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ABSTRACT 
Scenarios are pen-pictures of plausible futures, used for strategic 
planning. The aim of this investigation is to expand the horizon of 
scenario-based planning through computational models that are 
able to aid the analyst in the planning process. The investigation 
builds upon the advances of Information and Communication 
Technology (ICT) to create a novel, flexible and customizable 
computational capability-based planning methodology that is 
practical and theoretically sound. We will show how evolutionary 
computation, in particular evolutionary multi-objective 
optimization, can play a central role – both as an optimizer and as 
a source for innovation. 

Categories and Subject Descriptors 
G.1.6 Optimization: Stochastic programming  

General Terms 
Experimentation. 

Keywords 
Genetic algorithms, capability planning, long term planning, 
uncertainty. 

1. Introduction 
Capability, or defense, planning is a form of strategic planning 
[20] which focuses on the development of future plans. It does not 
address the issue of making specific future decisions [20][21], 
which is normally taken care of in the scope of operations 
planning. The Australian Defence Force (ADF) combines both 
types of planning in a unified framework so that the planning 
process is carried out on multiple timescales. It is this meaning of 
the term ‘capability planning’ that we use throughout this paper. 
Defense capability planning is usually based on the scenario 
method. Scenarios represent different frames for plausible futures 
[17]. Some of these frames are aligned with current world views 
and strategies, while others deviate from this alignment. Their aim 
is to focus the planner’s mind on establishing future contexts and 
help make a case for the development and justification of 
strategies. They also assist the planner in defining intermediate 
goals along the path towards the future.  

Common to all scenarios is that they deal with uncertainties and 
illustrate major issues a planner has to deal with. Schoemaker [17] 
sees the elements in the scenario set as uncertainty-bounding. 
Thus, one can think of scenarios as the edges that bound a multi-
dimensional sub-space of uncertainty. Critics of the scenario 
method claim that the future is inherently unpredictable and that 
using scenarios to anticipate futures is an illusion [[15]]. In this 
paper we refrain from this philosophical debate. 
In the defence and other literature, uncertainty falls into two 
classes: branching points and surprises/shocks linked to deep 
uncertainty. Davis and Kahan [7] define deep uncertainty as 
“materially important uncertainties that cannot be adequately 
treated as simple random processes and that cannot realistically be 
resolved at the time they come into play”. One of the causes for 
deep uncertainty are sudden and unique incidents, or wild cards, 
“that can constitute turning points in the evolution of a certain 
trend” [14]. Hence, deep uncertainty cannot be modeled in trend 
or other traditional probability-based analysis techniques. Stated 
differently, deep uncertainty is “the result of pragmatic limitations 
in our ability to express all that we know about complex adaptive 
systems and their associated policy problems” [3].  
Deep uncertainty thus poses a significant challenge for the 
capability planner, and an important step towards tackling this 
challenge is to get rid of the desire of precise prediction and the 
goal of eliminating uncertainty through accurate forecasts [16] 
Eden [10] argues that the primary reason to account for 
uncertainty in strategic planning is that it turns planning for the 
future from a one-off event to an ongoing learning proposition. 
With learning a key objective, the aim of techniques in support of 
the planning process shifts away from prediction accuracy and the 
requirement for a ‘best’ solution. Instead, providing the planner 
with tools to explore the space of possible futures and a means of 
generating information on future alternatives becomes important. 
Scenario planning, apart from being most defense organizations’ 
tool of choice, provides such an environment for futures 
exploration. Here we define scenario planning as a continuous 
process for capturing dynamic causality in the eyes of uncertainty 
to identify alternatives and informative courses of actions that 
management can pursue, when faced with fast-moving changes.  
While uncertainty – in particular discontinuities and limitations 
arising from deep uncertainty – has been and still is a challenge in 
scenario planning, complexity is the emerging one. Recent 
advances in the management literature show a vast trend in 
research on complexity [4][11]. However, it is rare to see 
complexity addressed in the scenario planning literature – with 
the exception of a few studies in defense [2][7][8][18][19]. 
There are two main reasons why capability planning is not only 
complicated but complex. Firstly, capability systems are 
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composites of subsystems that have intricate and non-linear 
spatiotemporal interdependencies and often interact strongly with 
the environment in which they are embedded. This is particularly 
the case for defense capabilities. For instance, planning for a pre-
emptive strike capability would involve the balancing of air, 
maritime and land capabilities; it would change a national defense 
strategy and hence affect current and future defense capabilities; and 
its realization would need to consider political, social and cultural 
sensitivities. Secondly, capability planners are not just ‘passive 
recipients’ of what the future might bring. They actively influence 
and shape the future context in which the capability will operate. In 
the aforementioned example, the introduction of a pre-emptive 
strike capability could actually spark and feed the very threat it 
wants to defeat; and the implications on the political and social 
environment, both domestic and international, are huge.  
Some of the consequences of this complexity are that (1) phase 
transitions, self-organization and other phenomena of non-linear 
dynamics can occur, and thus simple cause-effect relationships do 
no longer govern the causality of the planning problem; (2) planning 
outputs may show large variations in response to small changes in 
inputs; and (3) capability system boundaries are hard or even 
impossible to define. Scenario planning therefore is in need of 
techniques that help unveil causality hidden in the non-linearities of 
the problem; explore the results of input changes; and interpret the 
consequences of planning actions. For this, we propose to 
complement the scenario technique with fast, frugal and exhaustive 
exploration tools that provide outputs of alternatives and summarize 
the benefits and drawbacks of such alternatives in a meaningful 
way. 
In this paper, we introduce what we call Computational Scenario-
based Capability Planning (CSP). CSP is not about computerizing 
the strategic planning process. CSP has two objectives: (1) 
expanding the horizon of scenario planning to manage the 
complexity arising from networking future operations; and (2) 
enhancing the scenario planning process with computer models that 
make use of the advances in Information and Communication 
Technology (ICT) and assist the planner and management in the 
exploration of the space of possibilities. In CSP, the first objective is 
accomplished by adopting principles from the study of complex 
adaptive systems [13]. The second objective is achieved through 
computer-in-the-loop scenario planning based upon novel 
interactive models of contexts and the computerization of parts of 
the scenario generation process. Because planning is a human-
centric process, we use ‘computer-in-the-loop’, i.e. the planners are 
fully integrated in the process and use the computational models as 
exploratory and decision aiding tools. Thus ICT ‘guides’ the 
planning process. This paper will only focus on the second objective 
by introducing the methodology and illustrating it in an abstract – 
but representative – case study. 

2. Planning Problems are Not Optimization in 
Uncertain or Dynamic Environments Problems 
Probably the highest gain organizations achieve from scenario 
planning is the use of scenarios for reshaping the mind of the 
decision maker towards perceiving uncertainty, current and future 
vulnerabilities, and risks that otherwise would not be perceived. 
This is to a certain degree captured in Donald Rumsfeld’s famous 
saying that “Plans are nothing, planning is everything”. Planning, 

including scenario-based planning, trains our minds to face the 
unknown.  
The key differentiator between scenario planning and traditional 
prediction methods is the way uncertainty is handled. In traditional 
probabilistic approaches, scenarios can be seen as events with their 
associated probability distributions. This approach is successful in a 
number of domains such as describing the spread of diseases. In the 
strategic planning arena, however, the probabilistic view of the 
world has many limitations that make it unfit.  
The first problem is the massive amount of data that need to be 
collected, maintained and updated to manage these probability 
distributions. The second problem is its inability to account for 
emotions, feelings, and the complex human behavior. The socio-
technical interface is critical in many, if not all, strategic security 
and defence planning exercises. The third problem is it can handle 
one type of uncertainty only: branching points - the planned 
uncertainty that we understand well and can map onto a set of 
probability distributions [6]. Shocks and surprises can’t be 
accounted for. Consequently, the approach suffers from an 
inadequacy to capture discontinuities in systems. Some would argue 
that September 11, the collapse of the Soviet Union, the rise of 
China and the fall of the Roman empire caused discontinuities in 
history. These discontinuities are tipping points in the life-cycle of 
the system and cannot be modeled by the probabilistic and 
analytical schools. The fourth problem is that the use of historical 
data to generate the probability distributions – assuming the 
continuity of trends - is inadequate beyond short-term planning. 
As such, thinking of the planning problem as an optimization in an 
uncertain and dynamic environment can be misleading. Firstly, the 
objective of optimization is to find the best global or local solution. 
In planning, however, there is no such thing as the best solution for 
the problem. The objective of planning is to unfold the uncertainty 
in future environments and identify strategies to harness this 
uncertainty. Secondly, optimization in dynamic environments 
assumes that there is a trend underneath the change; otherwise there 
is no advantage from adaptation. Deep uncertainty represents a 
discontinuity in the strategic space, and as such, can change the 
parameters as well as the structure of a problem. This makes the 
concept of adaptive optimization unsuitable in the domains around 
any such discontinuity. Thirdly, in an uncertain environment, 
multiple evaluations of the same solution configuration would result 
in different values of the objective function. The variation in these 
values is normally attributed to noise. Therefore, most approaches 
rely on calculating the average (normalized) fitness of a solution 
assuming that a solution is implemented an infinite number of times 
to overcome the noise. When evaluating a solution in scenario 
planning, variations in the evaluations are attributed to variations in 
the scenario space (i.e. the space of possibilities). Therefore, taking 
an average is not recommended since every evaluation represents a 
plausible future rather than noise. Taking the worst case is also 
misleading as it can result in an over-estimate of the required 
resources.  
In this paper, the reader will develop an appreciation of the 
complexity of the planning problem and will find out that 
optimization techniques for uncertain and dynamic environments 
can be used if the aforementioned pitfalls are avoided. However, 
optimization techniques, alone, are insufficient to handle the 
complexity of a planning problem. 
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3. Resource Planning under Time Constraints 
The real world capability planning problems can take multiple 
forms. This paper is part of a larger study on land mobility 
requirements and the design of future land mobility capability. We 
present here part of the methodology to answer the question of how 
many field vehicles an army needs in 2025. Our paper focuses on 
the structured part of the methodology with the actual process for 
answering the previous question being far more complex and 
outside the scope of this paper. 
The methodology relies on the existence of a simulation 
environment for wargaming and an optimization environment (we 
call the Solver) for the identification of the minimum amount of 
resources required to achieve a certain level of efficiency. In fact, 
the high fidelity solver we built can be used to answer three 
questions: what is the minimum number of vehicles needed to fulfill 
the requirements of a scenario which – after an abstraction step – 
can be parameterized in terms of a certain number of tasks? Given 
an existing fleet, what is the efficiency of this fleet – measured, for 
instance, by the total number of fulfilled tasks – in a certain 
scenario? Given an existing fleet, how many vehicles of each type 
need to be acquired to meet the requirements of a given scenario? 
The Solver is of high fidelity and contains a large number of 
specific military constraints (see [1] and [2] for more details). In this 
paper, however, neither the space nor the depth required for the 
analysis would make the use of the high-fidelity Solver feasible or 
practical. Therefore, we demonstrate our CSP methodology using an 
abstract version of the original problem. The abstract problem 
captures the complexity of the original problem while making it 
feasible to demonstrate a complex methodology. It is an 
amalgamation of the resource planning problem (i.e. find the 
amount of resources to meet a certain demand) and the resource-
constrained project management problem (i.e. schedule tasks under 
resource constraints). We call the problem “resource planning under 
time constraints” (RPTC). A formal definition of our RPTC is as 
follows: 
Given 

- a vector of vehicle types V=( V1, …., Vn)  
- a cost vector, C=(C1, …., Cn) representing the cost of 

each vehicle type Ti, 
- a vector of resource types R=(R1, …., Rm) 
- a matrix M={Mij}, with Mij representing the amount of 

resources of type j that one unit of a vehicle type Vi can 
transport, 

- a list of tasks T={Tlj}, l=1…kj, with kj representing the 
number of tasks associated with resource type j; and 
Tlj=(Dlj,ESlj,MDlj,Qlj), with Dlj representing the duration 
of the task labeled with lj, ESlj representing the earliest 
start time in hours and minutes, MDlj representing the 
maximum delay in minutes allowed, and Qlj representing 
the number of units of resource j required. 

- a cost vector, B=(B1, …, Bm) representing the cost that 
one unit of a resource of type Rj is not fulfilled in one of 
the tasks associated with that resource type. 

Find 
- a vector X=(X1,…,Xn), where Xi is the number of 

vehicles needed of type Vi, such that all tasks are 
fulfilled 

by performing the following optimizations 
- Minimize the total cost of vehicles, C.X 
- Minimize the variance var(X) of the vehicle vector. 

The first objective is the result of tight cost constraints in the land 
mobility capability project. The second objective captures in a 
simple way the requirement for robust fleets, i.e. fleets which are 
stable against unexpected task variations and most likely to adjust 
to large, unplanned changes in task profiles. Experience shows 
that this characteristic can be approximated by ‘balancing’ the 
fleet, i.e. by minimizing the difference between the number of 
vehicles of different types. While equating robustness with var(X) 
minimization is inaccurate, it is sufficient for illustrating our CSP 
methodology. 
The two objectives are not necessarily in conflict. However, they 
conflict with each other in many of the scenarios we generated, 
especially when there is a demand for many different vehicle 
types. Therefore, it is safe to assume that the problem is a multi-
objective optimization problem. In this paper, we use NSGA-II 
[9] to optimize this problem.  
The vector X is evaluated by a simple heuristic. This heuristic 
assigns the most costly unfulfilled task to the largest available 
vehicle that can fulfill the task, locks the vehicle for the duration 
of the task, reduces the task requirements by the amount moved 
by the vehicle, then loops until all tasks are fulfilled. If at the end 
some tasks remain unfulfilled, the total cost of an unfulfilled task 
is calculated, gets multiplied by a penalty term and added to 
objective functions. 
While occasionally this simple heuristic may determine sub-
optimal vehicle vectors X, it would be disadvantageous to replace 
it with a more complicated one. As indicated in the Introduction, 
the aim of planning techniques is to be explorative while 
prediction accuracy is of lesser importance. Elaborate heuristics 
can (marginally) improve the accuracy of a single RPTC solution; 
however, this comes at the expense of increased processing time. 
In the CSP the solution of a single RPTC problem is only one 
point in a set of alternatives generated during an exhaustive 
scenario exploration phase that may require solving the RPTC 
problem thousands or millions of times. Thus exploration speed 
becomes essential, and simple, fast heuristics outperform 
potentially more precise but slower optimization techniques. In 
addition, the methodology we present in the next section is robust 
against the occasional sub-optimality of individual RPTC 
solutions because these solutions get aggregated and the 
advantage of having an exact optimal solution for each RPTC gets 
reduced or may even disappear. Nevertheless, this does not mean 
that we should not strive to find optima. If sub-optimality is 
frequent then the aggregation over-estimates the vehicles required 
in the land mobility capability. The point we want to make is that 
there is a compromise. An investigation of the algorithm used in 
the high-fidelity solver [2] revealed that some simple heuristics 
are so powerful that they can generate very close to optimal 
solutions in time and resource constrained scheduling problems. 
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4. Proposed Computational Planning Model 
The proposed methodology has three main stages. Stage 1 is 
responsible for generating scenarios. Stage 2 is responsible for 
sampling instances of the RPTC problem and solving it. Stage 3 is 
responsible for grouping recommendations across all scenarios 
and problem instances to develop a suitable path from the current 
fleet mix to future fleet mix alternatives. Stages 1 and 2 are 
connected through a feedback loop, where scenarios can be 
generated based on observations made during Stage 1. However, 
in this paper, this feedback is not considered because of the 
complexity it imposes on the overall process. The three stages can 
be assumed to be independent. Figure 1 depicts the steps 
underlying each stage. Details on these steps are provided in the 
context of a case study in the next section. 

5. Case study  
In this section, we present a hypothetical case study, to elaborate 
on the CSP methodology and demonstrate realistic concepts. 
After articulating the planning purpose we elaborate on the main 
stages of the CSP model; scenario generation, RPTC sampling, 
and recommendations 

5.1 Planning Purpose  
Assume that: 
- today is 1st of January 2000; 
- there is a budget of $0.5b available to buy additional 

vehicles in the next 5 years;  
- there are six different types of vehicles: two armored 

vehicles (V1,V2), two specialized engineering vehicles for 
construction (V3,V4), and two class-B vehicles for supplying 
ammunitions, food, water, etc. (V5,V6); 

- the cost of each vehicle is $0.2m, $0.4m, $0.2m, $0.4m, 
$0.5m and $0.8m respectively; 

- there are seven different resources types (R1,…,R7), each 
vehicle can only work on one task at a time (i.e. a vehicle 
cannot do two different types of tasks simultaneously); 

- the cost of not fulfilling a task for each resource type is 
$100, $200, $50, $200,$ 20, $200, and $100, respectively; 

- V1 can deliver up to two and four units of resource R1 and 
R2, respectively; V2 can deliver up to three, six and two units 
of resource R1, R2 and R3, respectively; V3 can deliver up to 
five, ten and eight units of resource R5, R6 and R7, 
respectively; V4 can deliver up to eight, twelve and 14 units 
of resource R5, R6 and R7, respectively; V5 can deliver up to 
four and three units of resource R3 and R4, respectively; V6 
can deliver up to ten units of resource R4 only;  

- The question is how many vehicles should we order today 
based on our anticipated fleet mix in 2025. 

5.2 Stage 1: Scenario Generation 
Step 1. Use Creative Thinking Methods to identify deep 
uncertainties and design different futures scenario structures. 
Scenario planning is chosen as the approach to answer the 
previous question. A committee of experts undertook a number of 
brainstorming sessions and the Field Anomaly Relaxation (FAR) 
technique [5] was used to identify the basic factors underpinning 
future operations. FAR identified three factors for shaping the 
future, these are: Fire superiority (F), economic, social and 

Figure 1. The Computational Planning Model

Stage 1: Scenario Generation 
Step 1. Use Creative Thinking Methods to 

identify deep uncertainties and design different 
futures scenario structures. 

Step 2. Build a database of future scenario 
structures; call it SDB. Initialize SDB.counter to 
the number of scenarios in SDB 

Step 3. Select a different scenario from SDB, 
subtract 1 from SDB.counter. 

Stage 2: RPTC Sampling 
Step 4. Parameterize the scenario. 
Step 5. Use human-based or computer-based 

simulations to generate the required list of tasks 
for that scenario. 

Step 6. Formulate the RPTC problem 
Step 7. Add the problem to SDB(i).PDB(j) 
Step 8. Solve the RPTC problem 
Step 9. Extract the Non-dominated set where 

all tasks in the scenario are fulfilled and add it to 
the list of NDS, and let NDS(l).cost be the cost 
of acquiring the vehicles corresponding to 
solution l. 

Step 10. If stopping criteria is not met, go to 
Step 4 

Step 11. If SDB.counter >0, go to Step 3. 
Step 12. Evaluate every non-dominated 

solution l in NDS on every problem in 
SDB(i).PDB(j) for all i and j, by measuring the 
total cost of unfulfilled tasks to generate an 
overall score NDS(l).score(j) for each scenario j 

Stage 3: Recommendations 
Step 13. Use k-centroid clustering to cluster the 

list of NDS such that the maximum distance 
between any two weighted solutions in a cluster 
should not exceed a threshold θ1. 

Step 14. For each cluster Ψα, α=1…Θ, where 
Θ is the total number of clusters found in Step 
13, find Ωα representing the ceil on the number 
of vehicles in each cluster α. , evaluate the ceil 
on all problem instances for all scenarios to 
calculate the score function. 

Step 15. Use k-centroid to cluster Ωα such that 
the maximum distance between any two 
weighted solutions in a cluster does not exceed a 
threshold θ2. 

Step 16. If either the instances fall in a single 
cluster or all clusters have one element, go to 
Step 17, else go to Step 14. 

Step 17. Use the hierarchy of clusters generated 
from Steps 13-16 to build the capability 
evolution network. 

Step 18. Use the scores assigned on each 
solution to calculate a score on each scenario for 
each node in the network.
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political negotiation abilities (E), and logistics (L). For each 
factor, three levels of High (denoted as 1), Medium (denoted as 2) 
and Low (denoted as 3) prevalence were defined. A possible 
future can be seen as the combination of the three factors at 
different levels. For example, F3E1L1 may represent a future 
where the military powers of different nations are equal and 
conflicts are resolved in negotiations, or a future where 
humanitarian operations are important. Another example is 
F1E3L1 representing a future where offensive operations are 
dominant. The FAR analysis revealed three plausible futures: 
F3E1L1, F1E3L1, and F3E3L1. These represent the three futures to 
be investigated.  
The sole purpose of this step is to capture deep uncertainty. Each 
of the three scenarios mentioned above create discontinuity in the 
strategy space, where one plan that is suitable for one scenario is 
not fit for the other. In reality, deep uncertainty is far more 
complex to capture than this simple hypothetical example, and we 
are developing more rigorous approaches to capture it. However, 
the advantage of the three scenarios we have lies in the 
discontinuity they will create in our strategy space. 
Step 2. Build a database of future scenario structures; call it 
SDB. Initialize SDB.counter to the number of scenarios in SDB 
Each of these futures is normally scripted in a narrative that 
defines the backbone structure of a scenario. Each narrative 
represents a generic sequence of how the dynamics of a scenario 
may unfold. One can think of each of these as a movie, where 
characters are given general guidelines of their roles and 
behaviors without being told exactly what to do. In step 5, the 
characters play the movie and the dynamics (i.e. the story) unfold 
as the movie is played. 
Step 3. Select a different scenario from SDB, subtract 1 from 
SDB.counter. 
This is an iterative step, where each scenario is selected in turn. 
We work on all scenarios simultaneously for ease of presentation. 

5.3 Stage 2: RPTC Sampling 
In this stage, the scenarios are parameterized, simulated to 
generate the tasks, the RPTC problems are formulated and solved, 
and the solutions are grouped and evaluated on all scenarios. 
Step 4. Parameterize the scenario. 
The parameterization of each scenario is the process of defining 
the functional requirements for a scenario to be simulated. For 
example, in scenario F3E1L1, we need to define the red (enemy) 
and blue (friendly) forces, the context in which negotiation will 
take place, the different behaviors red may exhibit, etc. At the end 
of this stage, the complete simulation setup is well-defined so that 
the scenario can be simulated in the next step. 
Step 5. Use human-based or computer-based simulations to 
generate the required list of tasks for that scenario. 
The military is famous for conducting live experiments, where an 
entire operation can be simulated by a group of humans. 
However, these human-based simulations or experimentations are 
very expensive. Instead, computer-based simulations can be a 
cheaper alternative. However, computer-based simulations are 
normally criticized for being pre-scripted and there is no room for 
cognitive and behavioral aspects to be represented efficiently. 
Recently, a type of multi-agent systems known as agent-based 
distillations [12][18][19] has shown potential in overcoming these 
limitations. Any of these agent-based distillation systems can be 

used to simulate a scenario, although we prefer the Warfare 
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for Dynamic Optimization of Missions (WISDOM), which we have 
developed for modeling combat operations. WISDOM has many 
advantages including its ability to reason on group level behaviors 
and to analyze in real-time many measures including social network 
analysis and combat measures. 
Running WISDOM many times with different random seeds, 
discretizing the time into bins to generate the different tasks, 
collating these bins and fitting probability distributions to find out 
the probability distribution of each task type would generate the 
previous table. In the table, kj defines the observed frequency of 
tasks (High, Medium and Low); Dlj defines the observed duration 
(Long, Medium and Short); MDlj defines the observed time 
criticality of tasks measured by the maximum delay allowed for a 
task (Critical, Less critical and Not critical); Qlj represents the 
observed demand quantity of the task (Large, Medium and Small); 
and the letters “N” and “U” in the table denote the fitted Normal and 
Uniform distributions respectively.  
Step 6. Formulate the RPTC problem 
The probability distributions, along with their parameters, in the 
table can sample many instances of the RPTC. We sample 1000 
instances for each scenario. 
Step 7. Add the problem to SDB(i).PDB(j)  
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Each instance of the RPTC that corresponds to each scenario will be 
added to the database SDB(i).PDB(j) with PDB initiated at the 
generation of the first scenario instance . The following figure 
shows the frequency diagram for parameter kj summed over all 
resource types. We only show one of the three scenarios for space 
limitations. There were differences in the task distributions among 
scenarios that indicate discontinuity in the strategic space that will 
be reflected in the final set of options. 

 
Step 8. Solve the RPTC problem 
Each problem instance for each scenario is solved using NSGA-II 
and the heuristic mentioned in Section 2. The population size is set 
to 50, and the maximum number of generations is set to 100. The 
default parameters for NSGA-II are used. 

 
In the previous figure, the x-axis denotes generation identification 
time, and the y-axis the non-dominated solution with the minimum 
total cost in 1000 instances of the second scenario. The clear gap 
between the top curve in the figure and almost all other curves is a 
reflection of the uncertainty in that scenario. This entails that most 
instances can be solved with a fleet costing $2.4b to $3.3b, while 
one of the instances requires at least $3.5b.  
Step 9. Extract the non-dominated set (NDS) where all tasks in 
the scenario are fulfilled and add it to the list of NDS, and let 
NDS(l).cost be the cost of acquiring the vehicles corresponding to 
solution l.  
The non-dominated set for each problem instance and for all 
scenarios is extracted. The following figure shows a scatter diagram 
of all non-dominated solutions generated for scenario 2. The gap 

shown in the previous figure is still clear in the different curves 
for non-dominated solutions. 

 

 
If we look at a frequency diagram of the total cost for acquiring 
vehicles for each of the three scenarios (shown in the next three 
figures), one can see the effect of discontinuity in the scenario space 
on the distribution of solutions that are fit for different scenarios. In 
essence, each scenario can be seen as a different problem, so it is 
natural to have different solution set. The key in strategic planning 
is to find a path over time to solve all these problems. As such, these 
problems are different but not un-related. 

 

 
Step 10. If stopping criteria is not met, go to Step 4 
This is an iterative step. The stopping criterion is to solve all 
problem instances for the scenario. 
Step 11. If SDB.counter >0, go to Step 3.  
This is an iterative step. The stopping criterion is to solve all 
scenarios.  
Step 12. Evaluate every non-dominated solution i in NDS on every 
problem in SDB(j).PDB(k) for all j and k, by measuring the total 

1442



cost of unfulfilled tasks to generate an overall score NDS(i).score(j) 
for each scenario j 
In this step, every non-dominated solution that got generated for 
each problem instance is evaluated on all scenarios. A score is given 
for each solution as follows 

∑=
k
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k

j
k

NOT
CUT

jscoreiNDS )().(  

where CUTk
j is the cost for unfulfilled tasks for solution i when 

measured on problem instance k in scenario j, and NOTk
j is the 

number of tasks in problem instance k in scenario j. 
All scores are then normalized for each scenario independently by 
dividing each score by the maximum score obtained in a scenario. 
The score function represents the risk of adopting a non-dominated 
solution as measured by the level of vulnerability resulting from not 
fulfilling some tasks in different scenarios. 

5.4 Stage 3: Recommendations 
Step 13. Use k-centroid clustering to cluster the list of NDS such 
that the maximum distance between any two weighted solutions in a 
cluster should not exceed a threshold θ1.  
We use k-centroid clustering carried out on the solution/genotype. 
The clustering operation is preformed under the constraint of the 
weighted solution; that is, each number of vehicles is replaced by 
the number of vehicles multiplied by the cost of a vehicle. 
Therefore, the distance between two weighted solutions represent 
the Euclidean distance between the cost vector of two possible fleet 
mixes. The threshold θ1 – taken in this study to be $0.5b - represents 
the difference in total costs for which two solutions are seen to be 
invariant or similar in terms of their budget.  

Step 14. For each cluster Ψα, α=1…Θ, where Θ is the total 
number of clusters found in Step 13, find Ωα representing the ceil on 
the number of vehicles in each cluster α, evaluate the ceil on all 
problem instances for all scenarios to calculate the score function.  
The ceil for each cluster is calculated. It represents the minimum 
number of vehicles from each type required in a fleet that can 
perform all problem instances that generated the solutions in that 
cluster. Each ceil is evaluated on all problem instances and the score 
function is calculated for each scenario. 

Step 15. Use k-centroid to cluster Ωα such that the maximum 
distance between any two weighted solutions in a cluster does not 
exceed a threshold θ2.  
This is a recursive step, where the ceils are also clustered, in a 
similar way to the original solutions, and new ceils are calculated. 
The idea of this step is to build a hierarchy of clusters which 
aggregate the capabilities. θ2 is taken to be $0.5b. 
Step 16. If either the instances fall in a single cluster or all clusters 
have one element, go to Step 17, else go to Step 14.  
This is a conditional step to decide on whether or not to continue the 
clustering. In our case study, we generated approximately 150,000 
non-dominated solutions from all runs. After removing duplicates 
(the same solution generated by different runs), this was reduced to 
139,769 non-dominated solutions. The clustering algorithm 
generated 341 clusters. After taking the ceil of each cluster and 
applying the clustering algorithm on the ceil, 174 clusters were 
generated. The algorithm became stable with 162 clusters. 
Discussing this large network or visualizing it in this paper was not 
possible. Therefore, we decided to filter the data by only selecting 

the solution with the least cost in each non-dominated set. This 
generated 3,000 solutions (3 scenarios x 1000 instances per 
scenario). Clustering these solutions resulted in 29 clusters. By 
taking the ceil for each cluster and clustering these ceils, 18 clusters 
were generated and the algorithm became stable. 
Step 17. Use the hierarchy of clusters generated from Steps 13-16 
to build the capability evolution network.  
The hierarchical clusters generated from Steps 13-16 are used to 
generate the capability evolution network on the next page. Notice 
that the origin of the network on the right side of the diagram 
represents our present land mobility capability. Each transition in 
the network is bounded by θ2, which means that each transition 
costs no more than θ2.  
Step 18. Use the scores assigned on each solution to calculate a 
score on each scenario for each node in the network. 
A capability evolution network shows the possible transitions from 
one capability set to a larger capability set. Each transition will be 
from a low cost capability set to a higher cost capability set, as well 
as, from a high score value (high risk) to a lower score value (low 
risk). Each node of the capability evolution network is then 
parameterized with the scores of the configurations on that node and 
each arc is parameterized with the difference in cost between the 
configurations are each end. We visualize the capability evolution 
network in the next page. The network clearly shows the complexity 
of the problem.  

6. Conclusion 
In this paper we motivated the need for new fast and frugal tools 
that facilitate the exploration of capability planning problems and 
thus offer learning opportunities to the strategic planners. We 
formulated the principles of the computational scenario-based 
capability planning (CSP) methodology which combines the 
scenario technique with modern ICT methods to allow for (1) the 
generation of vast sets of plausible futures from a few high-level 
scenario templates; (2) the exhaustive exploration of the space of 
scenario instantiations to unravel the complex causality hidden in 
such problems; (3) the formulation of conflicting objectives at 
different planning levels; (4) the interpretation of the potentially 
enormous set of generated capability solutions; and (5) the 
interaction between humans and machines through feedback (and 
feedforward) loops. At the core of the methodology, an evolutionary 
multi-objective optimization algorithm is used to generate capability 
options.  
We applied a simplified version of the CSP methodology to a 
hypothetical case study of a land mobility capability planning 
process and showed how abstraction and parameterization of 
scenario templates can be used to generate thousands of scenario 
instantiations, and how conflicting planning objectives create vast 
amounts of non-dominant capability options. Clustering methods 
were employed to aid in the solution analysis. 
The application of the CSP methodology to this case study 
highlights that it is a powerful approach for deciding on future 
capabilities. This paper is merely a first step towards the full CSP 
methodology and its application to real-world planning problems. A 
number of further developments are needed, in particular in the 
areas of scenario abstraction and solution interpretation. This is the 
focus of future work, in which we aim to improve the methodology 
and make it more practical by adopting the methodology to effect-
based planning.  
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