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ABSTRACT

In recent years, neuroevolutionary methods have shown
great promise in solving learning tasks, especially in domains
that are stochastic, partially observable, and noisy. In this
paper, we show how the Kalman filter can be exploited (1) to
efficiently find an optimal solution (i. e. reducing the num-
ber of evaluations needed to find the solution), (2) to find
solutions that are robust against noise, and (3) to recover or
reconstruct missing state variables, traditionally known as
state estimation in control engineering community. Our al-
gorithm has been tested on the double pole balancing without
velocities benchmark, and has achieved significantly better
results on this benchmark than the published results of other
algorithms to date.
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1. INTRODUCTION
Stochastic partially-observable problems have always been

a challenging domain for machine-learning algorithms. The
fundamental reason for this is that such problems place lim-
its on an agent’s ability to fully perceive the states of the
environment, and in so doing, limit the information upon
which an agent can base its decisions. Such problems can-
not be solved using learning algorithms that assume the un-
derlying process is a Markov Decision Process (MDP) since
complete observability is necessary for this assumption to
be valid [9]. Various methods have been employed to re-
duce the effects of this limited information. One example
involves basing decisions on a history of recent observations
and actions [14].

In neuroevolutionary methods, policies are represented
by neural networks, and the effect of limited (incomplete)
information is often dealt with by using recurrent connec-
tions within a network to recover unobserved state variables
from the state variables that have been observed. A major
drawback of such networks is the difficulty in training them,
which means that they require a larger number of evalua-
tions before a solution is found.

In this paper, we propose an alternative to using recur-
rent neural networks in neuroevolution for overcoming the
effects of stochastic partially-observable domains. This new
method reduces the number of evaluations needed to get a
solution. Instead of recovering unknown or noisy state vari-
ables with recurrent neural networks, we use the POMDP
agent [9] shown in Figure 1. This agent is composed of two
parts: the state estimator and the policy. The state esti-
mator estimates the current state b based on the previous
state, the last control (action) u, and the current observed
(measured) state z. The policy π maps the state to a control
(action) u. The technique presented in this paper combines
the efficiency of the Kalman filter [11] (state estimator) with
the agility of feed-forward neural networks (policy), dramat-
ically improving the speed at which policies can be searched.
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Figure 1: A POMDP agent. SE is a state estima-
tor and π is a policy represented by a feed-forward
neural network.

This paper is organized as follows: first, a brief review of
works in the area of neuroevolution that have been tested
on the double pole balancing velocities benchmark will be
presented, followed by a short introduction to algorithms
used in our approach. After this, we provide a detailed de-
scription of our approach, and the results that have been
obtained with it. Finally, we offer some conclusions and
possible further research directions related to the presented
approach.

2. REVIEW OF WORKS TESTED ON

DOUBLE POLE BALANCING WITH-

OUT VELOCITIES BENCHMARK
In this section we will give a review of neuroevolutionary

methods that are tested on the double pole balancing ve-
locities benchmark. One can divide the methods into two
major categories. The methods in the first category evolve
only the weights of the neural networks for a given topol-
ogy, while methods in the second category evolve both the
topology and weights of neural networks.

2.1 Methods that Evolve the Weights of a
Neural Network

Wieland has investigated the evolutionary optimization
of fully connected recurrent neural networks on different
pole balancing problems [21]. He encoded the weights of
the neural networks using eight bits and used a genetic al-
gorithm for optimization. The structure of the recurrent
neural network was manually determined. Saravanan and
Fogel used Evolutionary Programming (EP) for parameter
optimization of feed-forward neural networks on the double
pole balancing benchmark [16]. The structure of the neural
network, that is the number of hidden units, are determined
a priori. Symbiotic Adaptive Neuroevolution (SANE) [15]
is an evolutionary system that evolves a population of neu-
rons instead of a population of networks. Fully connected
hidden layers of networks are formed by a combination of
neurons selected randomly from a population of neurons. A
neuron individual receives an average fitness value from the
networks in which it takes part. The Enforced Subpopula-
tions (ESP) method [3] is based on SANE, but it specializes
neurons to specific tasks. Each non-input unit of the neu-
ral network is assigned to a separate subpopulation and a
neuron is recombined with the members of its own subpopu-
lation. Unlike SANE, the networks formed by ESP consist of
a representative from each evolving specialization. This al-
lows ESP to evolve recurrent networks, because a neuron’s

behavior in a recurrent network critically depends on the
neurons to which it is connected. A specialized evolutionary
strategy called CMA-ES [7] (see Section 3.1) was used to
evolve a fixed-topology neural network for solving the dou-
ble pole balancing benchmark [8]. This method can evolve
both forward and recurrent fixed-topology neural networks
for the pole balancing problems. The Cooperative Synapse
NeuroEvolution (CoSyNE) method [4] uses cooperative co-
evolution to construct neural networks. For a given user-
specified network architecture, a population consisting of n
subpopulations is created, where n is the number of weights
in the network to be evolved. In addition to the standard ge-
netic operators, the algorithm permutes each subpopulation
to increase diversity in the population.

2.2 Methods that Evolve Both Weights and
Topologies of Neural Networks

Gruau’s Cellular Encoding (CE) method is a language for
local graph transformations that controls the division of cells
which grow into an artificial neural network [5]. Through cell
division, one cell, the parent cell, is replaced by two cells,
the child cells. During division, a cell must specify how the
two child cells will be linked. The genetic representations in
CE are compact because genes can be reused multiple times
during the development of the network. This saves space in
the genome because not every connection and node need to
be explicitly specified in the genome. Defining a crossover
operator for CE is still difficult, and it is not easy to ana-
lyze how crossover affects the subfunctions in CE since they
are not represented explicitly. The NeuroEvolution of Aug-
menting Topologies (NEAT) [19] evolves both the structure
and weights of neural networks using crossover and mutation
operators. It starts with networks of minimal structure and
increases their complexity along the evolution path. Every
node and connection of a phenotype (neural network) is en-
coded by a corresponding genotype. The algorithm keeps
track of the historical origin of every gene that is intro-
duced through structural mutation. This history is used
by a specially designed crossover operator in order to match
up genomes encoding different network topologies, and to
create a new structure that combines both the common and
the differing parts of two parent structures. Structural dis-
coveries of the evolutionary process are protected by niching
(speciation). The speciation in NEAT is achieved by explicit
fitness sharing, where organisms in the same species share
the fitness of their niche. NEAT does not use self-adaptation
of mutation step-sizes. Each connection weight is perturbed
with a fixed probability by adding a floating-point number
chosen from a uniform distribution of positive and negative
values. The Evolutionary Acquisition of Neural Topologies
(EANT [13]) uses a novel encoding of neural networks [12]
that is suitable for evolving networks in both direct and in-
direct encoding scenarios. For evolving networks in a direct
encoding scenario, a nature inspired meta-level evolutionary
process is used, where the exploration of structures takes
place over a larger timescale, and the exploitation of exist-
ing structures (i. e. the optimization of its weights) is done
on a smaller timescale. Analog Genetic Encoding (AGE)
[2] is an implicit genetic encoding which is based on genetic
regulatory networks in biological systems. The method is
primarily developed to evolve analog electrical circuits, but
it can also be used to evolve neural networks.
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3. BRIEF INTRODUCTION TO THE

ALGORITHMS USED
In this section we will give a very brief introduction to the

algorithms used in our approach: CMA-ES and the Kalman
filter.

3.1 CMA-ES
Covariance Matrix Adaptation - Evolution Strategy

(CMA-ES) [7] is an advanced form of evolution strategy
[17], which can perform efficient optimization even for small
population sizes. Each individual is represented by an
n−dimensional real valued solution vector. The solutions
are altered by recombination and mutation. Mutation is re-
alized by adding a normally distributed random vector with
zero mean, where the covariance matrix of this distribution
is itself adapted during evolution to improve the search strat-
egy. CMA-ES uses important concepts like derandomization
and cumulation. Derandomization is a deterministic way of
altering the mutation distribution such that the probability
of reproducing steps in the search space that lead to bet-
ter individuals is increased. A sigma value represents the
standard deviation of the mutation distribution. The extent
to which an evolution has converged is indicated by this
sigma value (smaller values indicate greater convergence).
Moreover, the algorithm detects correlations between object
variables (i. e. variables in the vector to be optimized), and
is invariant under orthogonal transformations of the search
space. Correlations between object variables are detected by
analyzing the search path of a population over several past
generations. These correlations are stored in the covariance
matrix and guide the future search path in a promising di-
rection. This principle is known as cumulation.

3.2 Kalman Filter
The Kalman filter [11] estimates the state of a linear dy-

namical system that is perturbed by a gaussian noise. For-
mally, the filter addresses a general problem of estimating
the true state x ∈ Rn of a discrete linear time system gov-
erned by

xk = Akxk−1 + Bkuk−1 + wk−1, (1)

where Ak is an n×n state transition matrix, Bk is an n×m
control input model matrix, uk ∈ Rm is the control vec-
tor, and wk is the process noise which is assumed to be
drawn from a zero-mean multivariate normal distribution
with covariance matrix Qk of size n × n. The measurement
(observation) zk ∈ Rl of the true state is modelled by

zk = Ckxk + vk, (2)

where Ck is an l × n matrix representing the measurement
model and vk is the measurement noise which is again as-
sumed to be drawn from a zero mean multivariate normal
distribution with covariance matrix Rk of size l × l.

The Kalman filter recursively estimates the current state
based on the current measurement and the estimate from the
previous state. The filter has basically two distinct phases:
predict and update. Let Pk|k−1 and x̂k|k−1 be the a priori
estimate of the error covariance matrix and the true state at
timestep k, respectively, and Pk|k and x̂k|k be the a posteri-
ori estimate of the error covariance matrix and the true state
at timestep k, respectively. The filter starts with initial es-
timates for the true state x̂k−1|k−1 and the error covariance

Table 1: Equations of the predict and update phases
of the Kalman filter.

Predict Phase

Predict state:
x̂k|k−1 = Akx̂k−1|k−1 + Bkuk−1

Predict error covariance:
Pk|k−1 = AkPk−1|k−1A

T
k + Qk−1

Update Phase

Kalman gain:
Kk = Pk|k−1C

T
k (CkPk|k−1C

T
k + Rk)−1

Update state estimate:
x̂k|k = x̂k|k−1 + Kk(zk − Ckx̂k|k−1)

Update error covariance:
Pk|k = (I − KkCk)Pk|k−1

matrix Pk−1|k−1, and then repeatedly executes its predict
and update phase routines. The equations of Kalman filter
in the two phases are given in Table 1. Refer to [20] for a
more detailed introduction to the Kalman filter.

4. ACCELERATING NEUROEVOLUTION-

ARY METHODS
In this section, a new approach for accelerating neu-

roevolutionary methods is presented, which is based on the
POMDP agent shown in Figure 1. Specifically, the agent
that is developed with this approach takes the form of a neu-
ral network augmented with a Kalman-filter based predictor.
First, the augmented neural network will be discussed, fol-
lowed by a description of the Kalman filter implementation
that was used. We then finish with an explanation of how
such augmented neural networks can be optimized.

4.1 Description of the Augmented Neural
Network

The main idea behind our approach of accelerating neu-
roevolutionary methods is to augment an evolving neural
network with a predictor that can estimate the next state
based on the current partially-observable state (which is pos-
sibly corrupted by noise). The predictor we use is composed
of n Kalman filters {KF1, KF2, . . . , KFn}, one for each of
the n sensory readings, as shown in Figure 2. The outputs of
these Kalman filters are connected to a feed-forward neural
network NN , whose outputs control the plant. The whole
controller is a non-linear function given by

uj = f(w1, . . . , wn, σw1, σv1, . . . , σwn, σvn, z1, . . . , zn), (3)

where uj (j ∈ [1, m]) is one of the outputs of the neural
network, w1, . . . , wn are the weights of the neural network,
σwi, σvi are the standard deviation values of the the mea-
surement and process noise, respectively, of the Kalman fil-
ter KFi, and z1, . . . , zn are the measured values (inputs to
the controller).
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Figure 2: The augmented neural network: the
Kalman filter KFi is used to estimate the sensor
value x̂i and the missing value ˆ̇xi from the measured
(observed) value zi. The quantity uj represents the
control signal that is sent to the plant to be con-
trolled. NN is a feed-forward neural network.

4.2 The Steady-state Kalman Filter with
Constant Velocity Model

The Kalman filter used in our implementation is a partic-
ular type of the general Kalman filter in which a constant
velocity model is assumed. The constant velocity model
is usually used in tracking applications [10, 1] and is also
known as an αβ filter. Because the double pole benchmark
task forces the system to work in a limited region where ve-
locity does not change dramatically, we are able to assume
a constant velocity model. The steady-state version of the
Kalman filter is used in cases where the time required to
compute the algorithm is an important constraint. For a
given system, one can let the Kalman filter run for several
cycles and record the Kalman gains K in steady state. These
will be constant, so the computation can easily be sped up
by always using these constants instead of updating K each
cycle (which requires a matrix inversion computation). The
equations that describe the steady-state Kalman filter are:

x̂k|k−1 = A · x̂k−1|k−1 (4)

ỹk = zk − C · x̂k|k−1 (5)

x̂k|k = x̂k|k−1 + K · ỹk (6)

where x̂k|k−1 represents the estimate of x at time k given
observations up to and including time k − 1. zk is the mea-
surement at time k, A is the state transition matrix, C is
the output array and K is the steady-state Kalman gain.
Expression (5) computes the innovation factor that allows
the predictions to be updated after new measurements have
been obtained. Given the assumption of a constant velocity
model, the filter will choose two weighting coefficients (α and
β) that will weight the differences between predictions and
new measurements when updating the current prediction to
find a new estimate. To better illuminate this, consider the
classical tracking equations for the αβ filter:

xp(k) = xs(k − 1) + vs(k − 1)T (7)

vp(k) = vs(k − 1) (8)

xs(k) = xp(k) + α(zk − xp(k)) (9)

vs(k) = vs(k − 1) + (β/T )(zk − xp(k)) (10)

where xp(k) and vp(k) are the predicted position and veloc-
ity at time k, xs(k) and vs(k) are the smoothed position and
velocity at time k, T is the sampling time, and α and β are
the weighting coefficients. After calculating xp(k) and vp(k)
(eqns. 7 and 8), the calculation of the smoothed parameters
only requires the proper selection of values for α and β. The
optimal values for α and β have been derived by Kalata [10],
and depend on the assumed variance of both measurement
and process noises (σv and σw):

γ =
T 2 · σv

σw

(11)

r =
4 + γ −

p

8 · γ + γ2

4
(12)

α = 1 − r2 (13)

β = 2 · (1 − r)2 (14)

K =

»

α
β/T

–

(15)

The state transition matrix A is initialized the with a
constant velocity model:

A =

»

1 T
0 1

–

(16)

and the output array C is

C =
ˆ

1 0
˜

(17)

where the ’1’ in the first column indicates that we have mea-
surements from the position, and the ’0’ in the second col-
umn indicates that we have no information about the veloc-
ity.

In our experiment, we use 3 Kalman filters, one for each of
the measured variables (cart position, pole 1 position, and
pole 2 position).

4.3 Optimizing the Augmented Neural
Network

The topology of the neural network can be determined
manually, or automatically using a neuroevolutionary algo-
rithm that has this capability. In both cases, the neuroevo-
lutionary algorithm must optimize both the weights of the
neural network, and the process and measurement noise pa-
rameters of the Kalman filters. For example, it is possible
to optimize the weights of the network and the process and
measurement noise parameters of the Kalman filters in the
exploitation phase of the EANT algorithm [13], [18] using
CMA-ES.

Noise-free Partially Observable Domains

In partially observable noise-free domains (e. g. the stan-
dard double pole balancing without velocities benchmark)
there are some state variables that are not observable. The
purpose of the Kalman filter in this case is simply to esti-
mate the missing variables. Therefore, we can set both the
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measurement noise σvi and the process noise σwi of each
Kalman filter KFi to very small values and optimize only
the weights of the neural network.

Noisy Partially Observable Domains

Partially observable domains which contain noise are the
most general case, since virtually all real-world problems
are noisy and partially observable. In this case the Kalman
filter not only has to predict the missing state variables,
but must also filter the noise. It is therefore necessary to
optimize the measurement noise σvi and process noise σwi

of each Kalman filter KFi, as well as the weights of the
neural network. After optimization, a solution will be found
that is robust against noise.

Practically, it is possible to determine the variance of the
measurement noise σ2

vi by taking off-line sample measure-
ments. The determination of the variance of the process
noise σ2

wi, however, is generally more difficult since one is
not usually able to directly observe the process being esti-
mated [20].

5. EXPERIMENTS AND RESULTS
In this section we show the results obtained using our ap-

proach to solve the double pole balancing without velocities
benchmark. First, a brief introduction to both the bench-
mark problem is given, as well as an explanation of the fit-
ness function from the literature used to evaluate the perfor-
mance of the agent (controller). Afterwards, our POMDP
agent’s performance will be evaluated in two different sce-
narios: (1) in a noise-free scenario in order to compare it
with the current state-of-the-art results, and (2) in a noisy
environment to show its robustness against noise in compar-
ison with other methods. All experimental results in this
paper are obtained using topologies that are manually de-
termined and optimized using the CMA-ES algorithm.

5.1 The Double Pole Balancing Problem
Without Velocities Benchmark

The pole balancing system has one or more poles hinged
to a wheeled cart on a finite length track. The movement of
the cart and the poles are constrained within a 2-dimensional
plane. The objective is to balance the poles indefinitely by
applying a force to the cart at regular time intervals, such
that the cart stays within the track boundaries. An attempt
to balance the poles fails if either (1) the angle from vertical
of any pole exceeds a certain threshold, or (2) the cart leaves
the track boundaries.

In the double pole balancing without velocities bench-
mark, the controller observes only x, θ1, and θ2, but not
ẋ, θ̇1, and θ̇2. A fitness function introduced by Gruau et
al. is used in connection with this benchmark [6]. The fit-
ness function is the weighted sum of two separate fitness
measurements f = 0.1f1 + 0.9f2 taken over 1000 timesteps.

f1 = t/1000

f2 =

8

>

<

>

:

0 if t < 100

0.75
P

t
i=t−100(|xi|+|ẋi|+|θ̇1,i|+|θ̇2,i|)

otherwise,

(18)
where t is the number of time steps the pole is balanced
starting from a fixed initial position. In the initial position,

Figure 3: The double pole balancing problem. The
poles must be balanced simultaneously by applying
a continuous force F to the cart. The parameters x,
θ1 and θ2 are the offset of the cart from the center
of the track, and the angles from the vertical of the
long and short pole, respectively.

all states are set to zero except θ1 = 4.5◦. The angle of the
poles from the vertical must be in the range [−36◦, 36◦]. The
defined fitness function favors controllers that can keep the
poles near the equilibrium point and minimize the amount
of oscillation. The first fitness measure f1 rewards success-
ful balancing, while the second measure f2 penalizes oscil-
lations. The evolution of the neural controllers is stopped
when a champion of a generation passes two tests. First,
it has to balance the poles for 105 timesteps starting from
the 4.5◦ initialization. Second, it has to balance the poles
for 1000 steps starting from at least 200 out of 625 different
initial starting states. Each start state is chosen by giving
each state variable (x, ẋ, θ1, θ̇1, θ2, θ̇2) one of the values 0.05,
0.25, 0.5, 0.75, 0.95,0, 0, scaled to the range of each input
variable. The ranges of the input variables are ±2.16 m for
x, ±1.35 m/s for ẋ, ±3.6◦ for θ1, and ±8.6◦ for θ̇1. The num-
ber of successful balances is a measure of the generalization
performance of the best solution.

The fitness function f is not directly proportional to the
performance of an individual in the two tests. Therefore, at
the end of a given generation, the controller with the highest
fitness is not necessarily the controller which performs better
on the two tests. It is possible that there could be another
controller which was assigned a lower fitness, but has better
performance on the two tests. This forces neuroevolutionary
methods to be more explorative, and therefore results in a
larger number of evaluations needed to solve the benchmark.

5.2 Performance Evaluation
The first performance evaluation experiment was per-

formed in a noise-free environment so that our approach
could be compared with the results in the literature. In this
scenario, the velocities of the cart and poles are not mea-
surable and the task of the Kalman filters is to estimate
those non-observable variables. The measurement noise pa-
rameter of each filter was set to σvi = 10−7, and the pro-
cess noise parameter to σwi = 10−3. With these values the
Kalman filter assumes that there is very little noise. In other
words, it assumes that both measurements and state transi-
tions will be reliable. The first estimation is initialized with
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Table 2: Results for the double pole balancing with-
out velocities benchmark. Average over 50 simula-
tions. Generalization refers to the average number
of successful balances from 625 different initial po-
sitions.

Evaluations Generalization

CE 840000 300

SANE 451612 -

ESP 169466 289

NEAT 33184 286

AGE 25065 317

EANT 15762 262

CMA-ES 6061 250

CoSyNE 3416 -

CMA-ES + Kalman 302 334

x̂i(0) = xi(0), where xi(0) takes on the initial value for the
position of the cart, pole 1’s position, or pole 2’s position,
depending on which Kalman filter is considered. These val-
ues are initialized as described for the benchmark problem:
the cart and pole 2 initial values are set to zero, and the
initial value for pole 1 is set to 4.5◦. In this configuration,
the Kalman filters provide an accurate estimation of the first
derivatives of their inputs as long as no noise is affecting the
system.

The neural network to be trained was a feedforward neural
network with 3 neurons in the hidden layer, no bias, and a
total of 27 weights. This network was chosen because Igel
[8] achieved the best performance with it. In the CMA-
ES algorithm, the population sizes were chosen according
to λ = 4 + ⌊3 ln(n)⌋, where n is the number of parameters
to optimize, and the parent number was chosen to be µ =
⌊λ/4⌋. The initial global-step size for CMA-ES was set to
σ(0) = 1 and the minimum to σmin = 0.05.

Table 2 shows the results of learning to control the dou-
ble pole balancing without velocities benchmark for differ-
ent architectures. The result of including a Kalman filter
as an estimator of velocity for each of the inputs increases
the performance dramatically with an average of 302 evalu-
ations (std = 141). This is almost 10 times faster than the
best published performance to date. Moreover, the number
of generalizations is also increased and outperforms the best
results published so far, with an average of 334 (std = 105).

5.3 Robustness Against Noise
The second performance evaluation experiment makes

complete use of the properties of the Kalman filter. Not only
are the Kalman filter’s estimation capabilities used, but also
its proven ability to maintain a reliable estimate even under
very noisy conditions. A Kalman filter is designed to take
advantage of knowledge it has about the statistical nature
of the noise present in the system. For this reason, the fil-
ter performs even better under noisy conditions than it does
under zero-noise conditions.

The second experiment is similar to the first experiment,
where the Kalman filter parameters are tuned so that the
controller can pass the benchmark tests. The main differ-
ence in the second experiment is that a certain level of mea-
surement noise is added to the system prior to tuning the
parameters. The measurement noise that is introduced to

the system is a Gaussian signal with zero mean and standard
deviation σv = 10−2. This noise is added to the inputs zi of
the Kalman filters depicted in Figure 2. The selected value
of σv represents roughly 1.6% of the maximum amplitude of
the pole positions and 0.41% of the maximum cart position.
Although it may seem like a very small noise perturbance,
one should take into account the following factors:

1. The nature of the problem: the double pole balancing
problem is a controllable system, but its controllability
is very small, and small perturbations or measurement
errors make the system unstable. That is why the
system is very likely to be successfully controlled in a
simulation environment while not easily controlled in
a real scenario.

2. The typical measurement noise magnitude: for this
kind of scenario, it is assumed that an encoder reads
angular positions with a nominal resolution of 1024
pulses per revolution. This finite resolution would lead
to a measurement noise of 1/1024, ten times smaller
than the measurement noise that we are introducing
in our system. To check that this noise is sufficient to
cause problems to other methods, we have compared
our results to (a) a solution where a recurrent network
is used, and (b) the same feedforward neural network
that we have used with the Kalman filters, but replac-
ing the filters with a direct numerical differentiation
based velocity estimator.

In this experiment, the same neural network structure was
used as in the first experiment, i.e. a feedforward neural net-
work with 3 neurons in the hidden layer, no bias, and a total
of 27 weights. Additionally, the optimization of the Kalman
filters was incorporated into the evolutionary process, where
optimal values for the parameters σvi and σwi were searched
for using CMA-ES (along with the weights for the neural
network). Because the problem is simulated, the standard
deviation of the measurement noise we are introducing is
known and thus the initial value for σvi in the Kalman filter
can be set to this value. In the case of a real system, how-
ever, a set of real measurements could have been collected,
the mean and standard deviation of the data set calculated,
and the standard deviation used as the value for σvi. In the
case of process noise, manual tuning is typically used due to
the complexity of determining the value of the noise. The
Kalman filter, however, usually performs well with only a
rough estimate of σw.

The initial global-step size for CMA-ES is set to σ(0) = 1
and the minimum is set to σmin = 0. Since our evolutionary
process is subject to random input noise, each individual is
tested five times and an average fitness value is returned to
the CMA-ES method, which then proceeds with the evo-
lutionary process. The average number of evaluations ob-
tained over 50 simulations was 1,354 (std = 738) and the
average number of generalizations was 317 (std = 91).

Figure 4 depicts these results for increasing levels of mea-
surement noise and for the following architectures: (1) the
recurrent neural network solution (trained without noise),
(2) the feedforward neural network with velocity estima-
tion by direct numerical differentiation, and (3) the feed-
forward network with the Kalman filter. Each architecture
is tested 10 times at each noise level. The results show the
average and the standard deviation for each noise σv where
σv ∈ [0, 0.0025, 0.005, 0.0075, 0.01].
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Figure 4: Results for different control architectures for the double pole balancing without velocities bench-
mark introducing measurement noise σv. Average over 10 simulations per noise value.

The upper figure shows the average number of successful
balances out of a maximum of 105, as described in the first
test of the benchmark problem. As can be seen, the feed-
forward neural network with Kalman filtering achieves the
maximum value of balances for all noise values. On the con-
trary, the recurrent neural network trained without noise has
a very high sensitivity to noise and, for a value σv = 0.0025,
the number of evaluations already drops to a value around
4000. Similarly, the feedforward neural network using a ve-
locity estimation by numerical differentiation shows a bet-
ter performance for low noise, but exhibits a high variance
on the number of balances even when σv = 0.0025. For
σv = 0.005, the number of balances drops to a value of 750.
The bottom figure plots the average number of generaliza-
tions for each noise level. The feedforward neural network
with Kalman filtering shows a relatively constant response
to the different noise levels. Notice that the network and
Kalman filters were trained for a noise level of σv = 0.01,
so it is at this noise level that the network should exhibit
the best performance. The network with velocity estimation
by differentiation drops its performance by more than half
by the time the noise level reaches σv = 0.005, and when

σv = 0.0075 the number of generalizations has already gone
to zero. On the other hand, although the recurrent neural
network is not very successful in the first test, it has a quite
remarkable performance in the second, still having an aver-
age of 130 generalizations with a noise level of σv = 0.01.

6. CONCLUSIONS AND OUTLOOK
Unlike the traditional recurrent neural network used for

solving continuous state partially observable problems, we
have proposed an alternative solution using a combination
of Kalman filters and a feed-forward neural network. We
have shown that it is possible to accelerate neuroevolution-
ary methods using the Kalman filter. Moreover, we have
shown that the Kalman filter can be used to estimate the
missing state variables. From the experimental results one
can conclude that the evolved augmented neural network
is robust against noise, which is a built-in feature of the
Kalman filters used in the network. In the future, we plan
to test our approach with other types of Kalman filters, and
test the algorithm in other partially observable domains,
particularly real world applications.
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