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ABSTRACT 
The performance of Evolutionary Algorithms for combinatorial 
problems can be significantly improved by adding Local Search, 
thus obtaining a Genetic Local Search (GLS) also called Memetic 
Algorithm. In this work, we adapt a previous Stochastic Local 
Search (SLS) algorithm and embed it into a GBML system. The 
adapted SLS algorithm works as a module of the system that tries to 
improve a random individual in the population. We perform 
experiments to evaluate this adapted SLS procedure and results 
show that this new GLS system is very effective, not losing in any 
of the 10 UCI datasets tested when compared to the system without 
the SLS procedure.  The system either obtained significantly more 
accurate concepts using lower number of rules and features or it 
achieved the same accuracy as the system without the SLS 
procedure, but reduced the number of rules and features, and also 
the time taken to develop the solution.  

Categories and Subject Descriptors 
I.2.6 [Artificial Intelligence]: Learning 

General Terms: Algorithms, Performance, Experimentation.  

1. INTRODUCTION 
Genetic Based Machine Learning (GBML) states for the application 
of Genetic Algorithms (GA) [1] to Machine Learning. Pure 
evolutionary algorithms often seem to lack the capability of 
sufficient search intensification, that is, the ability to reach high-
quality candidate solutions efficiently after the application of the 
genetic operators (crossover, mutation and selection). Hence the 
performance of Evolutionary Algorithms for combinatorial 
problems can be significantly improved by adding Local Search [2]. 
A Genetic Local Search (GLS) can be defined as a Genetic 
Algorithm embedded with a Local Search technique [2].  
    One possible way of alleviating the huge requirements of search 
in such large spaces is to take advantage of clever local search 
strategies as Stochastic Local Search (SLS). In [3], Rückert and 
Kramer proposed a SLS algorithm for learning k-term DNFs, that is, 
a set of k rules, obtaining competitive experimental results 
compared to state-of-the-art rule learners.  Therefore, we would like 
to embed Rückert and Kramer SLS algorithm, as the local search 
phase of a GBML rule learner.  
        In [4, 11] we have developed a GBML rule learner that uses 
the very common Modified DNF representation [5] and the high 
memory economy Natural Coding [6]. Also, it was proposed a  new 
crossover operator for discrete attributes that explores the search 
space like the two points binary crossover. This way, the system 
combines the  memory  economy given by the Natural  Coding with 

the same exploration power of the two points binary crossover. 
Moreover, the system merges the Michigan and Pittsburgh rule 
generation approaches and also uses the Implicit  
   Feature Selection Mechanism (IFSM) that tries to reduce the 
number of features used in a rule. It achieved very good 
experimental results compared with C4.5 [7].  
    The paper is structured as follows. Section 2 describes the main 
aspects of SLS algorithms and presents the new GLS rule learner. 
The experimental results are shown in section 3. Finally, section 4 
concludes the work. 

2. STOCHASTIC LOCAL SEARCH  
SLS algorithms perform a local randomized-walk in the search 
space [2]. Generally, the SLS starts with a randomly generated 
solution and it is usually organized in two main steps: Search and 
Selection.  
    In the Search step, the algorithm examines a set of neighbors 
(candidate solutions) according to a neighbourhood relation. Each 
neighbor is evaluated by a global scoring function.  
    In the Selection step, the algorithm selects the candidate with 
highest score given by the global scoring function. Since the choice 
of the best candidate can easily lead to local optima, the algorithm 
with a probability p chooses a random candidate solution instead of 
the best one. (See [3] for a detailed description of a typical SLS 
algorithm).  

2. 1 Embedding SLS in our GBML System 
Basically, our hybrid approach to develop concepts has a Michigan 
cycle inside a Pittsburgh cycle. This way, we call the SLS procedure 
inside the Pittsburgh cycle, after Michigan cycle execution (see 
algorithm 1).  
    When the GLS system calls the SLS procedure, one individual of  

Algorithm 1. GLS Algorithm. 
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• Input: maxn: maximal number of generations; k, j: natural 
numbers that, respectively, determine when the Michigan cycle 
and SLS occur; pp: principal population (for Pittsburgh cycle); 
sp: sub-evolution population (for Michigan cycle); e+: the set of 
all positive examples in dataset; e-: the set of all negative 
examples in dataset; enc+: the set of positive examples not 
covered by the best  individual in pp;  

• Output: modified pp.; 
Begin: 

    1 - While (generation < maxn)                   //Pittsburgh Cycle 
        2 - Evolve pp with e+ ∪ e-; 
        3 - If ( (generation  % k) == 0 ) then      //Michigan Cycle 
               4 – Initialize sp randomly; 
               5 - Evolve sp with enc+ ∪ e-; 
               6 - pp  pp concatenated with sp;  //End of Michigan cycle  
        7 - If ( (generation  % j) == 0 ) then 
              8 - a random S from pp  SLS (a random S, p1, p2, p3); 
     9 – Return pp;                                          //End of Pittsburgh cycle  
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the population is randomly selected to go through the SLS. After the 
execution of the SLS procedure, this improved individual is placed 
again in the population to continue its genetic evolution through the 
Pittsburgh cycle. 
    The algorithm 2, called as SLS at algorithm 1, shows how SLS 
algorithm from [3] is adapted for our GBML.  

Algorithm 2.  Rückert and Kramer SLS adapted for our GBML  

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

3. EXPERIMENTS 
     This section presents the results obtained by the GA without the 
SLS procedure compared to the new GLS. All the experimental 
results were obtained using 5 fold stratified cross validation, where 
in each fold an internal 5 fold stratified cross validation was used for 
tuning the parameters for all systems. For continuous-valued 
attributes, we used the discretization method proposed in [9]. For all 
experimentations, corrected-Student two-tailed paired t-tests [10], 
using a confidence interval of 95%, were used in order to analyze 
the results. The fitness function, for both GAs, was the training 
accuracy. For each fold, the algorithm was executed 20 times 
obtaining an average for the fold; as usual, the results are the 
average (on the test sets) of the 5-fold stratified cross validation.  

Table 1. Results: GA without SLS and GLS 
 GA without SLS GLS  

Nam. #Ru #Att Acc #Rul #Att Acc T-Test 
bre 1 2,4 76.1 1 2,4 76,1 no 
cr-a 1.4 3.2 92.4 1.4 3.2 92.4 no 
gls 9 27.8 78.5 6,6 16 78,5 no 
he-c 2.6 6.4 86.8 2,4 6,6 88,5 yes 
hep 1.8 3.8 88.4 1.2 2.8 88.4 no 
h-col 1.8 5 84.8 1,6 4,6 88,1 yes 
Ino 2.4 19.8 91.3 1,2 13,2 95,6 yes 
son 1.6 5 79.0 1,6 4 83,0 yes 
vehi 14 82.6 74.0 10 70,8 77,3 yes 
wbcd 2 4.2 96.1 1,6 3,2 97,7 no 

    The table 1 shows that the accuracy obtained by the new GLS is 
better or equal to the accuracy obtained by GA without SLS.  In 5 of 
10 datasets, the system using SLS achieved significantly better 
accuracy and simpler concepts. For hep and glass, the accuracy was 
the same obtained with GA without SLS, but the concepts were 
simpler. It is important to note that, for the datasets that the GLS did 
not achieved better accuracies nor a lower number of rules and 
features (bre and cr-a), these results were obtained in less time 
(lower number of population size, generations and sub-generations). 
In fact, in comparison to the GA without SLS, the GLS uses an 
inferior number of population size, generations and sub-generations. 
These numbers are respectively 33%, 25% and 33% lower.  

4. CONCLUSION 
    This paper presents an adaptation of Rückert and Kramer SLS 
algorithm [3] for our previous GBML system [4, 11]. 
    Results show that this procedure can help our GBML system to 
evolve simpler and more accurate concepts using less time than 
without the SLS procedure. This new GLS system showed to be 
very effective, not losing in any of the 10 datasets tested and 
significantly improving the accuracy and the simplicity in 5 of them. 
Even when it was as accurate as GA without SLS, the GLS 
developed simpler concepts or it was significantly faster.  
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• Input: solution (s) with one or more rules; probabilities (p1, p2, 
p3); maxScore; maxSteps.    

• Output:  Modified solution (s).  
Begin:  

1- While fitness (s) ≠ maxScore or steps < maxSteps do: 
2- ex  a random example misclassified by s;  
3- If ex is a positive example then  
    4- rule  with a probability p1: a random rule from  the 
solution s; otherwise, the rule that differs in  the smallest number 
of attributes from ex;    
    5- atr   with a probability p2: a random attribute in rule; 
otherwise, the attribute that when is not used, increases the fitness 
from solution s at most;  
    6- s  s with the atr removed (not used) from rule;  
    end-if; 
7- If ex is a negative example then 
    8- rule  a random rule in solution s that covers  ex;  
    9- atr  with a probability p3 a random attribute from s, that 
when is being used in rule, this rule does not cover ex; otherwise, 
an attribute from s that when is being used in rule, increases the 
fitness from solution s at most;   
    10- s  s with attribute added (used) to rule; 
   end-if; 

end-while; 
11- return solution s;
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