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ABSTRACT

Evolution of neural networks, or neuroevolution, bas been
successful on many low-level control problems such as pole
balancing, vehicle control, and collision warning. However,
high-level strategy problems that require the integration of
multiple sub-behaviors have remained difficult for neuroevo-
lution to solve. This paper proposes the hypothesis that such
problems are difficult because they are fractured: the correct
action varies discontinuously as the agent moves from state
to state. This hypothesis is evaluated on several examples of
fractured high-level reinforcement learning domains. Stan-
dard neuroevolution methods such as NEAT indeed have
difficulty solving them. However, a modification of NEAT
that uses radial basis function (RBF) nodes to make precise
local mutations to network output is able to do much better.
These results provide a better understanding of the differ-
ent types of reinforcement learning problems and the limita-
tions of current neuroevolution methods. Thus, they lay the
groundwork for creating the next generation of neuroevolu-
tion algorithms that can learn strategic high-level behavior
in fractured domains.
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1. INTRODUCTION
The process of evolving neural networks using genetic al-

gorithms (neuroevolution) is a promising new approach to
solving reinforcement learning problems. While the tradi-
tional method of solving such problems involves the use of
temporal difference methods to estimate a value function,
neuroevolution instead relies on policy search to build a
neural network that directly maps states to actions. This
approach has proved to be useful on a wide variety of prob-
lems and is especially promising in challenging POMDP do-
mains [8, 30].

The Neuroevolution of Augmenting Topologies (NEAT)
method is one such neuroevolution algorithm that has been
used successfully on many of reinforcement learning prob-
lems [15, 26, 29, 30, 31, 32]. However, despite its efficacy
on a wide variety of low-level control domains (e.g. pole bal-
ancing, vehicle control, collision warning, character control
in video games), other types of problems such as SAT, mul-
tiplexer, or high-level behavior selection have remained dif-
ficult for NEAT to solve. A better understanding of why
NEAT works so well on some problems – but not others –
can be very useful in designing the next generation of neu-
roevolution algorithms.

This paper presents the fractured domain hypothesis as
a possible explanation for NEAT’s poor performance on do-
mains like those listed above. Fractured domains are defined
as domains that have a highly discontinuous mapping be-
tween states and optimal actions. For example, as an agent
moves from state to state in a fractured domain, the best ac-
tion that the agent can take changes frequently and abruptly.
In contrast, the optimal actions for a non-fractured domain
change slowly and continuously. Many challenging super-
vised learning tasks are fractured, such as SAT, multiplexer,
and the concentric spirals problem. Importantly for rein-
forcement learning, high-level decision tasks where an agent
must choose between several sub-behaviors are often frac-
tured as well. The fractured domain hypothesis posits that
NEAT performs poorly on fractured domains because the
neural networks that NEAT evolves have difficulty repre-
senting such abrupt decision boundaries.

This paper evaluates this hypothesis experimentally. NEAT
is tested on several domains that possess a fractured decision
space to varying degrees. NEAT proves to perform relatively
poorly on these domains, and its performance is found to fall
even lower as the amount of fracture is increased. The con-
cept of an algorithm that can make local modifications to
network output is introduced as a potential solution to neu-
roevolution in fractured domains. Drawing on radial basis
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function literature from the supervised learning community,
a variation of NEAT that uses RBF nodes designed to fit the
local features of fractured domains is described, and found
to perform much better on these fractured domains.

These results suggest that it is possible to evolve neural
networks effectively for fractured domains. In essence, RBF-
NEAT constructs networks made of local features that track
fractured decision boundaries well. In the future, it may be
possible to extend such a local modification approach to in-
ternal nodes of the network, thus making use of locality (i.e.
modularity) in internal function as well as in the input space.
Eventually, the approach may thus prove highly effective for
evolving networks that learn strategic high-level behavior.

2. NEUROEVOLUTION OF AUGMENTING

TOPOLOGIES (NEAT)
The Neuroevolution of Augmenting Topologies (NEAT)

method [30] is designed to solve difficult reinforcement learn-
ing problems by automatically evolving network topology to
fit the complexity of the problem. NEAT combines the usual
search for the appropriate network weights with complexifi-
cation of the network structure. It starts with simple net-
works and expands the search space only when beneficial, al-
lowing it to find significantly more complex controllers than
fixed-topology evolution. These properties make NEAT an
attractive method for evolving neural networks in complex
tasks. In this section, the NEAT method is briefly reviewed;
see [30, 31] for more detailed descriptions.

NEAT is based on three key ideas. First, evolving net-
work structure requires a flexible genetic encoding. Each
genome in NEAT includes a list of connection genes, each of
which refers to two node genes being connected. Each con-
nection gene specifies the in-node, the out-node, the weight
of the connection, whether or not the connection gene is ex-
pressed (an enable bit), and an innovation number, which
allows finding corresponding genes during crossover. Muta-
tion can change both connection weights and network struc-
tures. Connection weights are mutated in a manner similar
to any NE system. Structural mutations, which allow com-
plexity to increase, either add a new connection or a new
node to the network. Through mutation, genomes of vary-
ing sizes are created, sometimes with completely different
connections specified at the same positions.

Each unique gene in the population is assigned a unique
innovation number, and the numbers are inherited during
crossover. Innovation numbers allow NEAT to do crossover
without the need for expensive topological analysis. Genomes
of different organizations and sizes stay compatible through-
out evolution, and the problem of matching different topolo-
gies [25] is essentially avoided.

Second, NEAT speciates the population so that individ-
uals compete primarily within their own niches instead of
with the population at large. This way, topological innova-
tions are protected and have time to optimize their structure
before they have to compete with other niches in the pop-
ulation. The reproduction mechanism for NEAT is explicit
fitness sharing [7], where organisms in the same species must
share the fitness of their niche, preventing any one species
from taking over the population.

Third, unlike other systems that evolve network topologies
and weights [10, 40], NEAT begins with a uniform popula-
tion of simple networks with no hidden nodes. New struc-
ture is introduced incrementally as structural mutations oc-

cur, and the only structures that survive are those that are
found to be useful through fitness evaluations. In this man-
ner, NEAT searches through a minimal number of weight
dimensions and finds the appropriate level of complexity for
the problem.

This approach is highly effective: NEAT has outperformed
other neuroevolution methods on complex control tasks like
double pole balancing [30] and robotic strategy-learning [31].
However, it has turned out to be surprisingly difficult to
get NEAT to perform well in fractured domains, as will be
discussed next.

3. FRACTURED DOMAINS
The three principles described above allow NEAT to search

quickly and efficiently through the space of possible net-
work topologies to find the right neural network for the task
at hand. However, the regular NEAT algorithm is limited
to small, incremental changes in neural network structure.
While such mutations are useful when building relatively
small networks, tasks that require complicated or repeated
internal structure are difficult for NEAT. Furthermore, any
small mutations that NEAT makes to network structure
have the potential to have a global impact on network out-
put. If a task requires local adjustments to network output,
NEAT’s performance may suffer.

The domains to which NEAT has been applied so far can
be solved by relatively small neural networks with continu-
ous output. Therefore, these potential drawbacks may not
have been an issue before. In fact, since NEAT starts with
a minimal topology and uses small mutations to tweak net-
work architecture, it may be unusually well suited to such
domains. On the other hand, other domains may not be
as amenable to this approach. For instance, it has been
difficult for NEAT to solve problems like SAT, multiplexer,
concentric spirals, and high-level decision tasks in general.

What makes these domains different from those on which
NEAT and other neuroevolution algorithms have done so
well? A possible explanation is that these domains share
a common property: They possess a “fractured” decision
space, loosely defined as a space where adjacent states re-
quire radically different actions. For a normal domain (such
as the typical control domains, or the standard reinforce-
ment learning benchmarks), the correct action for one state
is similar to the correct action for neighboring states, per-
haps varying smoothly and infrequently. In contrast, for a
fractured domain, the optimal action that the agent should
take changes repeatedly and discontinuously as the agent
moves from state to state.

It seems reasonable that neuroevolution algorithms would
have difficulties on such problems. In order for an agent to
solve a fractured problem, it must be able to isolate individ-
ual areas of the decision space and associate different actions
with each area. In a normal neural network (which has firing
rate nodes with sigmoid activation functions) such a parti-
tioning requires several components cooperating in multiple
layers (Figure 1). Assembling enough components to isolate
even a single fracture in the decision space is a difficult task,
especially when the fitness function may only reward the
network once all of the components are fully connected and
working together. Furthermore, mutations to the structure
of such a neural network could conceivably have a global
effect on network output, disrupting any local effects that
might already have evolved.
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Figure 1: Examples of the amount of structure a
neural network needs in order to isolate sections of a
2-d decision space. (a) One layer of weights splits the
space in half. (b) The addition of three hidden nodes
allows a triangular region to be isolated. (c) Isolat-
ing multiple triangular regions requires four nodes
and 10 links per region. As the decision boundaries
become increasingly fractured, it becomes difficult
for evolution to discover such structures.

The fractured domain hypothesis could explain why NEAT
and other neuroevolution methods perform poorly on cer-
tain problems. Domains like SAT, concentric spirals and
multiplexer both repeatedly require different network out-
put after small changes in input, giving those domains a
fractured quality. Many high-level decision tasks are frac-
tured because they deal with high-level state and actions.
For example, the state and actions for a low-level agent con-
trolling a racecar through a curve change slightly and con-
tinuously as time passes, reflecting the relatively low-level
nature of a racecar control task. Another agent in the same
domain could be applied at a higher level to make strategic
decisions about how aggressively to drive and when to go
into pit stops. In contrast to the low-level driving agent,
this high-level strategic agent needs to take a much broader
view of the state and action space, aggregating many sim-
ilar states into single states. This aggregation leads to a
fractured decision space.

The fractured domain hypothesis offers a possible expla-
nation why NEAT and other neuroevolution algorithms per-
form poorly on a number of supervised tasks as well as in
high-level decision tasks. Understanding this problem is the
first step; the next step is figuring out how to fix it.

4. APPROACH
In order to perform well in a fractured domain, a learn-

ing algorithm must be able to make local changes to its
behavior. After the algorithm experiences a new state in
the environment, it needs to associate a specific action for
that state. Assuming the domain is fractured, it may not be
useful to generalize from the actions of nearby states. Fur-
thermore, any large-scale changes the algorithm may make
could disrupt the individual actions tailored for other states.
Therefore, the algorithm must be able to make local changes
to isolate that particular state from its neighbors and asso-
ciate the correct action with it.

One promising method for learning via local features is
radial basis function (RBF) networks [14, 23, 24]. RBF net-
works originated in the supervised learning community, and

are usually described as neural networks with a single hid-
den layer of basis-function nodes. Each of these nodes com-
putes a function (usually a Gaussian) of the inputs, and the
output of the network is a linear combination of all of the
basis nodes. Training of RBF networks usually occurs in
two stages: The locations and sizes of the basis functions
are determined, and then the parameters that combine the
basis functions are computed.

Since RBF networks are traditionally associated with su-
pervised learning problems, most RBF-based algorithms are
built to take advantage of labeled training data [14, 23, 24].
Several interesting hybrid algorithms have been proposed
that use various flavors of genetic algorithms, usually to de-
termine the number, size, and location of the basis func-
tions [1, 3, 6, 9, 11, 12, 13, 22, 27, 37]. Most of these
algorithms have not been proposed for use on reinforcement
learning problems, where there is no labeled training data.
However, the local processing in RBF networks has proved
to be particularly useful on fractured problems like the con-
centric spirals classification task [6], suggesting that an RBF
approach could be useful for fractured reinforcement learn-
ing domains as well.

Related results in value-function reinforcement learning
support this idea. Even though value functions for frac-
tured domains may look relatively smooth, values for adja-
cent states must differ slightly in order to generate fractured
policies. When modeling these differences, value-function
reinforcement learning methods frequently benefit from ap-
proximating value functions using highly local function ap-
proximators like tables, CMACs, or RBF networks [16, 19,
20, 33, 34]. For example, Stone et al. found that in the
benchmark keepaway soccer domain, an RBF-based value
function approximator significantly outperformed a normal
neural network value function approximator [33]. Such re-
sults suggest that local behavioral adjustments could be use-
ful for neuroevolution learning as well.

Learning classifier systems (LCS) are another interesting
family of algorithms that use local processing to solve rein-
forcement learning problems. LCS algorithms approximate
functions with a population of classifiers, each of which is
responsible for a small part of the input space. A competi-
tive contributory mechanism encourages classifiers to cover
as much space as possible, removing redundant classifiers
and increasing generalization. A number of LCS algorithms
have been developed that vary both how the classifiers cover
the input space and how they approximate local functions [4,
5, 17, 18, 38, 39]. The LCS literature provides an intrigu-
ing approach to local processing, but leaves unaddressed the
question of how local processing might be best integrated
into constructive neural network algorithms.

In the experiments reported in this paper, RBF nodes
were incorporated into NEAT. The resulting RBF-NEAT al-
gorithm is a relatively simple adaptation of NEAT. Instead
of building networks using the normal sigmoid-based nodes,
RBF-NEAT incrementally builds networks using radial-basis
function nodes. Like NEAT, the algorithm starts with a
minimal topology, in this case consisting of a single RBF
node connected to both inputs and outputs. With proba-
bility ǫ = 0.05 an “add RBF node” mutation occurs. Each
RBF node is activated by an axis-parallel Gaussian with
variable center and width. Whenever a new node is added,
the weights of existing nodes in the network are frozen to fo-
cus the search process on the most recently added node. All

1407



free parameters of the network, including RBF node param-
eters and link weights, are determined by a simple genetic
algorithm similar to the one in NEAT [30].

RBF-NEAT is decidedly simple and does not include all
of the sophisticated components that make up the regular
NEAT algorithm, such as speciation, fitness sharing, and
historical markings. It is meant to evaluate whether local
processing nodes are useful in reinforcement learning do-
mains. Moreover, because RBF-NEAT is simple, it is easy
to understand it and draw conclusions from it. It thus serves
as a starting point for studying how neuroevolution can be
extended to domains with fractured decision spaces.

5. EXPERIMENTAL RESULTS
In order to understand the differences between regular

NEAT and RBF-NEAT, both algorithms were evaluated on
three different domains: N-Points, 3-Player Soccer, and
Racing Strategy. These domains were chosen for several
reasons. First, they all represent domains on which NEAT
has performed poorly. Second, these domains are fractured,
demonstrating that there are several interesting problems
that possess a fractured decision space. Third, and perhaps
most importantly, the simplicity of these domains makes
them easy to analyze. The purpose of these experiments is
to demonstrate that the local processing approach works and
that by using it, it may be possible to extend neuroevolution
to fractured, high-level domains.

5.1 The N-Points Domain
The N-Points domain is one of the most straightforward

examples of a fractured domain, representing a class of su-
pervised problems (like SAT, multiplexer, and concentric
spirals) that is difficult for NEAT. At its heart, it is a binary
classification task cast as a reinforcement learning problem.
The goal of a successful network is to positively classify N

points in one-dimensional space, while negatively classify-
ing all other points. The parameter N can be varied to
change the difficulty of the task. For example, if N = 3
then three positive points are chosen at random within the
interval [0, 1] and six negative points (two for each of the N

positive points) are chosen near the positive points. These
nine points are fed into a candidate network one at a time,
and the network should only fire its output when it recog-
nizes one of the three positive points. The output should be
zero for the six negative points.

The N-Points domain clearly possesses the fractured qual-
ity described above. As the network experiences different
states, the correct output jumps between zero and one in a
discontinuous manner. Another benefit of the N-Points do-
main is that it is possible to increase the amount of fracture
by making N larger. This flexibility makes it possible to
measure the performance of NEAT and RBF-NEAT as the
algorithms attempt to solve increasingly fractured problems.

Figure 2 shows the performance of NEAT and RBF-NEAT
on the N-Points domain, averaged over 100 runs. In order to
observe the effect on performance as the amount of fracture
increases, four versions of the N-Points domain were evalu-
ated: N = 1, 3, 5 and 10. For the relatively lightly fractured
N = 1 version, there is no significant difference between
NEAT and RBF-NEAT. However, as the amount of fracture
increases, NEAT’s performance falls quickly. RBF-NEAT
proves to be much more proficient at solving the highly frac-
tured versions of this domain.

100%

0%

S
co

re

RBF−NEAT

NEAT

1−Point 3−Points 5−Points 10−Points

Figure 2: Performance of regular NEAT and RBF-
NEAT on the N-Points domain for N = 1, 3, 5 and 10.
The problem becomes more difficult as the amount
of fracture increases, which causes NEAT’s perfor-
mance to suffer. RBF-NEAT proves to be signifi-
cantly more successful (p > 0.95) at solving highly
fractured domains.
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Figure 3: Example output of the best networks
found by regular NEAT and RBF-NEAT for the
10-Points domain. The network found by RBF-
NEAT properly classifies all of the points, dramati-
cally outperforming the best network found by reg-
ular NEAT. This result shows how RBF-NEAT is
able to approximate a fractured decision boundary.

Figure 3 shows the actual output of the best network
found by each algorithm for the difficult N = 10 version
of the problem. The network found by NEAT has managed
to properly classify a few of the positive points, but its per-
formance pales in comparison to that of RBF-NEAT, which
has discovered a network that properly classifies every single
point (to be considered correct, the output of the network
must be ≤ 0.5 for negative points and > 0.5 for positive
points).

RBF-NEAT thus outperforms the regular NEAT algo-
rithm on this straightforward fractured domain. This re-
sult confirms the hypothesis that NEAT performs poorly on
fractured domains and shows that RBF-NEAT is an initial
step towards a more robust learning algorithm.

5.2 The 3-Player Soccer Domain
The 3-player soccer domain represents a class of high-level

strategy problems that have previously proved difficult for
NEAT to learn. Instead of directly controlling the low-level
actions of an agent, a successful network must analyze the
state of a soccer game and choose between several prede-
fined “macro” behaviors. The correct behavior changes re-
peatedly as the network encounters different states, giving
this domain a fractured quality. Perhaps the most important
feature of the 3-player soccer domain is that it represents an
interesting class of problems: it is a decision task where a
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Hold PassShoot

(a) (b) (c)

Figure 4: (a) A typical example of the 3-player soc-
cer domain. The player (shown near the ball) must
choose one of three high-level behaviors: hold, pass,
or shoot on goal. The black dots indicate possible
positions for the players. (b)-(c) Optimal actions for
different player locations given two possible config-
urations of teammate and opponent. As the player
moves, the optimal action changes frequently and
abruptly. Thus this domain is an example of an in-
teresting high-level learning problem that possesses
a fractured decision space.

number of subroutines need to be integrated to achieve a
cohesive high-level behavior.

Figure 4a shows a typical setup for the 3-player soccer
domain. The input to a network consists of the player’s
position, the position of a single opponent, and the posi-
tion of a teammate. The player starts with the ball, and
must choose between holding the ball, passing to the team-
mate, or attempting a shot on the goal. In order to keep
the task simple, the input was discretized into 27 unique
states (three possible locations for each of the three play-
ers), and a single correct action was assigned to each state.
A less-fractured version of the problem that contained nine
states (three possible locations for both the opponent and
teammate) was also evaluated.

Figure 5 shows the performance of NEAT and RBF-NEAT
on the two versions of the 3-player soccer domain, averaged
over 100 runs. Again, as the level of fracture increases,
the performance of NEAT falls. In contrast, RBF-NEAT
demonstrates that it can match the correct action with each
state, easily outperforming regular NEAT on both versions
of the problem.

The results from the 3-player soccer domain are important
for two reasons: First, this domain provides an example of
an interesting high-level learning problem that possesses a
fractured decision space. Figures 4b and 4c illustrate the
nature of this fracture by showing how the correct action
changes depending on the player’s position. The colors on
the field – which show the optimal action for the player if
it were at that location – can vary quite abruptly in certain
places. For example, in Figure 4c, the best action when
blocked by the opponent is to hold the ball. As the player
moves around the opponent, it becomes possible to pass the
ball to the teammate, who has a clear shot on the goal.
However, there is a thin area where the opponent would be
able to intercept a pass to the teammate, which makes the
optimal action for that area to take a shot on the goal. Such
rapid transitions between optimal actions are the hallmark
of a fractured domain.

RBF−NEAT

NEAT

S
co

re

100%

50%

9 States 27 States

Figure 5: Performance of NEAT and RBF-NEAT
on the 3-player soccer domain. RBF-NEAT is able
to match each state with the correct action, easily
outperforming regular NEAT on both versions of
the problem (p > 0.95). This result demonstrates
that the local processing approach works in high-
level decision tasks that are fractured.

The second reason that these results are significant is that
while NEAT does not do well on this domain, the local pro-
cessing of RBF-NEAT allows it to do quite well. Note, how-
ever, that the fractqures are partly due to a discretization
in this domain. The next section provides an example of a
more complicated continuous domain that also has a frac-
tured decision space.

5.3 The Racing Strategy Domain
The racing strategy domain has a large, continuous state

space similar to that of many real-world reinforcement learn-
ing tasks. Inspired by the IEEE CIG racing competition [21,
35], the goal is to control an agent that races a car against
an opponent through a series of waypoints. Each waypoint
may only be awarded to one of the two players, and after a
fixed amount of time the player that has“collected”the most
waypoints wins. In the past, NEAT has been successful at
evolving agile drivers [28], but success in this driving task
requires not only efficient low-level control but also a robust
high-level strategy [35]. For example, one crucial decision
that the agent must make is whether it should give up on
the current waypoint – allowing the opponent to get it – and
instead choose to position itself for a good run at the next
waypoint.

The goal of the racing strategy domain implemented for
this paper is to evolve a network that makes this decision on
which waypoint the agent should focus. Given the state of
the domain, the network predicts whether the agent or the
opponent will be able to reach the current waypoint first.
The input is the relative position of the waypoint from the
perspective of each player. Velocity for each player is not
modeled. The single output is interpreted as a binary signal
describing which player should be able get to the waypoint
first.

Generating the correct strategy for this domain is difficult
because the position and orientation of both players and the
location of the waypoint must all be considered when decid-
ing if the agent will be able to beat the opponent to that
waypoint. Furthermore, slight changes in the state of the
domain can quickly change which player has the advantage.
For example, consider the three scenarios shown in Figure 6.
In scenario (a), the agent (marked with an ×) has the ad-
vantage over the opponent because the waypoint is directly
in front of the agent. In scenario (b), the waypoint is the
same distance from the agent, but the opponent actually
has the advantage because it is difficult for players to reach
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Favors opponentFavors agent Favors agent

(a) (b) (c)

Figure 6: Three example scenarios from the racing
strategy domain. In contrast with 3-player soccer,
this domain is continuous but still fractured: rela-
tively small differences in state cause the advantage
to shift from one player to the other, giving the do-
main a fractured quality.

waypoints located to their sides. In scenario (c), the agent
only has a small distance to travel in reverse, which gives
it the advantage again. The discontinuities introduced by
these small changes in state give the racing strategy domain
a fractured quality.

Figure 7 shows the performance of NEAT and RBF-NEAT
on the racing strategy domain, averaged over 100 runs. Again,
RBF-NEAT proves to be better at predicting the outcome
of the various training scenarios, outperforming the regu-
lar NEAT algorithm significantly. Thus the benefits of an
algorithm with local processing are shown to extend to con-
tinuous high-level reinforcement learning domains that are
fractured.

6. DISCUSSION AND FUTURE WORK
The results described in this paper define a class of prob-

lems called fractured domains and show that many interest-
ing problems in the real world are fractured. The regular
NEAT algorithm is found to perform poorly on these do-
mains, whereas an alternative algorithm that is based on
local processing does much better. These results serve as a
promising starting point for both neuroevolution and neural
network research in general and should eventually lead to
evolving high-level behaviors in neural networks.

Fractured domains are defined above as problems where
neighboring states require different actions. This definition
is intuitive, but it could be useful to come up with a met-
ric that quantitatively measures the amount of fracture of a
given domain. Possibilities include metrics related to Kol-
mogorov complexity, Minimum Description Length, or the
VC dimension of networks that work well on the domain [36,
2]. There is a great deal of related work concerning each of
these concepts, and it may be possible to adapt that work to
the proplems described in this proposal. A more rigorously
defined metric would allow researchers to evaluate more ac-
curately how well various learning algorithms respond to
varying degrees of fracture.

It is also possible that the difficulties that NEAT has in
dealing with fractured domains are symptoms of a more gen-
eral problem. For example, it could be the case that while
NEAT can evolve small networks efficiently, it might be un-
able to evolve large networks. Fractured domains, which
typically require a large amount of network structure, may

RBF−NEAT

NEAT

S
co

re

60%

100%

Figure 7: Performance of NEAT and RBF-NEAT on
the racing strategy domain. While previous exper-
iments have shown that NEAT is adept at evolving
agile drivers, RBF-NEAT proves to be significantly
better than NEAT (p > 0.95) at evolving high-level
strategy.

thus be only one example of domains that are difficult to
solve with NEAT. Exploring other such domains could re-
sult in further insights into how neuroevolution algorithms
can be improved.

A related avenue for future work involves better under-
standing why the regular NEAT algorithm has problems
with fractured domains. While the discussion in Section 3
offers a plausible explanation – that isolating sections of a
fractured space is difficult to accomplish with ordinary neu-
ral networks – the reasons are not yet clear. The necessary
structure may be hard to represent, to construct, or to eval-
uate. Understanding such results will in turn lead to better
algorithms in the future.

RBF-NEAT is a first implementation of the concept of
local processing nodes in a NEAT-like algorithm. Having
shown that even a simple RBF-based algorithm can do bet-
ter than NEAT on fractured domains, the question remains
of how to best incorporate local processing into NEAT.

The first step is to examine how useful the advanced fea-
tures of NEAT, like speciation and fitness sharing, are with
RBF nodes. Standard RBF algorithms are known for their
tendency to generate excessive numbers of RBF nodes. If
networks evolved with RBF nodes are likely to be larger than
regular NEAT networks, which might change the dynamics
of the learning process.

It may also be possible to improve RBF-NEAT by imple-
menting ideas from the supervised learning and reinforce-
ment learning literature. As mentioned in Section 4, the su-
pervised learning community has generated a large amount
of research on RBF-related learning algorithms. While many
of these algorithms rely on labeled training data, some of
them may apply to reinforcement learning problems. For
instance, an RBF network may be made to generalize bet-
ter to new inputs by covering the same input area with fewer
nodes. Another interesting approach would be to integrate
the local processing and generalization mechanisms from the
LCS literature with constructive neural network algorithms.

Finally, RBF-NEAT could be extended by allowing evo-
lution to connect basis nodes to other hidden nodes, instead
of only to inputs. The basis nodes could then gate and re-
peat any internal functions computed by the network. Such
an organized repetition of internal function could allow a
network to be built around several sub-behaviors, laying the
groundwork for an algorithm that evolves modular neural
networks. This approach could be very powerful in evolv-
ing high-level behavior, and constitutes a most interesting
direction of future work.
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7. CONCLUSION
Despite its success in the past, neuroevolution in gen-

eral and NEAT in particular has surprising difficulty solv-
ing certain types of high-level reinforcement learning prob-
lems. This paper presents the hypothesis that this difficulty
arises because these domains are fractured: The correct ac-
tion varies discontinuously as the agent moves from state to
state. Several examples of high-level reinforcement learning
domains that possess such a fractured quality are presented,
and NEAT is shown to perform rather poorly on these frac-
tured domains. However, a modification of NEAT that uses
radial basis function nodes to provide local modifications
is able to do much better. These results provide a better
understanding of the different types of reinforcement learn-
ing problems and the limitations of current neuroevolution
methods. Thus, they lay the groundwork for creating the
next generation of neuroevolution algorithms that can learn
modular strategic high-level behavior.
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