in Woods1

(a)

(b)

Figure 8. saN-XCS 2 neuron (a) performance and (b) µ value
in Woods1

(a)

(b)

Figure 9. saN-XCS 9 neuron (a) performance and (b) µ value
in Maze4

(a)

(b)

Figure 10. saN-XCS 3 neuron (a) performance and (b) µ value
in Maze4

1392

Figure 7 confirms the previous result for naN-XCS in figure 3
wherein the system with 9 hidden layer nodes is capable of
optimal performance. Figure 8 shows that a network limited to
two hidden layer neurons can reach optimality in Woods1, thanks
to the use of self-adaptive mutation rates (contrast with the static
mutation rate in figure 4). Figures 9(a) and 10(a) demonstrate
that, in a more complex maze environment, self-adaptive mutation
allows optimal solutions to be found for the two fixed
architectures used, in contrast to the results in figures 5 and 6.
The difference in final µ values seen in figures 9(b) and 10(b) can
be attributed to the differing number of genes per classifier (9
hidden layer nodes vs. 3 hidden layer nodes); the self-adaptation
process is context sensitive.

Examination of optimal solutions confirms results reported in [3]
whereby rules evolve which match all or many of the states at a
given prediction level. Thus rules generate different actions based
upon the input.

4.3 Self-Adaptive Constructivism: ncN-XCS
In principle, NC allows optimal solutions to be found without
over-fitting to the problem space by including an excess of hidden
layer neurons. As shown above, using a static hidden layer size
for the solution may cause either under- or over-fitting
representations of too few or too many neurons respectively.
Under NC networks can evolve to match the complexity of the
environment (subspaces of the problem space) they are presented
with [2].

The use of evolutionary computing techniques to allow for the
emergence of appropriate complexity in neural networks was first
introduced by Harvey et al. [8]. An evolutionary gradualism
mechanism was used such that the length of the genotypes could
increase to an appropriate size over time; extra nodes could be
added to the network through a mutation-like operator during
reproduction. Implementation of NC in this system is based on
that described by Hurst and Bull [11]. Each rule has a varying
number of hidden layer neurons (initially 1, and always >= 1),
with additional neurons being added or removed from the hidden
layer depending on the constructivism element of the system.
Constructivism takes place during discovery, after mutation. Two
new self-adaptive parameters, ψ and ω, are added. Here, ψ
represents the probability of performing a constructivism event
and ω is the probability of adding a neuron; removal occurs with
probability 1- ω. As with self-adaptive mutation, both are initially
randomly generated uniformly in the range [0,1], and offspring
classifiers have their parents’ ψ and ω values multiplied by eN(0,1)
during reproduction, with the results clipped to the range [0,1].
Much like self-adaptive mutation, this has the potential to give a
gradient to the amount of constructivism that takes place within
any given niche, with the effect of keeping optimal/fit solutions
stable whilst altering non-optimal niches more frequently until
they reach optimality.

Figure 11(a) shows that ncN-XCS reaches optimality within 2500
trials. A high initial step-to-goal value can be observed as
networks of sufficient complexity must be grown from one
neuron (Figure 11(b)), and a steep gradient of descent is
encountered once networks are evolved to handle that complexity.
The process of constuctivism adds further variable interaction,
and especially early in the experiment this can be observed in the

unsteady gradient in figure 11(c), as mutation rates interact with
the addition of new neurons.

(a)

(b)

(c)

Figure 11. ncN-XCS (a) performance, (b) average hidden
layer size and (c) self-adaptive parameters in Woods1

Figure 12(a) shows that the system is capable of performing
optimally in Maze4 as all runs eventually reach optimality. There
is a correlation at around 20,000 trials between the system
reaching optimal performance, the value of µ levelling off (Figure
12(c)), and the average number of hidden layer nodes per network
reaching stability (Figure 12(b)).

Note the the average number of hidden layer nodes are different
in the two cases, as are the dynamic and final values of the search
parameters. Further, as reported in [2] and [3], examination of
solutions finds rules with different numbers of hidden layer nodes
matching in different parts of a given maze.

1393

(a)

(b)

(c)

Figure 12. ncN-XCS (a) performance, (b) average hidden
layer size and (c) self-adaptive parameters in Maze4

5. STATISTICAL SIGNIFICANCE
As noted in Section 4.1, after each explore-exploit cycle, an
additional knowledge test trial is held with the agent always
starting in the closest available location to the top-left hand corner
of the maze, and the steps-to-goal count recorded. Under the
standard maze scenario used above, and in the LCS literature, it is
not possible to perform standard statistical tests for significant
differences in performance as performance is plotted as a 50-point
moving average due to the random start location. Using an extra
exploit trial from a fixed position eases statistical comparison.

As each modification is added to the system (MLP self
adaptive, self-adaptive self-adaptive & constructive), the
average stability of a system’s performance is ascertained.
Stability is defined as follows: A solution can be said to be stable
if, for each of 50 consecutive knowledge test trials - interspersed
between standard explore and exploit trials - from a constant

location in the maze, the solution always finds the optimal path to
the goal. The first trial at which each run of a system reaches
stability is recorded, and this set of 10 numbers is compared to the
sets produced by the other variants of the system using a standard
t-test. The outcome is therefore a probability of whether the two
sets of numbers belong to the same overall distribution, (p-value >
0.01), or different distributions (p-value ≤ 0.01). If the latter is
the case, the two sets of numbers are said to be statistically
significantly different. Only systems that reached optimality
during experimentation are compared. Averages are provided as a
point of reference.

Table 2. T-test results on Woods1 N-XCS variants
Systems
compared

Different? System
1 Avg

System
2 Avg

P-value

naN-XCS 9 node
saN-XCS 9 node

No 169 368 0.02

saN-XCS 2 node
ncN-XCS

Yes 325 1091 0.0001

saN-XCS 9 node
ncN-XCS

Yes 368 1091 0.0003

The results in Table 2 show that self-adaptation does not
significantly affect the performance of the system in reaching
stability when sufficient hidden layer nodes are present (although
the p-value of 0.02 is close to the boundary), whereas the addition
of constructivism gives the system a performance overhead. This
can be attributed to the necessity of the NC system to evolve
networks of sufficient complexity before a stable solution can be
found.

Table 3. T-test results on Maze4 N-XCS variants
Systems
compared

Different? System
1 Avg

System
2 Avg

P-value

saN-XCS 3 node
ncN-XCS

No 13770 18199 0.16

saN-XCS 9 node
ncN-XCS

No 13955 18199 0.08

As neither non-adaptive system reached stability, they cannot be
compared for Maze 4. Table 3 shows no statistically significant
difference between saN-XCS and ncN-XCS with regards to
reaching optimality in the Maze4 environment. This can be
explained as follows: the overhead involved in growing networks
of sufficient complexity is larger in Maze4 than in Woods1 as the
environment is more complex. However, the flexible
representations allowed by NC allow the system to become stable
more quickly once this complexity has been reached. This
suggests that, in more complex environments, the benefits of
representations afforded by NC may offset the computational
start-up cost of evolving the networks in the first place.

6. A NEURAL XCSF
In XCSF [20], a classifier’s prediction is computed. This attempts
to alleviate a drawback of XCS; that a classifier’s prediction is
constant in the entire problem subspace covered by its condition,

1394

which can limit generalization capabilities. Utilizing XCSF may
lead to the discovery of classifiers within the population that
generalize not only within a payoff level, but also between payoff
levels. Let us call this system N-XCSF.

At the start of each experiment, classifiers are initialized as in
XCS, except that each classifier is augmented by a weight vector,
w. This vector has one element for each input (8 in this case), plus
an additional element w0 which corresponds to x0, a constant input
that is set as a parameter of XCSF. Each vector element is
initialized as 0. At each time step, XCSF builds a match set as
normal. Note that most implementations alter the traditional
ternary environmental inputs to real numbers but we are already
using real-valued inputs so need no modifications. An action is
chosen via the formation of a prediction array. Each classifier
prediction (cl.p) is calculated as a product of the environmental
input (or state, st) and the weight vector (w) associated with each
classifier, specifically:

These predictions are summed to form the prediction array as a
fitness-weighted average of all classifiers in the match set that
specify a given action. The prediction array is then used as in
regular XCS to decide on an action to take (in our version, this is
deterministic during an exploit trial and roulette during an explore
trial). The action is then performed and reward returned from the
environment. During reinforcement, the weight vector of each
classifier in the action set is updated using a version of the delta
rule, rather than updating the classifiers’ prediction value. Here,
the vector x is the state st augmented by the parameter x0.

Each weight is then updated.

Finally, prediction error is calculated.

Discovery proceeds as in XCS. During reproduction, the weight
vector of a parent is copied unmodified to its offspring, with self-
adaptation applied to µ, ψ and ω as normal. All parameters were
as before except the population size N=7000 in Maze4, N=6000
in Woods1, the experimentally-determined x0 parameter is set to
10 and the correction rate η to 0.2. These parameters are based on
the work of [20]. Each classifier begins with or has a hidden layer
size of 2, as a 1-neuron N-XCSF of any version failed to reach
optimality reliably. Figure 14(a) shows that ncN-XCSF is
capable of optimal performance in the real-valued Maze4.
Observation of the action sets produced indicate that ncN-XCSF
has the potential to evolve classifiers that generalize between
different payoff levels, resulting in a more compact solution and
increased generalization capability. Figure 14(b) shows a decline

to approximately 1.5 neurons per classifier, suggesting that the
inclusion of computed prediction allows less complex neural
representations to perform optimally. However, we note that
initialization with one node in the hidden layer for Maze 4, as
used above, was found to give sub-optimal performance in one
out of ten runs (not shown) with the same parameters. Current
work is exploring why this was the case, although it is interesting
to note that the constructivism process is able to prune solutions
as well as grow them. The results of t-tests between ncN-XCSF
and other variants in Maze4 (Table 4) show that there is no
statistically significant difference between the compared systems
with regards to reaching stability.

(a)

(b)

(c)

Figure 14. ncN-XCSF (a) performance, (b) average hidden
layer size and (c) self-adaptive parameters in Maze4.

Table 4. T-Test results of N-XCSF in Maze4

Systems compared Different? System
1 Avg

System
2 Avg

P-value

ncN-XCS
ncN-XCSF

No 18199 9615 0.02

saN-XCSF 2 node
ncN-XCSF

No 8228 9615 0.51

1395

With respect to steps-to-goal, ncN-XCSF and ncN-XCS initially
reach optimality in comparable time. However Figure 14(a)
shows a slight “hump” at around 25,000 trials which was caused
by one of the ten experiments briefly becoming sub-optimal, and
because of this, comparison to Figure 12(a) shows that ncN-XCSF
takes longer to reach an optimal step-to-goal figure than ncN-
XCS. This can be explained by the complexity of interactions
between self-adaptive constructivism and prediction computation,
and improving this interaction is a future aim of this work. To our
knowledge, this is the first time XCSF has been used with noise
included in the inputs and this may be a partial explanation; the
sensitivity of the piece-wise linear approximations to noise is
empirically unknown at this stage. The inclusion of NC within
the XCSF framework can be seen to have a performance impact
on the system. For example, Table 4 shows over a 50%
probability that ncN-XCSF and saN-XCSF come from the same
distribution, but a 98% certainty that ncN-XCS and ncN-XCSF
are from different distributions (p-value 0.02). This can be
attributed to the performance overhead involved in constructivism
being offset/superceded by the benefits of computed prediction

7. CONCLUSIONS
We have shown that a self-adaptive neural XCS employing
constructivism can perform optimally in noisily-encoded real-
valued versions of two well-known simulated maze environments.
The system evolves a population of MLPs to cover the problem
space, the result being a complete payoff map of the entire
problem space, where one MLP can cover a large homogenous
region, i.e., where the payoff landscape is identical. Further, using
the prediction computation of XCSF, we have seen that one MLP
can cover several disparate regions of the problem space,
typically where the action required is identical, but the payoff
levels are different. We are now moving this work to a real robot
platform.

8. REFERENCES
[1] Ahluwalia, M. & Bull, L. 1999. A Genetic Programming

Classifier System. In W. Banzhaf, J. Daida, A.E. Eiben, M.H.
Garzon, V. Honavar, M. Jakiela & R.E. Smith (eds)
Proceedings of the Genetic and Evolutionary Computation
Conference – GECCO-99. San Mateo, CA: Morgan
Kaufmann, pp11-18.

[2] Bull, L. 2002. On Using Constructivism in Neural Classifier
Systems. In Merelo, J, Adamidis, P., Beyer, H-G., Fernandez-
Villacanas, J-L., & Schwefel, H-P. (Eds.) Parallel Problem
Solving from Nature – PPSN VII. Springer Verlag, pp558-567.

[3] Bull, L. & O’Hara, T. 2002. Accuracy-based Neuro and
Neuro-Fuzzy Classifier Systems. In W.B. Langdon, E.Cantu-
Paz, K. Mathias, R.Roy, D.Davis, R.Poli, K. Balakrishnan, V.
Hanavar, G. Rudolph, J. Wegener, L. Bull, M.A. Potter, A.C.
Schultz, J.F.Miller, E.Burke & N. Jonoska (Eds.) GECCO
2002: Proceedings of the Genetic and Evolutionary
Computation Conference. Morgan Kaufmann. pp905-911.

[4] Bull, L., Hurst, J., & Tomlinson, A. 2000. Self-Adaptive
Mutation in Classifier System Controllers. In J-A. Meyer, A.
Berthoz, D. Floreano, H. Roitblatt & S.W. Wilson (Eds.) From
Animals to Animats 6 – The Sixth International Conference on
the Simulation of Adaptive Behaviour, MIT Press.

[5] Butz, M. V., & Wilson, S. W. 2001. An Algorithmic
Description of XCS. In Lanzi, P. L., Stolzmann, W., and S. W.

Wilson (Eds.), Advances in Learning Classifier Systems,
LNAI 1996, pp. 253-272. Berlin: Springer-Verlag

[6] Cordón, O., Herrera, F., Hoffmann, F. & Magdalena, L. 2001.
Genetic Fuzzy Systems. Evolutionary Tuning and Learning of
Fuzzy Knowledge Bases. World Scientific.

[7] Edelman, G. 1987. Neural Darwinism: The Theory of
Neuronal Group Selection. New York: Basic Books.

[8] Harvey, I., Husbands, P. & Cliff, D. 1994. Seeing the Light:
Artificial Evolution, Real Vision. In D. Cliff, P. Husbands, J-
A. Meyer & S.W. Wilson (eds) From Animals to Animats 3:
Proceedings of the Third International Conference on
Simulation of Adaptive Behaviour. Cambridge, MA: MIT
Press, pp392-401.

[9] Holland, J.H. 1975. Adaptation in Natural and Artificial
Systems. University of Michigan Press, Ann Arbor.

[10] Holland, J.H. 1976. Adaptation. In R. Rosen & F.M. Snell
(Eds.) Progress in Theoretical Biology 4. New York:
Academic Press, pp263-293.

[11] Hurst, J. & Bull, L. 2006. A Neural Learning Classifier System
with Self-Adaptive Constructivism for Mobile Robot Control.
Artificial Life 12(3): 353 - 380

[12] Lanzi, P.L. 1999. An Analysis of Generalization in the XCS
Classifier System. Evolutionary Computation 7(2): 125-149

[13] Lanzi, P.L. & Loiacono, D. 2007. Classifier systems that
compute action mappings. In GECCO '07: Proceedings of the
9th annual Conference on Genetic and Evolutionary
Computation, New York, NY, USA. ACM Press. pp1822-
1829.

[14] Quartz, S.R. & Sejnowski, T.J. 1997. The Neural Basis of
Cognitive Development: A Constructionist Manifesto.
Behavioural and Brain Sciences 20(4): 537-596.

[15] Rumelhart, D.E. & McClelland, J.L. 1986. Parallel Distributed
Processing. Cambridge, MA: MIT Press

[16] Schwefel, H-P. 1981. Numerical Optimization of Computer
Models. Wiley, Chichester,

[17] Studley, M. & Bull, L. 2006. Using the XCS Classifier System
for Multi-objective Reinforcement Learning Problems.
Artificial Life 13(1): 69-86.

[18] Wilson, S.W. 1994. ZCS: A Zeroth-level Classifier System.
Evolutionary Computation 2(1):1-18.

[19] Wilson, S.W. 1995. Classifier Fitness Based on Accuracy.
Evolutionary Computation, 3(2):149-175.

[20] Wilson, S.W. 2001. Function Approximation with a Classifier
System. In Spector, L., D., G. E., Wu, A., Langdon, W.B.,
Voight, H. M., and Gen, M., (Eds.) Proceedings of the Genetic
and Evolutionary Computation Conference (GECCO 01)
Morgan Kaufmann. pp 974-981

[21] Wilson, S.W. 2007. Three architectures for continuous action
Learning Classifier Systems. International Workshops, IWLCS
2003-2005, Revised Selected Papers. In T. Kovacs, X. Llorà,
K. Takadama, P. L. Lanzi, W. Stolzmann, S. W. Wilson (Eds.)
Lecture Notes in Artificial Intelligence (LNAI-4399),. Berlin,
Springer-Verlag. pp. 239-257

1396

