
Genetic Local Search for Rule Learning

Removed due the blind process

of review.

ABSTRACT
The performance of Evolutionary Algorithms for combinatorial
problems can be significantly improved by adding Local Search,
thus obtaining a Genetic Local Search (GLS) also called Memetic
Algorithm. In this work, we adapt a previous Stochastic Local
Search (SLS) algorithm and embed it into a GBML system. The
adapted SLS algorithm works as a module of the system that tries to
improve a random individual in the population. We perform
experiments to evaluate this adapted SLS procedure and results
show that this new GLS system is very effective, not losing in any
of the 10 UCI datasets tested when compared to the system without
the SLS procedure. The system either obtained significantly more
accurate concepts using lower number of rules and features or it
achieved the same accuracy as the system without the SLS
procedure, but reduced the number of rules and features, and also
the time taken to develop the solution.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning

General Terms: Algorithms, Performance, Experimentation.

1. INTRODUCTION
Genetic Based Machine Learning (GBML) states for the application
of Genetic Algorithms (GA) [1] to Machine Learning. Pure
evolutionary algorithms often seem to lack the capability of
sufficient search intensification, that is, the ability to reach high-
quality candidate solutions efficiently after the application of the
genetic operators (crossover, mutation and selection). Hence the
performance of Evolutionary Algorithms for combinatorial
problems can be significantly improved by adding Local Search [2].
A Genetic Local Search (GLS) can be defined as a Genetic
Algorithm embedded with a Local Search technique [2].
 One possible way of alleviating the huge requirements of search
in such large spaces is to take advantage of clever local search
strategies as Stochastic Local Search (SLS). In [3], Rückert and
Kramer proposed a SLS algorithm for learning k-term DNFs, that is,
a set of k rules, obtaining competitive experimental results
compared to state-of-the-art rule learners. Therefore, we would like
to embed Rückert and Kramer SLS algorithm, as the local search
phase of a GBML rule learner.
 In [4, 11] we have developed a GBML rule learner that uses
the very common Modified DNF representation [5] and the high
memory economy Natural Coding [6]. Also, it was proposed a new
crossover operator for discrete attributes that explores the search
space like the two points binary crossover. This way, the system
combines the memory economy given by the Natural Coding with

the same exploration power of the two points binary crossover.
Moreover, the system merges the Michigan and Pittsburgh rule
generation approaches and also uses the Implicit
 Feature Selection Mechanism (IFSM) that tries to reduce the
number of features used in a rule. It achieved very good
experimental results compared with C4.5 [7].
 The paper is structured as follows. Section 2 describes the main
aspects of SLS algorithms and presents the new GLS rule learner.
The experimental results are shown in section 3. Finally, section 4
concludes the work.

2. STOCHASTIC LOCAL SEARCH
SLS algorithms perform a local randomized-walk in the search
space [2]. Generally, the SLS starts with a randomly generated
solution and it is usually organized in two main steps: Search and
Selection.
 In the Search step, the algorithm examines a set of neighbors
(candidate solutions) according to a neighbourhood relation. Each
neighbor is evaluated by a global scoring function.
 In the Selection step, the algorithm selects the candidate with
highest score given by the global scoring function. Since the choice
of the best candidate can easily lead to local optima, the algorithm
with a probability p chooses a random candidate solution instead of
the best one. (See [3] for a detailed description of a typical SLS
algorithm).

2. 1 Embedding SLS in our GBML System
Basically, our hybrid approach to develop concepts has a Michigan
cycle inside a Pittsburgh cycle. This way, we call the SLS procedure
inside the Pittsburgh cycle, after Michigan cycle execution (see
algorithm 1).
 When the GLS system calls the SLS procedure, one individual of

Algorithm 1. GLS Algorithm.

Cristiano Pitangui1 , Gerson Zaverucha1
COPPE – PESC/UFRJ - Rio de Janeiro, Brasil.

{cris_pi, gerson}@cos.ufrj.br

Copyright is held by the author/owner(s).
GECCO’08, July 12–16, 2008, Atlanta, Georgia, USA.
ACM 978-1-60558-130-9/08/07.

• Input: maxn: maximal number of generations; k, j: natural
numbers that, respectively, determine when the Michigan cycle
and SLS occur; pp: principal population (for Pittsburgh cycle);
sp: sub-evolution population (for Michigan cycle); e+: the set of
all positive examples in dataset; e-: the set of all negative
examples in dataset; enc+: the set of positive examples not
covered by the best individual in pp;

• Output: modified pp.;
Begin:

 1 - While (generation < maxn) //Pittsburgh Cycle
 2 - Evolve pp with e+ ∪ e-;
 3 - If ((generation % k) == 0) then //Michigan Cycle
 4 – Initialize sp randomly;
 5 - Evolve sp with enc+ ∪ e-;
 6 - pp pp concatenated with sp; //End of Michigan cycle
 7 - If ((generation % j) == 0) then
 8 - a random S from pp SLS (a random S, p1, p2, p3);
 9 – Return pp; //End of Pittsburgh cycle

1- The first author is financially supported by the Brazilian Research
Agency CAPES. The second author is partially financially supported by the
Brazilian Research Agency CNPq

1427

the population is randomly selected to go through the SLS. After the
execution of the SLS procedure, this improved individual is placed
again in the population to continue its genetic evolution through the
Pittsburgh cycle.
 The algorithm 2, called as SLS at algorithm 1, shows how SLS
algorithm from [3] is adapted for our GBML.

Algorithm 2. Rückert and Kramer SLS adapted for our GBML

3. EXPERIMENTS
 This section presents the results obtained by the GA without the
SLS procedure compared to the new GLS. All the experimental
results were obtained using 5 fold stratified cross validation, where
in each fold an internal 5 fold stratified cross validation was used for
tuning the parameters for all systems. For continuous-valued
attributes, we used the discretization method proposed in [9]. For all
experimentations, corrected-Student two-tailed paired t-tests [10],
using a confidence interval of 95%, were used in order to analyze
the results. The fitness function, for both GAs, was the training
accuracy. For each fold, the algorithm was executed 20 times
obtaining an average for the fold; as usual, the results are the
average (on the test sets) of the 5-fold stratified cross validation.

Table 1. Results: GA without SLS and GLS
 GA without SLS GLS

Nam. #Ru #Att Acc #Rul #Att Acc T-Test
bre 1 2,4 76.1 1 2,4 76,1 no
cr-a 1.4 3.2 92.4 1.4 3.2 92.4 no
gls 9 27.8 78.5 6,6 16 78,5 no
he-c 2.6 6.4 86.8 2,4 6,6 88,5 yes
hep 1.8 3.8 88.4 1.2 2.8 88.4 no
h-col 1.8 5 84.8 1,6 4,6 88,1 yes
Ino 2.4 19.8 91.3 1,2 13,2 95,6 yes
son 1.6 5 79.0 1,6 4 83,0 yes
vehi 14 82.6 74.0 10 70,8 77,3 yes
wbcd 2 4.2 96.1 1,6 3,2 97,7 no

 The table 1 shows that the accuracy obtained by the new GLS is
better or equal to the accuracy obtained by GA without SLS. In 5 of
10 datasets, the system using SLS achieved significantly better
accuracy and simpler concepts. For hep and glass, the accuracy was
the same obtained with GA without SLS, but the concepts were
simpler. It is important to note that, for the datasets that the GLS did
not achieved better accuracies nor a lower number of rules and
features (bre and cr-a), these results were obtained in less time
(lower number of population size, generations and sub-generations).
In fact, in comparison to the GA without SLS, the GLS uses an
inferior number of population size, generations and sub-generations.
These numbers are respectively 33%, 25% and 33% lower.

4. CONCLUSION
 This paper presents an adaptation of Rückert and Kramer SLS
algorithm [3] for our previous GBML system [4, 11].
 Results show that this procedure can help our GBML system to
evolve simpler and more accurate concepts using less time than
without the SLS procedure. This new GLS system showed to be
very effective, not losing in any of the 10 datasets tested and
significantly improving the accuracy and the simplicity in 5 of them.
Even when it was as accurate as GA without SLS, the GLS
developed simpler concepts or it was significantly faster.

5. REFERENCES
[1] David. E. Goldberg., Genetic Algorithms in Search, Optimization,

and Machine Learning, Addison-Wesley, Reading, Massachusetts,
1989.

[2] H. Hoos, T. Stützle, Stochastic Local Search: Foundations and
Applications, Morgan Kaufmann, The Morgan Kaufmann Series in
Artificial Intelligence, Inc. San Francisco, CA, USA 2004.

[3] Ulrich Rückert and Stefan Kramer. “Stochastic local search in k-
term DNF learning.” In Proc. Of the 20th ICML, pages 648-655,
2003.

[4] Pitangui, C., Zaverucha, G. “Genetic Based Machine Learning:
Merging Pittsburgh and Michigan, an Implicit Feature
Selection Mechanism and a New Crossover Operator”. 6th
International Conference on Hybrid Intelligent Systems. Auckland,
New Zealand, 2006.

[5] K. A. DeJong, W. M. Spears, and D. F. Gordon, "Using genetic
algorithms for concept learning”, Machine Learning, vol. 1, no.
13, 1993, pp. 161-188.

[6] Jesús S. Aguilar-Ruiz and J.C. Riquelme. “Improving the
Evolutionary Coding for Machine Learning Tasks”. European
Conference on Artificial Intelligence, IOS Press, Lyon, France
2002, pp 173-177

[7] J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan
Kaufmann, San Francisco, 1993.

[8] Blake, C.L. and Merz, C.J., “UCI Repository of machine learning
databases”, Irvine, CA: University of California, Department of
Information and Computer Science, 1998.
(http://archive.ics.uci.edu/ml/)

[9] U. M. Fayyad and K. B. Irani. “Multi-interval discretization of
continuous valued attributes for classification learning”,
Proceedings of the 13th International Joint Conference on
Artificial Intelligence, Morgan Kaufmann, Chambery, France,
1993, pp. 1022-1027.

[10] Nadeau C., Bengio Y., “Inference for the Generalization Error”,
Machine Learning 52(3) pp. 239-281, 2003.

[11] Pitangui, C., Zaverucha, G. Improved Natural Crossover Operators
in GBML. In: IEEE Congress on Evolutionary Computation
(CEC), 2007, Singapore, 2007. p. 2157-2164.

• Input: solution (s) with one or more rules; probabilities (p1, p2,
p3); maxScore; maxSteps.

• Output: Modified solution (s).
Begin:

1- While fitness (s) ≠ maxScore or steps < maxSteps do:
2- ex a random example misclassified by s;
3- If ex is a positive example then
 4- rule with a probability p1: a random rule from the
solution s; otherwise, the rule that differs in the smallest number
of attributes from ex;
 5- atr with a probability p2: a random attribute in rule;
otherwise, the attribute that when is not used, increases the fitness
from solution s at most;
 6- s s with the atr removed (not used) from rule;
 end-if;
7- If ex is a negative example then
 8- rule a random rule in solution s that covers ex;
 9- atr with a probability p3 a random attribute from s, that
when is being used in rule, this rule does not cover ex; otherwise,
an attribute from s that when is being used in rule, increases the
fitness from solution s at most;
 10- s s with attribute added (used) to rule;
 end-if;

end-while;
11- return solution s;

1428

