
Towards Efficient Online Reinforcement Learning Using
Neuroevolution

Jan Hendrik Metzen, Frank Kirchner
Robotics Lab

DFKI GmbH, Bremen, Germany
{jhm,frank.kirchner}@informatik.uni-

bremen.de

Mark Edgington, Yohannes Kassahun
Robotics Group

University of Bremen, Bremen, Germany
{edgimar,kassahun}@informatik.uni-

bremen.de

ABSTRACT
For many complex Reinforcement Learning (RL) problems
with large and continuous state spaces, neuroevolution has
achieved promising results. This is especially true when
there is noise in sensor and/or actuator signals. These re-
sults have mainly been obtained in offline learning settings,
where the training and the evaluation phases of the sys-
tems are separated. In contrast, for online RL tasks, the
actual performance of a system matters during its learning
phase. In these tasks, neuroevolutionary systems are often
impaired by their purely exploratory nature, meaning that
they usually do not use (i. e. exploit) their knowledge of
a single individual’s performance to improve performance
during learning. In this paper we describe modifications
that significantly improve the online performance of the neu-
roevolutionary method Evolutionary Acquisition of Neural
Topologies (EANT) and discuss the results obtained in the
Mountain Car benchmark.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning—Connectionism
and neural nets

General Terms
Algorithms

Keywords
Reinforcement Learning, Neuroevolution, Online-Learning

1. ONLINE NEUROEVOLUTION
Neuroevolution (NE) is a combination of Evolutionary Al-

gorithms (EAs) with Artificial Neural Networks (ANNs), in
which an ANN is encoded as a genome. The EA searches for
a genotype whose corresponding phenotype ANN maximizes
a fitness measure for a given task. When applied to a Re-
inforcement Learning (RL) task, the ANN usually directly
encodes the policy, and the fitness is set to the cumulative
reward accrued during a fixed period of time. In offline RL,
the goal is to find a policy which maximizes this fitness mea-
sure after a given amount of preliminary training. Thus, the
performance of the agent during training does not matter.
In contrast, in online RL the agent must try to maximize

Copyright is held by the author/owner(s).
GECCO’08, July 12–16, 2008, Atlanta, Georgia, USA.
ACM 978-1-60558-130-9/08/07.

its cumulative reward from the very beginning. This goal
is difficult to achieve in stochastic environments due to the
fact that an agent’s performance can only be assessed based
on a long-term average of its performance; its short-term
performance might be affected by the stochastic nature of
the environment.

When applying a neuroevolutionary method to an Online
RL task, there are three conflicting objectives: (1) The NE
method should prefer to apply policies that are known to
perform well (exploitation), (2) the NE method should try
new policies in order to find policies which perform even
better than the best-known policies (exploration), and (3)
the NE method should estimate the fitness of a policy as ac-
curately as possible (accuracy). The tradeoff between these
three objectives is illustrated in Figure 1.

In NE, normally only the exploitation-exploration trade-
off is considered, which is well known in the field of RL. The
other two tradeoffs are usually handled implicitly by assign-
ing the same number of evaluations to each individual. In
the context of online RL this leads to a significant decrease in
performance since even very bad policies are evaluated sev-
eral times in order to obtain an accurate estimate of their
fitness. Whiteson et al. [2] propose methods that can handle
the exploitation-accuracy tradeoff. One method they discuss
is softmax policy selection which distributes a fixed number
of overall evaluations available for a generation among the
members of the generation’s population such that better per-
forming individuals are evaluated more often. However, the
exploration-accuracy tradeoff is not handled automatically.

We propose a way of handling all three tradeoffs discussed
above that uses a steady-state (non-generational) evolution-
ary algorithm and evaluates each individual until either the
hypotheses h1 that its true fitness is below a (dynamic)

Figure 1: The three conflicting objectives of neu-
roevolution (exploitation, exploration, and accu-
racy), and how they can be controlled by a neu-
roevolutionary method.

1425

Online-EANT(num indiv):
adolescents ← Create-Individuals(num indiv)
matures ← ∅

while True do
individual ← Choose-Randomly(adolescents)
Evaluate-Individual(individual)
if Likely-Worse(individual,matures) then

adolescents.replace(individual,Create-New-
Offspring(matures))

else if
Fitness-Accurately-Estimated(individual)
then

if Fit-Enough(individual,matures) then
matures.add(individual)

adolescents.replace(individual,Create-New-
Offspring(matures))

Algorithm 1: The online (steady-state) NE algorithm.

threshold t, or the hypothesis h2 that its current fitness es-
timate differs from its true fitness by less than β percent, is
valid with significance levels α1 and α2, respectively. The
proposed algorithm, Online-EANT, is outlined in Algorithm
1. Instead of utilizing one population, the algorithm holds
a set of “mature” individuals and “adolescent” individuals.
The mature individuals are those whose fitness has already
been accurately estimated and who have been found to per-
form sufficiently well. They are the only individuals that are
allowed to produce offspring, and the threshold t is defined
as the average of their (estimated) fitness values. The ado-
lescent individuals are evaluated until either h1 or h2 is valid
with significance level α1 (α2). If h2 is valid and the individ-
ual’s fitness estimate is above t, it becomes a member of the
mature individuals and the oldest mature individual “dies”.
If h2 is valid but the individual’s fitness estimate is below t

or if h1 is valid (i. e. the individual is performing worse than
the average member of the mature individuals), the individ-
ual “dies” prematurely and is replaced by a new offspring of
the mature individuals. The exploitation-accuracy tradeoff
and the exploration-accuracy tradeoff are thus handled by
the choice of the necessary significance level α1 and α2, and
the allowed estimation error β.

2. MOUNTAIN CAR BENCHMARK
We have tested three different RL methods in the Moun-

tain Car benchmark [1]: The TD method Sarsa(λ), Offline-
EANT, and Online-EANT. For Sarsa, we used the Cerebel-
lar Model Articulation Controller (CMAC) [1] function ap-
proximator with a superposition of 10 independent tilings,
an eligibility trace decay rate of λ = 0.95, a learning rate
of α = 0.5, and a discount factor of γ = 1.0. Two different
values for ǫ (the ratio of choosing a random, non-greedy ac-
tion) have been tested, namely ǫ = 0.0 and ǫ = 0.01. The
initial Q-values were all set optimistically to 0 to enforce ini-
tial exploration. For Offline-EANT, a population size of 20
was used, each individual was evaluated for 10 episodes, and
fitness sharing was disabled. For Online-EANT, 20 individ-
uals were initially created, the required significance levels α1

and α2 were set to 0.05, and the allowed error rate β was set

 0

 50

 100

 150

 200

 250

 300

 0 20 40 60 80 100 120 140

A
ve

ra
ge

 e
pi

so
de

 le
ng

th

Episodes / 100

Results on Mountain Car

Offline EANT
Online EANT
Sarsa ε=0.00
Sarsa ε=0.01

Figure 2: Performance Comparison on the Moun-
tain Car Benchmark. Each curve is an average over
at least 10 independent runs and was smoothed us-
ing a moving window.

to 20%. The maximum number of steps an individual was
allowed to take to reach the goal was restricted to 500. If
the goal was not reached after this number of steps, the next
individual took over control of the car at its current position.
Thus, artificially terminating an episode was not necessary,
and neuroevolution was never left with an unfeasible policy
that could not reach the goal.

Figure 2 shows the performance of the three methods in
the benchmark (the plotted values are the averages over 10
independent runs for each method and are smoothed using
moving window averages of length 500). Online-EANT’s
average episode length is significantly better (i. e. smaller)
than Offline-EANT’s (p < 0.003) over the whole 1.4 ∗ 104

episodes of evaluation. This shows that Online-EANT’s
choice of evaluating more promising individuals more often
not only improves initial performance but also does not in-
terfere with the long-term progress of the evolution. Com-
pared to Sarsa (ǫ = 0.0), Online-EANT performes worse in
the early phase of a trial (the difference is significant during
the first 250 episodes (p < 0.05)) but reaches a similar level
after about 4000 and achieves better online performance in
the long run (the difference is significant after 12200 episodes
(p < 0.05)). In contrast, Offline-EANT’s performance re-
mains significantly worse than Sarsa’s (p < 0.025) over the
whole evaluation time. Sarsa’s superior performance in the
initial phase of the trials can be explained by the fact that
it makes use of the instantaneous reward supplied by the
environment (instead of assessing the policies as a whole)
while its worse performance in the long run might be ex-
plained by the fact that it is more easily trapped in locally
optimal policies (in particular if the learning rate ǫ is set to
0). However, setting ǫ to 0.01 did not yield in an improved
online performance (see Figure 2). Compared to the results
presented in [2], Online EANT achieves better online per-
formance than the combination of NEAT with any policy
selection strategy.

3. REFERENCES
[1] R. Sutton and A. Barto. Reinforcement Learning. An

Introduction. MIT Press, Massachusetts, London, 1998.

[2] S. Whiteson, M. E. Taylor, and P. Stone. Empirical
studies in action selection with reinforcement learning.
Adaptive Behavior - Animals, Animats, Software
Agents, Robots, Adaptive Systems, 15(1):33–50, 2007.

1426

