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ABSTRACT 
Differential Evolution (DE) has recently emerged as a simple 
yet very powerful technique for real parameter optimization. 
This article describes an application of DE for the design of 
Fractional-Order Proportional-Integral-Derivative (FOPID) 
Controllers involving fractional order integrator and fractional 
order differentiator. FOPID controllers’ parameters are 
composed of the proportionality constant, integral constant, 
derivative constant, derivative order and integral order, and its 
design is more complex than that of conventional integer order 
PID controller. Here the controller synthesis is based on user-
specified peak overshoot and rise time and has been formulated 
as a single objective optimization problem. In order to digitally 
realize the fractional order closed loop transfer function of the 
designed plant, Tustin operator-based CFE (continued fraction 
expansion) scheme was used in this work.  Simulation examples 
as well as comparisons of DE with two other state-of-the-art 
optimization techniques (Particle Swarm Optimization and 
Bacterial Foraging Optimization Algorithm) over the same 
problems demonstrate the superiority of the proposed approach 
especially for actuating fractional order plants.  

Categories and Subject Descriptors 
I.2.8 [Artificial Intelligence]: Problem Solving, Control 
Methods, and Search -- Heuristic methods; G.1.6 [Numerical 
Analysis]: Optimization -- Global optimization 

General Terms 
Design 

Keywords 
Fractional Order Controller, PID controller, Differential 
Evolution, Swarm Intelligence. 

1. INTRODUCTION 
Fractional order dynamic systems and controllers, which are 
based on fractional order calculus [1-3], have been gaining 
attention in several research communities since the last few 
years [4, 5]. 

Podlubny [6] proposed the concept of the fractional order PIλDμ 
Controllers and demonstrated the effectiveness of such 
controllers for actuating the responses of fractional order 
systems in 1999. A few recent works in this direction as well as 
schemes for digital and hardware realizations of such systems 
can be traced in [7-9]. Vinagre et al. [10] proposed a frequency 
domain approach based on expected crossover frequency and 
phase margin for the same controller design. Petras [11] 
proposed w a method based on the pole distribution of the 
characteristic equation in the complex plane. Dorcak et al. [12] 
proposed a state space design approach based on feedback pole 
placement. The fractional controller can also be synthesized by 
cascading a proper fractional unit to an integer order controller 
[5]. 
PID controllers have been used for several decades in industries 
for process control applications .The reason for their wide 
popularity lies in the simplicity of design and good performance 
including low percentage overshoot and small settling time for 
slow process plants [13]. In FOPID controller I and D operations 
are usually of fractional order, therefore besides setting the 
proportional, derivative and integral constants idp TTK ,, we 

have two more parameters: the order of fractional integration λ  
and that of fractional derivative μ . Finding an optimal set of 

values for ,,,, λdip TTK and μ  to meet the user specifications 

for a given process-plant calls for real parameter optimization in 
five-dimensional hyperspace.  
Differential Evolution (DE) [14, 15] has recently become quite 
popular as a simple and efficient scheme for global optimization 
over continuous spaces. It has reportedly outperformed many 
types of evolutionary algorithms and search heuristics like 
Particle Swarm Optimization (PSO) when tested over both 
benchmarks and real world problems [16]. In this research, a 
state-of-the-art version of DE has been used for finding the 
optimal values of ,,,, λdip TTK and μ  .The design method 

focuses on optimum placing of the dominant closed loop poles 
and incorporate the constraints thus obtained using DE 
algorithm. The optimization-based design process has been 
tested for actuating the response of two process plants of which 
one is of integer order and the other is of fractional order. The 
performance of the DE based PIλDμ controller has been 
compared with two other fractional order controllers designed 
with the state of the art versions of two recent population based 
techniques well known as the HPSO-TVAC [17] and the 
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Genetic Algorithm [18,19]. Such comparison reflects the 
superiority of the proposed method in terms of quality of the 
final solution, convergence speed and robustness. 
The rest of the paper is organized in the following way. Section 
2 describes the rudiments of fractional calculus and fractional 
order control systems. Section 3 provides a brief overview of the 
DE family of algorithms and describes a recent state of the art 
version of DE called DE/rand/either-or, which was used, in this 
specific task. Section 4 demonstrates how the DE can be applied 
to the PIλDμ controller design problem when formulated as an 
optimization task. Simulation strategies and experimental results 
has been presented and discussed in Section 5 and finally the 
paper is concluded with a discussion on future research issues in 
Section 6. 

2. FRACTIONAL ORDER SYSTEMS: A 
BRIEF OVERVIEW 
Fractional calculus is a branch of mathematical analysis that 
studies the possibility of taking real number power of the 
differential operator and integration operator. From a purely 
mathematical point of view there are several ways to define 
fractional order derivatives and integrals. The generalized 
differintegrator operator is given as: 

                        q
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Where q represents the real order of the differintegral (an n is 
used in some literature to denote an integer order), t is the 
parameter for which the differintegral is taken, and a is the 
lower limit. Unless otherwise stated the lower limit will be 0 and 
left out of the notation. Caputo used a popular definition used to 
compute differintegral in 1960s. The definition for Caputo’s 
fractional derivative of order λ  with respect to the variable t  
and with the starting point 0=t goes as follows [20,21]: 
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Where )(zΓ is Euler’s Gamma function.  If ,0<γ then we have 
a fractional integral of order γ−  given as: 
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 One distinct advantage of using the Caputo’s definition is that it 
only allows for consideration of easily interpretable initial 
conditions but it is also bounded, which means the derivative of 
a constant is equal to zero. In time domain, a fractional order 
system is governed by an n-term inhomogeneous fractional 
order differential equation (FDE): 
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Where λλ
tDD 0≡  is the Caputo’s fractional derivative of 

orderλ . Converting to frequency domain, the fractional order 
transfer function of such a system may be obtained through the 
Laplace transform function as follows, 
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Where ),.......,1,0( nkk =β is an arbitrary real number, 

0......... 011 >>>>> − ββββ nn   

and ),.......,1,0( nkak = is an arbitrary constant. Finally we 

would like to mention here that the Laplace transform of the 
fractional derivative might be given as, 
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For 0<γ , (i.e., for the case of a fractional integral) the sum in 
the right hand side must be omitted. 

3. THE DE ALGORITHM AND ITS 
MODIFICATION  
Like any other evolutionary algorithm, DE starts with a 
population of NP D-dimensional parameter vectors representing 
the candidate solutions. We shall denote subsequent generations 
in DE by max...,1,0 GG = . Since the parameter vectors are 
likely to be changed over different generations we may adopt 
the following notation for representing the i-th vector of the 
population at the current generation as: 

].,.....,,,[ ,,,,3,,2,,1, GiDGiGiGiGi xxxxX =
r

              (7) 

The initial population (at 0=G ) should better cover the 
entire search space as much as possible by uniformly 
randomizing individuals within the search space 
constrained by the prescribed minimum and maximum 
bounds: },...,,{ min,min,2min,1min DxxxX =

r
and 

},...,,{ max,max,2max,1max DxxxX =
r

. Hence we may 

initialize the j-th component of the i-th vector as: 
)).(1,0( min,max,min,0,, jjjjij xxrandxx −+=           (8)                        

where )1,0(jrand is the j-th instantiation of a uniformly 

distributed random number lying between 0 and 1. 
Following steps are taken next: mutation, crossover, and 
selection, which are explained below. 
a) Mutation 
After initialization, DE creates a donor vector GiV ,

r
 

corresponding to each population member or target 
vector GiX ,

r
in the current generation through mutation.  It is the 

method of creating this donor vector, which differentiates 
between the various DE schemes. For example, five most 
frequently referred DE mutation strategies implemented and 
available in the public-domain [26] are listed below: 
DE/rand/1: ).( ,,,,

321 GrGrGrGi iii XXFXV
rrrr

−+=                     (9) 
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DE/best/1: ).( ,,,,
21 GrGrGbestGi ii XXFXV

rrrr
−+=                       (10) 

DE/target-to-best/1:  
).().( ,,,,,,

21 GrGrGiGbestGiGi ii XXFXXFXV
rrrrrr

−+−+=    (11)  

DE/best/2: ).().( ,,,,,,
4321 GrGrGrGrGbestGi iiii XXFXXFXV

rrrrrr
−+−+=                                                  

                                                                                               (12)                                                                                             
DE/rand/2: ).().( ,,,,,,

54321 GrGrGrGrGrGi iiiii XXFXXFXV
rrrrrr

−+−+=     

                                                                                               (13) 

The indices ir1 , ir2 , ir3 , ir4 , and ir5 are mutually exclusive 
integers randomly chosen from the range [1, NP], which are also 
different from the index i. These indices are randomly generated 
once for each mutant vector. The scaling factor F is a positive 
control parameter for scaling the difference vectors. GbestX ,

r
 is 

the best individual vector with the best fitness function value in 
the population at generation G. The general convention used for 
naming the various mutation strategies is DE/x/y/z, where DE 
stands for Differential Evolution, x represents a string denoting 
the vector to be perturbed and y is the number of difference 
vectors considered for perturbation of x. z stands for the type of 
crossover being used (exp: exponential; bin: binomial).  
b) Crossover:           
To increase the potential diversity of the population, a crossover 
operation comes into play after generating the donor vector 
through mutation. The classical DE family of algorithms 
generally uses two kinds of crossover schemes - exponential and 
binomial [14]. The donor vector exchanges its components with 
the target vector GiX ,

r
 under this operation to form the trial 

vector ],...,,,[ ,,,,3,,2,,1, GiDGiGiGiGi uuuuU =
r

. Here we briefly 

discuss the binomial crossover and the arithmetic crossover, 
which has recently been introduced in the DE community in 
order to circumvent the problem of rotational variance. The 
binomial crossover is performed on each of the D variables 
whenever a randomly picked number between 0 and 1 is less 
than or equal to the Cr value. In this case the number of 
parameters inherited from the mutant has a (nearly) binomial 
distribution. The scheme may be outlined as, 

Giju ,,  = Gijv ,,  ,  if ( Crrand j ≤)1,0( or randjj =     

 = Gijx ,, , otherwise                                                                (14)                                                                       

where )1,0(jrand ]1,0[∈ is the j-th evaluation of a uniform 

random number generator. randj ],....,2,1[ D∈ is a randomly 

chosen index, which ensures that GiU ,
r

gets at least one 

component from GiV ,
r

. 
The crossover scheme described in (14) is in spirit a discrete 
recombination [14]. The discrete recombination is a rotationally 
variant operation. A rotation of the coordinate systems moves 
the location of the potential trial solutions. To overcome this 
limitation, a new trial vector generation strategy ‘DE/current-to-
rand/1’ is proposed in [22], which replaces the crossover 
operator prescribed in equation (14) with the rotationally 
invariant arithmetic crossover operator to generate the trial 

vector GiU ,
r

 by linearly combining the target vector GiX ,
r

and 

the corresponding donor vector GiV ,
r

as follows: 

)..( ,,,, GiGiGiGi XVKXU
rrrr

−+=                                        (15)                          
Now incorporating (9) in (15) we have:  

)).(.( ,,,,,, 321 GiGrGrGrGiGi XXXFXKXU
rrrrrr

−−++= , 

which further simplifies to:                           
)'.().( ,,,,,, 321 GrGrGiGrGiGi XXFXXKXU

rrrrrr
−+−+=                (16) 

where K is the combination coefficient, which has been proven 
[22] to be effective when it is chosen with a uniform random 
distribution from [0, 1] and F’ = K.F is a new constant here. 
c) Selection:      
To keep the population size constant over subsequent 
generations, the next step of the algorithm calls for selection to 
determine whether the target or the trial vector survives to the 
next generation i.e. at 1+= GG . The selection operation may 
be outlined as:  
     =+1,GiX

r
,,GiU

r
       if  )()( ,, GiGi XfUf

rr
≤  

                   ,,GiX
r

=        if    )()( ,, GiGi XfUf
rr

>                  (17)   

where )(Xf
r

is the function to be minimized. So if the new trial 
vector yields a lower value of the objective function, it replaces 
the corresponding target vector in the next generation; otherwise 
the target is retained in the population. Hence the population 
either gets better (with respect to the minimization of the 
objective function) or remains constant, but never deteriorates.  
In the original DE mutation scheme, the difference vector 
( )(tX i
r

- )(tX j
r

) is scaled by a constant factor ‘F’. The usual 
choice for this control parameter is a number between 0.4 and 1. 
We propose to vary this scale factor in a random manner in the 
range (0.5, 1) by using the relation 

))1,0(1(*5.0 randF +=                                                     (18) 
where rand (0, 1) is a uniformly distributed random number 
within the range [0, 1].  The mean value of the scale factor is 
0.75. This allows for stochastic variations in the amplification of 
the difference vector and thus helps retain population diversity 
as the search progresses. Das et al. [23] has illustrated the 
DERANDSF (DE with Random Scale Factor) can outperform 
the classical DE and also some versions of PSO in a statistically 
significant manner.   In addition to that, here we also decrease 
the crossover rate CR linearly with time from CRmax = 1.0 to 
CRmin = 0.5. If CR = 1.0, it means that all components of the 
parent vector are replaced by the difference vector operator 
according to (14). But at the later stages of the optimizing 
process, if CR be decreased, more components of the parent 
vector are then inherited by the offspring. Such a tuning of CR 
helps to explore the search space exhaustively at the beginning, 
but adjust the movements of trial solutions finely during the 
later stages of search, so that they can explore the interior of a 
relatively small space in which the suspected global optimum 
lies.  The time-variation of CR may be expressed in the form of 
the following equation: 

min
max

max
minmax )(*)( CR

G
GG

CRCRCR +
−

−=              (19)                          
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 where CRmax and CRmin are the maximum and minimum values 
of crossover rate CR, G is the current generation number and 
Gmax is the maximum number of allowable generations. After 
performing a series of experiments we find that the 
DE/rand/1/bin scheme (9) equipped with these modifications 
can outperform all other classical DE variants for the controller 
design problem investigated here. 

4. THE DE-BASED DESIGN  
OF FRACTIONAL PIλDμ CONTROLLERS 
4.1 The FOPID Controller 
A PID controller is a generic control loop feedback mechanism 
widely used in industrial control systems. The PID controller 
attempts to correct the error between a measured process 
variable and a desired set point by calculating and then 
outputting a corrective action that can adjust the process 
accordingly. An integer order PID controller has the following 
transfer function:    

sKsKKsG dipc ++= −1)(                                          (20)                                            

The PID controller calculation (algorithm) involves three 
separate parameters; the Proportional ( pK ), the Integral ( iK ) 

and Derivative ( dK ) time-constants. The Proportional gain 
determines the reaction to the current error, the Integral 
determines the reaction based on the sum of recent errors and 
the derivative determines the reaction to the rate at which the 
error has been changing. The weighted sum of these three 
actions is used to adjust the process via a control element such 
as the position of a control valve or the power supply of a 
heating element. The block diagram of a generic closed loop 
control system with the PID controller is illustrated in Figure 1. 

 
Figure 1. A generic closed-loop process-control system with 
PID controller 

The real objects or processes that we want to control are 
generally fractional (for example, the voltage-current relation of 
a semi-infinite lossy RC line). However, for many of them the 
fractionality is very low. In general, the integer-order 
approximation of the fractional systems can cause significant 
differences between mathematical model and real system. The 
main reason for using integer-order models was the absence of 
solution methods for fractional-order differential equations. PID 
controllers belong to dominating industrial controllers and 
therefore are objects of steady effort for improvements of their 
quality and robustness. One of the possibilities to improve PID 
controllers is to use fractional-order controllers with non-integer 
derivation and integration parts. 
Following the works of Podlubny [6] we may go for a 
generalization of the PID-controller, which can be called the 
PIλDμ -controller because of involving an integrator of order λ 

and a differentiator of order μ. The continuous transfer function 
of such a controller has the form: 

μλ sTsTKsG dipc ++= −)( ,( 0, >μλ )                        (21)                      

The output response of the PIλDμ -controller in time domain 
may be given as:                         

)(.)(.)(.)( teDKteDKteKtu dip
μλ ++= −                      (22)                         

Where, 1,1 +=+= μλ   implies normal PID controller, 
for 1,0 +== μλ ,   we get a normal PD 
controller, 0,1 =+= μλ   implies normal PI controller and 

0,0 == μλ  implies a proportional gain. All these classical 
types of PID-controllers are the special cases of the fractional 
PIλDμ -controller. As depicted in Figure 2, the fractional order 
PID controller generalizes the integer order PID controller and 
expands it from point to plane. This expansion adds more 
flexibility to controller design and we can control our real world 
processes more accurately. 
 

 

 

 

 

 

 

 

Figure 2. Generalization of the FOPID Controller: From 
point to plane 

4.2 Formulation of the Objective Function 
The design approach presented here is based on the root locus 
method (dominant roots method) of synthesizing integral PID 
controllers [13]. As in the traditional root locus method, based 
on the user specifications of peak overshoot pM and rise time 

riset  (or requirements of stability and damping levels), we find 
out the damping ratio ξ  and the un-damped natural frequency 

oω  of the closed loop system to be designed. Then dominant 
poles will be: 

jyxjp ±−=−±−= 2
002,1 1 ξωξω                          (23)                         

Let the closed loop transfer function be: 

)()(1
)(

)(
)(

sHsG
sG

sR
sC

+
=                                                       (24) 

where the transfer function of the process to be controlled is 

)(sG p and that of the controller is 
)(
)()(

sE
sUsGc =  and 

)()()( sGsGsG Pc= . We assume unity feedback gain 

i.e. 1)( =sH . From (24) the characteristics equation of the 
closed loop system is given by: 

0)()(1 =+ sHsG ,  01).()(1 =+⇒ sGsG cp                 (25)                      
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 Now the dominant poles of the system are the zeros of this 
characteristics equation, so they will obviously satisfy that 
equation. Thus from (25) we get, 

.0)(].)()([1 =+−+−++−++ − jyxGjyxKjyxKK pdip
μλ     (26)      

This equation has total five unknowns, μλ,,,, dip KKK . Let:     

R =Real part of the complex expression (26), 
I =Imaginary part of the complex expression (26), and  

ψ =Phase angle = )(tan 1
R

I− . 

Now we define the following objective function:                     
222 ||||),,,,( ψμλ ++= RIKKKJ dip                  (27)                                    

Our goal is to find out an optimal solution set 
},,,,{ μλdip KKK  for which 0=J . Here the above function 

has been minimized with DE/rand/1/either-or algorithm. 
 
4.3 Vector Representation in DE 
The solution space of equation (27) is 5-dimensional, the five 
dimensions being },,,,{ μλdip KKK . So each parameter 

vector in DE has 5 components i.e. the j-th population member 
at G-th generation may be given as: 

T
dipGj KKKX ),,,,(, μλ=

r
                                         (28) 

From the practical consideration of the PID controller design 
[13], we fixed the following numerical ranges for each 
parameter: 

500,1
1,0

10001

≤≤
≤≤

≤≤

di

p

TT

K

δλ                                                                   (29) 

 
Table 1.  Description of the problem instances considered 
 

 
5.     EXPERIMENTAL RESULTS  

5.1 Problem Instances 
We have tested the proposed method on two specific instances 
of the design problem. All the design examples follow the basic 
framework detailed in Section 4. The first problem involves the 
speed control of a DC motor. First, the uncompensated motor 
can only rotate at 0.1 rad/sec with an input voltage of 1 Volt 
(this was obtained when the open-loop response is simulated). 
Since the most basic requirement of a motor is that it should 

rotate at the desired speed, the steady-state error of the motor 
speed should be less than 1%. The other performance 
requirement is that the motor must accelerate to its steady-state 
speed as soon as it turns on. In this case, we want it to have a 
settling time of 2 seconds. Since a speed faster than the 
reference may damage the equipment, we want to have an 
overshoot of less than 5%.  
The second problem instance involve a fractional order plant. In 
some cases a real system is better described by such fractional 
order differential equations [24] and from this consideration, it 
is important to investigate the controlling mechanism of such 
systems through FOPID type controllers. Table 1 summarizes 
the test problems along with the corresponding user 
specifications. 

5.2  Digital Realization of the  
FOPID Controller 
For a fractional order differentiator/integrator rs , where r is a 
real number, its discretization is a key step in digital 
implementation. Furthermore for control applications, obtained 
approximate discrete time rational transfer function should be 
stable and of minimum phase. Continuous fraction expansion 
(CFE) by Tustin rule enjoys all those desirable properties. By 
using this method the discrete transfer function approximating 
fractional order operators can be expressed as: 
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Where T is the sampling period and pP  and qQ are 

polynomials of degree p and q , respectively, in the 

variable 1−z . The general expression for numerator 
)( 1−zPp and denominator )( 1−zQq of )(zD r± is given below 

for 5,3,1== qp . Expressions for numerator and denominator 
polynomials in the CFE are summarized in Table 2. 
In this work we have used the Tustin rule based CFE where the 
sampling time is sT 001.0= and the order of the approximate 
model is 5. 
 

Table 2. Expressions for numerator and denominator 
polynomials in the CFE 
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Table 3. Parameter settings for the different algorithms 

 

5.3 Algorithms and Parametric Set-up 
The proposed design method has been extensively compared 
with two state-of-the-art design methods for FOPID controllers 
based on the binary GA [18,19] and a recently proposed 
extension of the canonical PSO namely Self Organizing 
Hierarchical Particle Swarm Optimizer with Time Varying 
Acceleration Coefficients (HPSO-TVAC) [17]. The GA based 
scheme was proposed by Cao et al. [19] and uses a 50 bits 
binary string to encode 5 parameters of the FOPID controller. 
The fitness-functions in Cao’s method employ the integral of the 
squared error and absolute error signal value and are typically 
borrowed from the realm of optimal control [25]. The HPSO-
TVAC algorithm on the other hand uses the same particle 
representation scheme as well as objective function as that used 
for the modified DE. Table 3 illustrates the parametric set-up for 
these algorithms. We choose the standard set of parameters, 
equipped with which, the algorithms have been shown to be at 
the peak of their performance (over benchmark functions) in the 
existing literature [17, 19, and 23]. No hand tuning of 
parameters have been allowed in any case to make the 
comparison fair enough.  

5.4 Simulation Strategy 
We run three population based optimization algorithms namely 
HPSO-TVAC, a modified DE, and the binary encoded GA 
suggested in [18,19] for the two design problems according to 
the user specifications summarized in Table 1. All the 
algorithms have been developed in Visual C++ platform on a 
Pentium IV, 2.2 GHz PC, with 512 KB cache and 2 GB of main 
memory in Windows Server 2003 environment. 25 independent 
runs (with different seeds for the random number generator) 
were carried out for each of the algorithms and each run was 
continued up to 105 Function Evaluations (FEs). In case of DE 
since D = 5, NP = 50 and this approximately corresponds to 
a 2000max =G  for 105 FEs.  We report the empirical results for 
the median run of each algorithm (when the runs for a single 
algorithm have been ranked according to their final accuracy). 

 

 

 
(a) Design Problem 1 (integer order plant) 

 
(b) Design Problem 4 (Fractional Order Plant) 

Figure 3.  Unit step response of the closed loop systems for 
the test problems 

HPSO-TVAC Modified DE Binary GA [16] 
Parameter Value Parameter Value Parameter Value 
Pop size 40 Pop size 10*D Initial Pop size  50 

Inertia weight 0.794 CRmax 1.0 No. of bits per 
gene 50 

C1 
Linearly varying 

0.35→2.4 CRmin 0.5 Mutation 
probability 0.01 

C2 
Linearly varying 

2.4→0.35 
Vmax 3.00 

Re-initialization velocity Linearly decaying from 
Vmax to 0.1 Vmax 

 
 
 

Scale 
factor F 

Uniformly distributed 
random number 

between 0.5 and 1.0 
with mean value 0.75 

Uniform 
crossover 

probability 
0.6 
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Table 5. Summary of the performance of closed loop system under different PID controllers against the unit step response 

 
Table 4. FOPID controller transfer functions as found using 

the modified DE for two test problems. 

 

5.5. Results 
Figure 3 shows the dynamic response characteristics of the 
closed loop systems for design problems I and II, as specified in 
Table 1. The integer order PID controller as marked in Figure 3 
was obtained by minimizing the same objective function (in 
equation (27)) in three dimensions, taking 1== μλ . Table 4 

provides the FOPID Controller transfer functions for two test 
problems as found with modified DE. Table 5 reports the 
maximum overshoot (in %), rise time (in sec) and steady state 
error (in %) for the unit step response of each closed loop 
system under the different PID controllers considered here. All 
entries in Table 5 are the mean of the 25 independent runs of the 
modified DE, the HPSO-TVAC and the binary GA algorithm 
and computed the respective standard deviations as well. It is 
noted that for the given common performance criteria on peak 
overshoot PM , rise time riset sec, and steady state error se  the 

fractional order controller achieves better results than its integer 
counterpart in general. The DE based FOPID controller provides 
results closest to the three user specifications as listed in Table 1 
in each case. 

 

6. CONCLUSIONS  
An intelligent optimization method for designing fractional 
order PID (FOPID) controllers based on the DE is presented in 
this paper. Fractional calculus can provide novel and higher 
performance extension for FOPID controllers. However, the 
difficulties of designing FOPID controllers increase, because 
FOPID controllers also take into account the derivative order 

Unit step response obtained 
 
 
 

Process 
Plant 

 
 

Different controllers 
used 

Maximum 
overshoot (%) 

± 
standard 
deviation 

(%) 

Rise time 
(Sec) 
± 

standard 
deviation 

(Sec) 

Steady state 
error (%) 

± 
standard 
deviation 

(%) 

 
 

Final objective 
function values 

obtained 

Fractional Controller using DE 
3.11 

±  (0.31) 

0.395 

±(0.051) 

3.5 

±(0.010) 

0.00 

±(0.0000) 

Integer PID controller using DE 
4.23 

±  (0.34) 

0.101 

±(0.007) 

0.1 

±(0.001) 

0.00 

±(0.0000) 

Fractional Controller using PSO 
3.91 

±  (0.41) 

0.822 

±(0.091) 

1. 9 

±(0.021) 

0.0001 

±(0.0000) 

 
I 

Fractional Controller using GA 
6.31 

±  (0.87) 

0.695 

±(0.088) 

2.1 

±(0.056) 

0.0312 

±(0.0025) 

Fractional  Controller using DE 
1.93 

±(0.089) 

0.218 

±(0.015) 

1.6 

±(0.034) 

0.00 

±(0.0000) 

Integer PID controller using DE 
0.21 

±(0.011) 

0.435 

±(0.078) 

0.2 

±(0.010) 

0.00 

±(0.0000) 

Fractional Controller using PSO 
0.12 

± 0.012) 

0.982 

±(0.101) 

0.1 

±(0.009) 

0.0001 

±(0.0000) 

 
II 

Fractional Controller using GA 
0.27 

± 0.017) 

1.312 

±(0.313) 

0.3 

±(0.013) 

0.0522 

±(0.0037) 

Process Plant Transfer 

Function: )(sGp  

Controller Transfer Function 

)(sGc  

2))(( kRLsbJs
k

+++
 

,5.0,1
,01.0

,1.0,01.0

==
=

==

LR
k

bJ
 

 
8.0668.0 719.40852.221762.36 ss ++ −

 
 

16.09.0
1

8.03.0 ++ ss
 

(Hypothetical Plant) 

824.0668.0 59.1524.4172.1 ss ++ −  
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and integral order in comparison with traditional PID 
controllers. To design the parameters of the FOPID controllers 
efficiently, the DE/rand/1/bin algorithm is modified with respect 
to its scale factor F and Crossover Rate CR. The proposed 
method has been shown to outperform a state-of-the-art version 
of the PSO algorithm and a binary GA based method especially 
for the fractional order plants. The proposed scheme of 
fractional PID controller design will thus find extensive 
commercial application in the next generation controller design. 
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