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ABSTRACT
We propose an algorithm for function approximation that
evolves a set of hierarchical piece-wise linear regressors. The
algorithm, named HIRE-Lin, follows the iterative rule learn-
ing approach. A genetic algorithm is iteratively called to
find a partition of the search space where a linear regres-
sor can accurately fit the objective function. The resulting
ruleset performs an approximation to the objective function
formed by a hierarchy of locally trained linear regressors.
The approach is evaluated in a set of objective functions
and compared to other regression techniques.

Categories and Subject Descriptors
I.2.6 [Learning]: concept learning, knowledge acquisition

General Terms
Algorithms

Keywords
Genetic algorithms, machine learning, function approxima-
tion, regression

1. INTRODUCTION
Genetic algorithms (GAs) have proved to be valuable in

machine learning and data mining applications. Particu-
larly, genetic algorithms have been used in classification
problems. Therein, a model is required to describe the re-
lationship between the characteristics of the examples pro-
vided in a dataset and their associated class. Some of the
benefits offered by genetic algorithms are the domain inde-
pendence, the ability to evolve several types of representa-
tions (e.g., rulesets, trees), and high performance.

Among the current approximations dealing with rulesets,
the Michigan approach [14] evolves a set of overlapping clas-
sifiers that together approximate the class boundary. The
approach evolves a set of individuals that are incrementally
evaluated. Since each individual codifies a single rule, the
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GA has to balance the competition-cooperation tradeoff to
achieve a set of optimal classifiers jointly approximating the
class boundary. Hence, the Michigan approach uses a ge-
netic algorithm that searches simultaneously for several sub-
solutions that together can cover the whole search space.
The Pittsburgh approach [23, 24] evolves a population of
rulesets, where each ruleset usually works as a decision list
[20]. The algorithm searches for the best ruleset among the
set of possible rulesets. Thus, the search space is larger than
in Michigan approaches; however, the evolutionary pressures
can be adjusted to obtain simpler rulesets (e.g., see [3]). The
so-called iterative rule learning (IRL) [13, 25] approach, also
referred to as sequential covering algorithm [18], can alter-
natively be used to evolve rulesets. The IRL approach al-
lows the GA to search for a single rule in each iteration.
Each time a rule is obtained, the region of the search space
covered by the rule is removed for the subsequent searches.
Search complexity is bounded in each iteration in two re-
spects. First, the evolution of a single rule in each iteration
provides less complexity than in the Pittsburgh approach.
Second, the search space is progressively reduced in each
iteration. The evolved ruleset must be evaluated in order,
analogously to a decision list.

Due to the benefits of reduced complexity, IRL algorithms
are valuable to address large datasets. Moreover, the rule
sets are highly interpretable because they contain fewer rules,
possibly comparable to Pittsburgh rulesets.

Recently, some learning classifier systems such as XCS [29,
30] have been extended to deal with numeric prediction [28].
Numeric prediction (also called regression) can be seen as a
variant of classification learning where the class is a numeri-
cal value rather than a category [31]. Herein, the emphasis of
the learner is to perform function approximation. Much re-
search has been conducted recently on Michigan approaches,
particularly XCSF [28, 15, 8], and also on Pittsburgh ap-
proaches [4] for function approximation. In this paper, we
extend the IRL approach to numeric prediction applications.
The proposed system, named HIRE-Lin, evolves iteratively
a set of linear regressors performing piece-wise linear ap-
proximations. Our aim is to propose a new architecture
for the evolution of hierarchical linear regressors based on
genetic algorithms, and thus, we wish to inherit the GA’s
capabilities such as robustness, domain independence, sim-
plicity, and interpretability. Such capabilities will be eval-
uated and compared to classical approaches for regression.
Moreover, such an approach would offer compound benefits
from the Michigan and Pittsburgh approaches: a bounded
search space complexity and high interpretable results.
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The remainder of the paper is structured as follows. The
next section describes HIRE-Lin for function approximation.
Section 3 describes the experimental methodology. Section
4 analyzes HIRE-Lin on a case study and evaluates its be-
havior with different settings. Next, we compare HIRE-Lin
with other types of regression techniques. Finally, we con-
clude and present future work lines.

2. ALGORITHM
HIRE-Lin is an Iterative Rule Learning (IRL) algorithm,

inspired by Hider [1], that evolves a hierarchical rule set that
approximates functions using linear regressors. At each it-
eration, the algorithm searches for a single rule that best
approximates the data. The rule is added to the final rule-
set, and instances covered by the rule are removed. The
algorithm continues iteratively until the data set is covered.
The final ruleset must be interpreted in the same order as
rules were produced. The search is based on a genetic algo-
rithm. The details of HIRE-Lin are as follows.

2.1 Rule Representation
HIRE-Lin iteratively evolves a rule set that works as a

decision list as proposed in [20][1]. Given an example e and
a ruleset H , each rule ri ∈ H is checked in order until a
matching rule is found. That is, rule rm will predict a given
example e if there is not any preceeding rule ri | i < m,
that covers the example. In such a case, the linear predictor
coded in rule rm will be used to approximate the objective
function f(x) at x = e. Each rule has the form:

ri = X → W (1)

where X stands for the condition (or antecedent), and W
(the consequent) corresponds to the linear regressor applied
when the condition is satisfied by the example. The con-
dition defines a hyperrectangle in the search space, repre-
sented as a sequence of intervals (x1, x2, . . . , x�), where �
is the dimension of the feature space. Each interval xi is
defined by its lower and upper bounds [lbi, ubi], both real-
valued. An example e = (e1, e2, . . . , e�) satisfies the rule if
∀i : 1 ≤ i ≤ � : (lbi ≤ ei ≤ ubi).

The consequent, W , represents the parameters of a linear
regressor. Given an example e = (e1, e2, . . . , e�), the linear
regressor approximates f(e) by the hyperplane:

yi = w0 + w1e1 + w2e2 + ... + w�e� (2)

where w0, w1, . . . , w� are the regressor parameters. Thus,
a rule defines a hyperplane W which is applicable in the
attribute domain defined by the hyperrectangle coded by
X. The number of parameters of the linear regressor is
(� + 1). The final length of the rule is (3� + 1), from where
2� correspond to the antecendent and the remainder � + 1
belong to the consequent.

The linear regressor is computed by simple regression [12,
19] according to the least squares criterion. We used the
multi-dimensional least squares fitting routine available with
GNU Scientific Library 1 (GSL).

2.2 Learning Process
The algorithm of HIRE-Lin is depicted in Alg. 1. Given

a dataset E, the algorithm iteratively evolves a hierarchical
ruleset H . In each iteration, a genetic algorithm (GA) is

1http://www.gnu.org/software/gsl

Algorithm 1: Algorithm of HIRE-Lin.

setOfExamples E;
Rule r;
setOfHierarchicalRules H;

H := Ø;
while E not empty do

r := evolve(E);
H := H + r;
E := E - CoveredInstances(r);

H := H + defaultRule;

fired to search for the best rule covering accurately a high
number of instances of the dataset E. The best rule returned
by the GA is added to H . Next, the instances covered by the
rule are removed from the dataset. The process is repeated
until E is empty. Finally, a default rule is added into ruleset
H. Its antecedent covers the entire search space, although
it will be only applicable when the previous rules do not
match. The consequent is a rough approximation computed
as the average of the value of the objective function of all
training points.

2.3 Genetic Algorithm
Given a dataset E, the GA searches for the best rule that

approximates the dataset. The search goal is to find the
best rule that approximates accurately the highest number of
instances of E, i.e., to search for the largest hyperrectangle
that can be accurately approximated by a linear predictor.

The GA evolves a population P of N individuals, where
each individual codifies a rule as described in equation 1.
Each rule is a vector of (3� + 1) real numbers. The GA
only modifies the antecedent of the rule, which is of size 2�.
The consequent of the rule are the parameters of the linear
predictor which are obtained by least squares.

2.3.1 Initialization
In the initialization phase, a population P is created. Each

individual contains a rule which is initialized in two steps.
First, the antecedent X of each rule is initialized using an
example e randomly selected from the dataset E. For each
attribute ei | i : 1 . . . �, an interval [lbi, ubi] containing ei is
set according to: lbi = ei − vc and ubi = ei + vc, where
vc is a value uniformly distributed in the interval [0, r0],
being r0 ≥ 0 a configuration parameter. Both values are
limited to the range of the attribute. Then, the consequent
W is calculated as follows. A linear regressor is computed
by a least squares procedure, considering only the examples
enclosed in the hyperrectangle defined by the antecedent X.

2.3.2 Fitness function
The fitness of the rule codifies the search goals: to max-

imize the hyperrectangle while minimizing the approxima-
tion error of the linear regressor.

Given a rule r, a linear regressor is computed using only
the instances covered by the hyperrectangle. Then, the fit-
ness of the rule is computed as follows:

F (r) = coverage(r) ∗ acc(r)γ (3)

where coverage(r) is the portion of the search space covered
by the rule, acc is the accuracy of the approximation, and
γ is a user-defined parameter. 0 ≤ coverage(r) ≤ 1 is the
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ratio of the subspace covered by the hyperrectangle divided
by the search space defined by the original training dataset:

coverage(r) =
�Y

i=1

coverage(r, i)

range(i)
(4)

coverage(r, i) = ubi − lbi

range(i) = UBi − LBi

where coverage(r, i) is the size of the interval of rule r for
attribute i, and range(i) is the difference between the max-
imum (UBi) and minimum (LBi) values of attribute i. acc
considers the quality of the linear approximation and is de-
fined as:

acc = R2 (5)

where R2 is the coefficient of determination [19] of the linear
regressor, computed as follows:

R2 = 1 − SSE

SST
(6)

where SSE is the sum of squared errors and SST is the
total sum of squares of the function value of the correspond-
ing points. R2 is the proportion of variability in the training
points that is accounted for by the regressor model. That
is, R2 is a statistic that provides information on how well
the regression line approximates the real data points. An
R2 of 1.0 indicates that the regression line perfectly fits the
data. Thus, coverage represents the generalization of the
rule, while acc is the accuracy or quality of the linear re-
gressor trained for that rule. γ ≥ 1 is a parameter that
specifies the relevance of the accuracy term with respect to
the generalization term. In the remainder of the paper, we
will refer to it as accuracy pressure parameter.

Note that generalization and accuracy are two objectives
that must be maximized. Our fitness function takes an ag-
gregating approach [5], being γ a control parameter that
specifies the relative weight of these two objectives.

2.3.3 Genetic Operators
Selection of individuals is performed via tournament se-

lection with tournament size S, where 0 < S ≤ N . Mutation
is applied with probability pm per gene. Let gi be a gene
representing either the lower or upper bound of an interval.
The value is mutated to a value uniformly distributed in the
range [gi − moff , gi + moff ], where moff is a parameter.
The new value is restricted to the range of the correspond-
ing attribute so that the resulting interval is correct. The
crossover operator is applied with probability pc. Given two
parents, two children are obtained that replace their par-
ents in the population. One point crossover is implemented
which chooses a cut point uniformly distributed in the range
[1..2�], where � is the number of attributes. Elitism is ap-
plied to preserve the best solution found from one cycle to
the next one.

3. EXPERIMENTAL METHODOLOGY
To analyze HIRE-Lin, we designed a set of artificial datasets

that corresponded to functions of different orders, topolo-
gies (concave, convex), and dimensions. Table 1 shows the
mathematical formula of each function together with the
mnemonic we will use in the paper. Some of these functions
have already been used as benchmarks to test regression
models (see for example [17]).

Table 1: Functions test bed

Mnemonic Function
fasx f(x) = | sin(10x)|
fpx f(x) = 1 + x + x2 + x3

fs4x f(x) = sin(x) + sin(2x) + sin(3x) + sin(4x)
fscx f(x) = sin(x) ∗ cos(x)
fx2 f(x) = x2

fxsx f(x) = x ∗ sin(10x)f(x)>0

frxy f(x, y) =
√

xy
fscxy f(x, y) = sin(xy) ∗ cos(xy)
fsxy f(x, y) = sin(3xy)f(x,y)>0

fx2y f(x, y) = x2y

To build the datasets, we uniformly sampled 100 instances
per dimension. That is, if the function was defined by a sin-
gle attribute (one dimension) the resulting dataset contained
100 instances. For functions defined by two attributes, the
resulting dataset contained 10000 instances.

To analyze the quality of the model evolved by HIRE-Lin,
we considered the error and the model size. To estimate the
error, each example of the dataset is checked against the
ruleset. The first rule that matches provides an approxi-
mation which is compared with the value of the objective
function. Thus, the error ε was estimated according to the
following formula:

ε =

PNE
i=1

“
f(ek) − ̂f(ek)w0,...,w�

”2

NE
(7)

where f(ek) is the value of the objective function at point

ek, ̂f(ek)w0,...,w�
is the function approximation provided by

HIRE-Lin, and NE is the number of examples. The model
size was computed as the number of rules evolved.

A 10-fold cross-validation procedure was used to estimate
the error of the method. For each fold, the method was
trained 10 times with different seeds and the error was av-
eraged. When needed, statistical tests were applied to com-
pare several approaches and test for significant differences
among them. Our methodology followed the guidelines pro-
vided by Demsar [7] for multiple comparison tests. Briefly,
we first tested the null hypothesis that the group of learners
performed equivalently by means of a Friedman’s test. If this
hypothesis could be rejected, then we applied a post-hoc test
to compare the learners to the best performer. Specifically,
the Bonferroni-Dunn’s test was used.

Our study consists of two parts. First, in Sect. 4 we an-
alyze the behavior of HIRE-Lin. By means of a graphical
analysis centered on a case study, we investigate the influ-
ence of the accuracy pressure parameter γ. We analyze the
quality of the approximation and the number and types of
rules evolved. We further extend this study to the whole
function test bed to validate the influence of the accuracy
pressure parameter. Then, in Sect. 5 we compare HIRE-Lin
to three other well-known regression techniques, so that we
can place our approach within some of the state-of-the-art
methodologies.

4. ANALYSIS OF HIRE-LIN
This section analyzes the behavior of HIRE-Lin. First,

we use function fxsx as a case study (see Table 1 for the de-
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Table 2: Parameters of HiRe-Lin
Parameter Description Value
ec Evolutionary cycles 300
N Population size 100
S Tournament selection size 10
pc Crossover probability 0.5
pm Mutation probability 0.02
moff Mutation offset (fraction) 0.25
r0 Covering parameter (fraction) 0.25
γ Accuracy pressure 1

tails). Then, we numerically compare the results obtained
with the remaining test bed. In both cases, HIRE-Lin was
run with pressures γ={1,10,100,1000} and parameter set-
tings provided in Table 2.

4.1 A Case Study
Figures 1 to 4 plot the results of HIRE-Lin in function fxsx

with γ={1,10,100,1000} respectively. Each figure shows, in
the upper part, the training points used to train the algo-
rithm (plotted with points) and the function approximation
provided by HIRE-Lin (with solid line). In the lower part,
the subspace covered by the each rule is plotted. Note that
the ruleset is hierarchical and must be checked in order.

Figure 1 shows the result of the algorithm with γ = 1. See
that the algorithm evolves only two rules. The first one is a
large rule covering the domain [0,0.927]. The linear regres-
sor obtained for this subspace cannot fit the shape of the
objective function. The second rule applies to the domain
(0.927,0.935], which allows for a better approximation be-
cause the subspace is small enough for a linear fitting. Note
that the domain of the second rule R2 is [0,0.935]. How-
ever, since the previous rule already covers the subspace
[0,0.927], R2 is only applied in the range (0.927,0.935]. The
range codified by R2 which is hidden by the previous rule is
plotted in dotted lines, while the effective domain is plotted
in solid line. The ruleset adds another rule Rd, the default
rule, which always covers the range [0,1], although the ef-
fective range depends on the previous rules in the list. In
this case, Rd would be applied only in the interval (0.935,1].
The reason why rules R1 and R2 have not expanded to cover
completely the search space is that there are no training in-
stances defined outside [0,0.935]. Thus, no rules are evolved
for the region (0.935,1]. If a test example from this subspace
is given, Rd would be applied with the value of the average
objective function of training points.

Figure 2 plots the results for γ = 10. Note that the ruleset
contains more rules than with γ = 1 and each rule covers
a smaller subspace. This allows for better fitting than with
γ = 1. By increasing γ, we change the relative weight of ac-
curacy with respect to generalization (see equation 3). With
γ = 1, generalization was so important that a very gen-
eral rule with a rough approximation was obtained. With
γ = 10, generalization is decreased in favor of accuracy.
Thus, less general but more accurate rules are given. The
effect of further increasing γ is plotted in Figures 3 and 4
which show even finer approximations to the objective func-
tion. Higher γ values also produce larger rulesets.

4.2 Comparison on Several Datasets
We extended the study on the influence of γ parame-

ter to the remaining test bed described in Table 1. We
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Figure 1: fxsx approximation using γ = 1
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Figure 2: fxsx approximation using γ = 10

studied the training error, the test error, and the num-
ber of rules obtained for the different accuracy pressures
γ = {1, 10, 100, 1000}. The training error is a measure of
the fit of the approximation to the training points, while
the test error is an estimate of the generalization capability
to unseen points. The number of rules is useful as a measure
of interpretability of the final ruleset.

Tables 3 and 4 show the average and standard deviation
of HIRE-Lin in the training dataset and test dataset respec-
tively. As mentioned before, these values correspond to the
error estimated by a 10-fold cross-validation procedure with
10 random seeds. The best approach giving the minimum
average error is marked in bold. Regarding the training er-
rors, larger values of γ yield smaller approximation errors. In
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Table 3: Train error of HIRE-Lin with different accuracy pressures. Each cell gives the average and standard
deviation of HIRE-Lin for the dataset in the row

DS γ = 1 γ = 10 γ = 100 γ = 1000
fasx 9.407e-02±3.60e-03 5.094e-02±2.72e-02 1.867e-03±1.46e-03 1.653e-03±1.72e-03
fpx 3.592e-03±1.85e-03 2.916e-03±1.63e-03 9.706e-04±1.07e-03 1.574e-04±1.10e-03
fs4x 5.966e-02±5.07e-03 8.176e-03±2.92e-03 1.284e-03±3.11e-04 9.511e-05±1.35e-04
fscx 2.368e-03±1.03e-04 2.610e-03±7.25e-04 7.544e-04±8.58e-04 1.343e-03±1.03e-03
fx2 3.385e-03±1.35e-04 3.821e-03±2.62e-03 8.261e-04±1.67e-04 6.935e-05±8.15e-06
fxsx 2.706e-02±3.00e-03 2.639e-03±2.07e-03 1.029e-04±4.12e-05 7.108e-05±5.07e-04
frxy 4.780e-03±1.25e-04 4.401e-03±4.19e-04 1.105e-03±1.24e-04 1.068e-04±1.39e-05
fscxy 2.368e-03±1.03e-04 2.432e-03±9.34e-05 5.697e-04±8.79e-05 5.090e-05±9.51e-06
fsxy 2.552e-02±5.58e-04 1.602e-02±2.69e-03 1.592e-03±3.01e-04 1.717e-04±1.95e-04
fx2y 6.739e-03±7.77e-05 5.382e-03±6.37e-04 6.181e-04±2.27e-04 4.391e-05±6.87e-06

Table 4: Test error of HIRE-Lin with different accuracy pressures. Each cell gives the average and standard
deviation of HIRE-Lin for the dataset in the row

DS γ = 1 γ = 10 γ = 100 γ = 1000
fasx 1.005e-01±2.54e-02 6.983e-02±3.82e-02 9.010e-03±2.47e-02 6.932e-03±1.92e-02
fpx 3.463e-03±1.77e-03 3.272e-03±1.88e-03 1.269e-03±7.28e-04 1.561e-04±6.03e-04
fs4x 6.676e-02±2.65e-02 1.215e-02±8.18e-03 1.784e-03±1.12e-03 6.120e-04±3.97e-03
fscx 2.554e-03±1.22e-03 2.899e-03±2.91e-03 3.531e-04±1.81e-04 4.363e-04±2.71e-03
fx2 3.694e-03±1.85e-03 3.450e-03±1.70e-03 1.121e-03±6.05e-04 2.293e-04±9.36e-04
fxsx 3.179e-02±1.17e-02 3.505e-03±3.89e-03 8.770e-04±6.28e-03 1.542e-03±6.13e-03
frxy 4.805e-03±1.15e-03 4.618e-03±1.19e-03 1.413e-03±9.31e-04 1.569e-04±7.09e-05
fscxy 2.483e-03±4.55e-04 2.473e-03±4.66e-04 6.596e-04±2.42e-04 7.590e-05±5.94e-05
fsxy 2.558e-02±3.26e-03 1.765e-02±4.23e-03 2.325e-03±1.73e-03 2.860e-03±5.04e-03
fx2y 6.798e-03±1.21e-03 5.438e-03±1.19e-03 6.698e-04±2.19e-04 8.222e-05±3.98e-05
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Figure 3: fxsx approximation using γ = 100

all functions, except for fscx, the smallest error is obtained
for γ = 1000. Larger values of γ also tend to give smaller
test errors. However, in functions fxsx and fsxy the largest

accuracy pressure (γ = 1000) gives the smallest training er-
ror but this does not correspond to the smallest test error.
This indicates that overfitting is occurring in these cases.

Table 5 shows the number of rules of the final ruleset.
For a given problem, the number of rules obtained increases
with larger values of γ, as it was already observed in the
case study. For γ = 1 the average ruleset consists of a single
rule, two at maximum (the default rule is not counted). This
value is too extreme to get a good approximation. Larger
pressures provide larger rulesets. Values of γ ranging from
100 to 1000 provide fairly good approximations. By adjust-
ing parameter γ we can balance the compromise between ac-
curate approximation and interpretability (smaller rulesets
are usually more interpretable). Note also that the most
complex problems, such as those with two attributes, re-
quire larger rulesets. fsxy is the problem that requires the
highest number of rules.

We statistically compared the accuracy and size of the
models evolved with the different configurations. In Figure
5, each system is placed in the axes according to its aver-
age rank regarding the approximation error (x-axis) and its
average rank regarding population size (y-axis). The verti-
cal dashed lines delimit the region of the comparison space
where the learners perform equivalently to the learner that
presented the best performance according to a Bonferroni-
Dunn test at a significance level of 0.10. Similarly, horizon-
tal lines determine the region of equivalence to the method
that created the smallest models. Note that HIRE-Lin with
γ = 100 and γ = 1000 evolved the most accurate models of
the comparison. On the other hand, HIRE-Lin with γ = 1
and γ = 10 built the most reduced rulesets, which went in
detriment of the test accuracy.
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Figure 4: fxsx approximation using γ = 1000
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Figure 5: Average rank of HIRE-Lin with accu-
racy pressures {1,10,100,1000}. The x-axis plots the
rank of HIRE-Lin with respect to the test error (the
approach with the smallest error has the smallest
rank). The y-axis plots the rank of each approach
with respect to the smallest ruleset. The critical dis-
tance (CD) delimits the region of equivalence with
the best learner in each objective. It is computed
according to a Bonferroni-Dunn test at α = 0.10.

Table 5: Number of rules (average and standard de-
viation) obtained by HIRE-Lin with different accu-
racy pressures

DS γ = 1 γ = 10 γ = 100 γ = 1000
fasx 1.25±0.44 4.13±1.55 11.39±0.90 16.88±1.35
fpx 1.05±0.22 1.86±0.35 2.42±0.50 4.47±0.50
fs4x 1.85±0.36 2.05±0.22 3.12±0.33 5.21±0.41
fscx 1.00±0.00 1.32±0.47 2.21±0.41 3.78±0.48
fx2 1.00±0.00 1.58±0.50 3.04±0.20 5.75±0.61
fxsx 1.96±0.20 3.71±0.56 6.23±0.78 11.23±1.21
frxy 1.01±0.10 1.68±0.67 8.96±1.22 25.07±2.97
fscxy 1.01±0.10 1.34±0.52 9.68±1.32 29.81±2.97
fsxy 1.01±0.10 4.14±1.34 15.36±3.74 43.07±3.79
fx2y 1.00±0.00 2.89±0.60 10.88±2.17 39.55±4.33

Table 6: Comparison of (a) Linear Least Mean
Squares (LMS), (b) Fuzzy Wang-Mendel (WM), (c)
GAP, and (d) HIRE-Lin with γ = 1000 on a collection
of eleven artificial problems.

DS LMS WM GAP HIRE-Lin
fasx 0.10019 0.10056 0.15491 0.00693
fpx 0.00443 0.00022 0.00300 0.00016
fs4x 0.07331 0.05779 0.00273 0.00061
fscx 0.00359 0.00123 0.00075 0.00044
fx2 0.00561 0.00001 0.00101 0.00023
fxsx 0.04227 0.04028 0.05650 0.00154
frxy 0.00488 0.00000 0.00363 0.00016
fscxy 0.00300 0.00125 0.00047 0.00008
fsxy 0.02891 0.02690 0.00219 0.00286
fx2y 0.00898 0.00003 0.00103 0.00008
rank 3.73 2.27 2.64 1.36

5. COMPARISON WITH OTHER REGRES-
SION TECHNIQUES

So far, we have analyzed the impact of the accuracy pres-
sure in the size and accuracy of the models evolved by HIRE-
Lin. In this section, we compare the behavior of HIRE-Lin
with three regression techniques: Linear LMS [21], Fuzzy
Wang-Mendel [26], and GAP [22]. Linear LMS uses the least
mean square algorithm to create a linear approximation of
the input data. Fuzzy Wang Mendel builds a set of Mandani
fuzzy rules [6] that minimize the error with the covered in-
stances. GAP is a method based on genetic algorithms and
genetic programming that evolves a function represented in
a tree. All these methods were run using KEEL [2]. We
used the default configuration recommended in the software
[2] to configure each method. We configured HIRE-Lin with
the parameters specified in Table 2; besides, we set γ=1000,
since, as shown in the last section, it yields accurate models
of moderate size.

Table 6 provides the test error obtained for each problem
and learner. The multi-comparison Friedman’s test [10, 11]
permitted us to reject the null hypothesis that all learners
performed the same on average with p = 8.22 · 10−4. To an-
alyze which learners performed significantly differently from
HIRE-Lin, we used the post-hoc Bonferroni-Dunn test [9]
at α = 0.10. Figure 6 ranks the four learners and connects
those that perform equivalently according to the Bonferroni-
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Rank

CD = 1.22

Figure 6: Comparison of the test performance of
HIRE-Lin with the other methods by means of a
Bonferroni-Dunn Test at α = 0.10. Groups of clas-
sifiers that are not significantly different to the best
ranked method are connected.

Dunn procedure. HIRE-Lin is the best ranked method, and
outperforms the results obtained by Linear LMS and GAP.
Linear LMS uses a least mean square approach to build a
linear function that approximates the output. Note that
HIRE-Lin uses the same approach to evolve piece-wise lin-
ear approximations of the function drawn by the input in-
stances. Therefore, the partition of the feature space pro-
moted by the genetic algorithm allows HIRE-Lin to achieve
much better approximations. GAP is an evolutionary ap-
proach that evolves a function coded as a tree, which permits
to represent more complex, non-linear expressions. Notice
that HIRE-Lin significantly outperforms this technique on
the collection of tested problems by evolving simple linear
functions to approximate the input. It is worth highlighting
that both LMS and GAP use a global approximation, while
HIRE-Lin evolves an arbitrary number of rules that locally
approximate the objective function. The number of rules
evolved depends on both the non-linearity of the objective
function and the accuracy pressure γ.

As the Bonferroni-Dunn test is said to be quite conserva-
tive, we also performed pairwise comparisons among learners
by means of the non-parametric Wilcoxon signed-ranks test
[27], assuming the risk of increasing the error of rejecting the
null hypothesis when it is actually true. Table 7 provides the
approximate p-values. The symbols ⊕ and 	 indicate that
the method in the row significantly improves/degrades the
performance obtained by the method in the column at a
significance level of 0.05. The symbols +/− denote a non-
significant improvement/degradation. The pairwise analy-
sis confirms the conclusions extracted from the Bonferroni-
Dunn test; moreover, it also detects that HIRE-Lin outper-
forms Fuzzy Wang Mendel. Therefore, the pairwise analysis
supports the conclusion that HIRE-Lin outperforms all the
other methods in the comparison.

6. CONCLUSIONS
In this paper, we proposed a regression algorithm that

evolves a hierarchical set of rules performing piece-wise lin-

Table 7: Pair-wise comparison of the test perfor-
mance achieved by HIRE-Lin with the accuracy ob-
tained with Linear LMS (LMS), Fuzzy Wang Mendel
(WM), and GAP.

LMS WM GAP HIRE-Lin
LMS 0.004 0.182 0.003
WM ⊕ 0.657 0.026
GAP + − 0.008
HIRE-Lin ⊕ ⊕ ⊕

ear approximations. The algorithm is based on an iterative
rule learning approach, which consists in evolving a single
rule in each iteration. Each rule delimits a subspace where
an optimal linear regressor is constructed. The search space
of the algorithm is progressively reduced as rules are evolved.

The genetic algorithm is applied to search for the largest
hyperrectangular subspace where the optimal linear regres-
sor, trained for the data points enclosed in that subspace,
accurately approximates the objective function.

The balance between generalization and fit of the model
can be adjusted in the fitness function. We used an aggre-
gation approach, where the relative influence of these objec-
tives could be modified by the so-called accuracy pressure.
As the accuracy pressure was increased, the model obtained
finer approximations at the cost of evolving larger rulesets,
compromising interpretability of the final ruleset and even
leading to overfitting. We acknowledge that the search could
be formulated as a multiobjective fitness function based on
Pareto approaches. A key advantage of such an approach is
to let the user to choose among alternative compromises be-
tween generalization and model fit. A possible aid to avoid
overfitting is to use an additional validation set containing
points different from those in the training dataset to evalu-
ate whether the approximation is generalizing to these un-
known points. In this sense, a Pareto-based multiobjective
approach would be more flexible, because it would allow the
user to choose the solution with less overfitting.

Our approach evolves a set of hierarchical piece-wise lin-
ear regressors. Similarly, non-hierarchical piece-wise linear
regressors are evolved by XCSF, which belongs to the cat-
egory of Michigan approaches. XCSF searches simultane-
ously for a set of overlapping piece-wise regressors which to-
gether cover the search space. A key point of our approach is
that rulesets tend to be smaller than those usually obtained
by Michigan approaches. However, this hypothesis must be
further investigated. As a future work we aim at compar-
ing the rulesets and model fitting of both approaches. Also
XCSF has been trained to evolve other types of regressors
such as neural and polynomial regressors [16]. This feature
could also be included easily in HIRE-Lin.

The architecture was highly competitive with respect to
other regression techniques, such as LMS, Fuzzy Wang Mendel
and GAP. In fact, it is not surprising that HIRE-Lin sur-
passes the behavior of the linear regressor LMS, since our
approach is a local approach and LMS a global approach
training a single linear regression for the whole search space.
HIRE-Lin also improves GAP, a global method evolving a
regression function by means of genetic algorithms and ge-
netic programming. Other types of regressors such as lo-
cally weighted regression [18] could be more advantegeous
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than global methods and compare similarly to HIRE-Lin.
Although this particular study remains for further work, we
already demonstrated that HIRE-Lin is competitive with re-
spect to Fuzzy Wang Mendel, which is a local approach.
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