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ABSTRACT
Detecting whether computer program code is a student’s
original work or has been copied from another student or
some other source is a major problem for many universities.
Detection methods based on the information retrieval con-
cepts of indexing and similarity matching scale well to large
collections of files, but require appropriate similarity func-
tions for good performance. We have used particle swarm
optimization and genetic programming to evolve similarity
functions that are suited to computer program code. Using
a training set of plagiarised and non-plagiarised programs
we have evolved better parameter values for the previously
published Okapi BM25 similarity function. We have then
used genetic programming to evolve completely new simi-
larity functions that do not conform to any predetermined
structure. We found that the evolved similarity functions
outperformed the human developed Okapi BM25 function.
We also found that a detection system using the evolved
functions was more accurate than the the best code plagia-
rism detection system in use today, and scales much bet-
ter to large collections of files. The evolutionary computing
techniques have been extremely useful in finding similarity
functions that advance the state of the art in code plagiarism
detection.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Retrieval
models; I.2.6 [Artificial Intelligence]: Learning—Param-
eter Learning

General Terms

Evolutionary Computing, Particle Swarm Optimization, Ge-
netic Programming

Keywords

Algorithms, Experimentation
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1. INTRODUCTION
Evolutionary computing techniques have proven to be suc-

cessful in a wide range of application areas and have been
used to find human competitive solutions to many prob-
lems [6]. In this paper we describe the use of two evolution-
ary computing techniques, particle swarm optimization and
genetic programming, to improve detection performance in
systems designed to detect plagiarism in computer program
code.

Plagiarism can be defined as the presentation of someone
else’s work or idea as one’s own. Code plagiarism can be de-
fined as the “unauthorized reuse of program structure and
programming language syntax” [2]. There is strong evidence
that code plagiarism is widespread at educational institu-
tions [15, 18]. Plagiarism detection has wider application
than just student assignments, for example in copyright and
patent violation. Plagiarism detection is a difficult problem
because code can be copied from other students and many
web sites and then modified in various ways to disguise the
fact that it is copied.

Plagiarism detection problems are of two forms: one-to-
many and many-to-many. In the former case it is required
to determine whether a particular file is a plagiarised copy
of a file in a collection. In the latter case it is required to
determine which files are plagiarised copies of each other.
Methods that work well for the one-to-many case do not
necessarily scale well to the many-to-many case. In this
paper we are concerned with the many-to-many case. De-
tection methods based on information retrieval methods are
well suited to many-to-many detection [2], but depend on
good measures of document similarity.

The plagiarism detection problem addressed in this paper
can be stated as follows: Given a collection of M program
files, determine which pairs are plagiarised copies of each
other. The files are student submissions that can be aug-
mented with additional files provided by the instructor and
taken from text books and web sites. The detection system
is required to produce a list of program pairs, ranked by sim-
ilarity. Programs which are highly likely to be copies should
be at the top of the list. A human expert will then check
the highly similar pairs and determine whether plagiarism
has occurred. Thus it is highly desirable that plagiarised
programs are at the top of the list to minimize the amount
of human checking.

The key to a good plagiarism detection system is the mea-
sure of similarity between programs. There is a long history
of research into document similarity measures in the field
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of information retrieval. In information retrieval the task
is to find all documents in a collection that are similar to
some given query document. In the most common case the
query document is a list of key words given by the user. The
starting point for our work is a plagiarism detection system
that uses a similarity function, Okapi BM25, designed for
text and web documents[2]. This function has 3 parameters
that can be tuned. We first look at finding optimal values
for these parameters and then at finding better performing
similarity functions that are structurally different.

Our overall goal is to determine whether similarity func-
tions for code plagiarism detection can be improved with
evolutionary computing. In particular, we address the fol-
lowing research questions:

1. Can the performance of the human derived Okapi BM25
similarity function be improved with particle swarm
optimization?

2. Can genetic programming be used to evolve similarity
functions of a different structure to Okapi BM25 which
give better performance?

2. RELATED WORK

2.1 Plagiarism Detection
Plagiarists attempt to disguise plagiarism using a vari-

ety of techniques, for example changing of comments and
formatting, changing identifier names, and reordering inde-
pendent statements and procedures [8, 10, 16]. Some tech-
niques, such as introducing unnecessary constants or macros,
appear intended to deliberately confuse plagiarism detection
tools.

Most current plagiarism detection methods are structure
based [1, 5, 10, 12]. They seek to represent a program in
an abstract way and use various algorithms to find similar
structures in programs. These systems are computationally
expensive and do not scale well to large collections [2].

An alternative approach [2], which does scale up to large
collections, is based on the information retrieval principles of
finding a document in a collection that is similar to a given
query document. However, the similarity measure used in
this work is based on text documents rather than computer
programs.

Currently the benchmark system for code plagiarism de-
tection is JPlag [12]. JPlag is structure based.

2.2 Finding formulas with Genetic Program-
ming

There has been considerable success in using genetic pro-
gramming to find formulas for various problems, for example
the PID controller described in [6] which was subsequently
patented. Genetic programming has also been used to find
similarity functions for classical information retrieval [4].

2.3 The Okapi BM25 formula
Okapi BM25 [14] (Equation 1) is one of a family of state-

of-the-art similarity functions for text information retrieval.
It measures the similarity between a given query document1

(Q) and a document from a collection (D). The similar-
ity measure is basically the sum of contributions from the
terms that are common to the both documents. It contains

1In our application a document is the same as a program.

three tunable constants k1, k3, and b that control the within-
document term frequency, within-query term frequency, and
inverse document frequency respectively. A value of zero
for k1 and k3 ignores multiple term occurrences, while a
high value gives an approximately linear term frequency (i.e.
twice the term frequency gives twice the score). The default
setting of k3 as 1000 is used as an approximation of infin-
ity to give this linear relationship for the within-query term
frequency [13]. Longer documents naturally receive a higher
score. Normalization corrects this. A value of b = 1 does
the full normalization, b = 0 removes it [7].

Okapi(Q, D) =

IDF
z}|{
wt ×

X

tǫQ∩D

TF
z }| {

(k1 + 1)fd,t

K
|{z}

IDL

+fd,t

×

QTF
z }| {

(k3 + 1)fq,t

k3 + fq,t

(1)

where wt = loge(
N − ft + 0.5

ft + 0.5
)

K = k1 × ((1 − b) +
b × Dterms

avgDterms

)

fd,t Number of times the term occurs in the doc-
ument (within-document term frequency).

fq,t Number of times the term occurs in the query
(within-query term frequency).

Dterms Number of terms in the document (length of
the document).

Qterms Number of terms in the query (length of the
query).

ft Number of documents in the collection the
term occurs in (collection frequency).

N Number of documents in the collection (col-
lection size)

.

avgDterms Average number of terms per document in
the collection (average document length).

IDF Inverse Document Frequency.
IDL Inverse Document Length.
TF Term Frequency
QTF Query term frequency

In [19] there is a thorough investigation of a variety of com-
ponents found in similarity functions. The paper concludes
that different similarity functions are required for different
applications and there is no consensus on which functions
should be used for particular contexts.

3. FITNESS EVALUATION
Fitness evaluation is identical for both the particle swarm

and genetic programming approaches and is described in this
section.

3.1 Fitness Measure
For good performance in many-to-many plagiarism detec-

tion, a plagiarism detection system should have a low rate
of false positives, and catch most of the instances of plagia-
rism. False positives are costly to the user, who must take
the time to manually check the two programs for no gain.
While the user would like to find all cases of plagiarism,
the user is likely to be satisfied with lower recall (Eqn 2)
if it results in fewer false positives. Our preference is high
precision, especially at lower recall (Eqn 3) levels.
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Rank Similarity Prog 1 Prog 2 Plagiarised?
01 96.55% 020 103 Y
02 93.83% 247 243 Y
03 93.23% 103 020 Y
04 93.06% 086 149 Y
05 75.91% 165 210 N
06 74.66% 165 107 N
07 68.12% 055 205 N
08 65.96% 010 100 N
09 64.38% 276 196 N
10 52.06% 157 163 N

Figure 1: Ideal output from a plagiarism detection
system.

Recall(R) =
Number of correctly classified positives

Number of actual positives
(2)

Precision(P ) =
Number of correctly classified positives

Number classified positive
(3)

In a typical situation an instructor will have a collection
of several hundred submissions (documents) and wants to
know which ones are copies of each other. The instructor
submits the collection to the plagiarism detection system.
The ideal output would be a ranked list of pairs of docu-
ments with an associated similarity score. The plagiarised
documents would be at the top of the list and the have high
similarity scores. The non plagiarised documents would be
at the bottom of the list and have low scores. There would a
big gap in similarity scores between the plagiarised and non
plagiarised groups. The instructor wound inspect the high
scores and verify that plagiarism had in fact occurred. In
figure 1, for example, if the first four pairs and no others are
plagiarised, the output is ideal. The plagiarised pairs have a
high similarity measure and there is a large gap to the non
plagiarised pairs.

In our experiments we have used the following fitness func-
tion which captures some of the above properties. The fit-
ness score is calculated by summing the reciprocal ranks
of the known plagiarised pairs. This is then divided by the
maximum score from such a summation so the fitness ranges
from 0.0 to 1.0 for ease of interpretability. The resulting fit-
ness function heavily favours plagiarism detections at the top
of the list. We call this fitness measure the normalized cu-
mulative reciprocal rank (NCRR). The NCRR is computed
as follows:

NCRR =

|D|
X

i=1

(plag(Di) ×
1

i
) ÷

|R|
X

i=1

1

i
(4)

where D is the set of retrieved document pairs, R is the set
of known plagiarised document pairs and plag(d) returns 1
for a plagiarised document pair and 0 for a non plagiarised
pair.

In a situation where there are 4 plagiarised documents,
as in figure 1, the best possible score would be 1/1 + 1/2 +
1/3+1/4 = 2.0833 and this would be the normalization fac-
tor. The similarity function which returned the list shown
in figure 1 would then receive the maximum fitness score of
2.0833/2.0833 = 1. Now consider the case of a similarity

Table 1: The Source Code Collections
Program Length Plagiarised

Collection Programs Mean Std. Dev Pairs
A 256 445 178.7 25

B1 191 1148 478.1 25
B2 171 874 339.8 45
C1 158 950 167.6 35
C2 158 1353 520.7 63

function that returns the same ranks as figure 1 but with
the programs at rank 2 (247, 243) and rank 6 (165, 107)
swapped. This ranking is no longer ideal and the corre-
sponding NCRR would be (1/1 + 0/2 + 1/3 + 1/4 + 0/5 +
1/6)/2.0833 = 0.8400.

At this stage we have not attempted to formulate the de-
sired gap in similarity measure between the plagiarised and
non plagiarised documents into the fitness measure.

In deciding on this fitness function, we explored a wide
range of alternatives. These included functions based on 11-
point average precision, mean average precision, R-precision
and classification accuracy. Some of these measures involve
querying only the plagiarised documents which gives much
faster computation times, but the results were not as useful
from a practical standpoint. More details can be found in
[17].

3.2 Source Code Collections
For training and testing, we use five code collections from

three different university subjects (See Table 1). These col-
lections consist of actual student submissions to assignments
written in the C programming language. At the beginning
of this work only one of these, collection A, had carefully
checked ground truth. The ground truth for the other col-
lections was determined iteratively with existing plagiarism
detection tools. Plagiarised documents mostly appear in
pairs with a few groups of three or more. If three programs
are copies of each other, this would be accounted for as three
plagiarised pairs in Table 1. The ground truth does not dif-
ferentiate between the original and any copies, but records
only that members of the set are co-derived.

3.3 Train and Test Methodology
The default Okapi BM25 and JPlag methods have fixed

parameters and do not require training data. The PSO and
GP approaches both need training data sets. Since collection
A is the most carefully checked for ground truth we use
this as the training data in the first instance. The other
collections will be used for testing.

We perform 10 training runs, both with PSO and GP and
then use the best individuals for testing. For evaluation, the
best solutions are tried against the four test collections using
the NCRR measure. This measure will give a single value
per system per collection, thus facilitating comparison. We
also calculate a combined NCRR by averaging these scores.

In addition, we compare the evolved similarity functions
against the default Okapi BM25 function, and against the
popular JPlag plagiarism detection system. JPlag has the
option to allow specified basecode, that is code provided by
the instructor that will be common to all submissions, to be
ignored when comparing similarity between documents. We
use JPlag both with and without this option.

Our strategy of using just collection A as training data
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carries with it two potential problems: (1) Overfitting and
(2) Not enough training data for good generalization to other
collections. We investigate these issues by incorporating ad-
ditional collections into the training data.

3.4 Implementation
In a preprocessing step the programs are tokenized, con-

verted to n-grams of size 4 and an index created as in [2].
Evaluation of an individual proceeds as follows: The indi-
vidual is translated into a similarity function suitable for a
search engine. Each program in the collection is used as a
query document and the similarity measure with respect to
every other document is computed. The pairs are sorted
by the measure described above. Fitness evaluation takes
about 10 seconds on a 2.8GHz Pentium 4 processor with
2GB of RAM. While the expensive fitness evaluation is a
concern during evolution, it is not a concern in a deployed
system. The evolved similarity functions are comparable in
computation time to the hand crafted ones.

4. PARTICLE SWARM APPROACH
Particle swarm optimization is a versatile and robust is a

technique for numerical parameter optimization based on a
population of particles moving in n-dimensional space and
converging on the optimal value [3, 9]. There has been con-
siderable research into update equations for particle velocity
and position. Since we have a relatively straight forward 3
dimensional problem with the Okapi BM25 formula, we use
the one of the simplest variations as shown in equation 5.

vid = vid+2∗rand()∗(pid−xid)+2∗rand()∗(pgd−xid) (5)

xid = xid + vid

vid: particle velocity xid: particle location
pid: personal best location pgd: global best location
rand(): random numberǫ[0, 1)

We give k1 and k3 a range of 0.0 to 1000.0 and b the full
range of 0.0 to 1.0. As explained in Section 2.3, with these
ranges, the term frequencies and inverse document length
can be assigned a wide impact range, from maximum effect
to being completely ignored.

4.1 Results
Figure 2 shows the fitness graph for 10 runs for 50 gener-

ations. It is clear that all runs have converged by the 50th
generation. None of the runs have delivered an individual
that gives perfect fitness.

Table 2 shows the best evolved parameter values. The
first two rows of Table 4 show the performance of the de-
fault Okapi BM25 and the evolved Okapi on the four test
collections. It is clear that the performance of the evolved
function is superior to the default.

Figure 3 shows the comparison as a standard 11-point
average precision graph. The x-axis shows the recall. The

Table 2: Default and Evolved Parameter Values for
Okapi BM25

k1 k3 b
Default 1.2 1000 0.75
Evolved 1.62 0.302 1.00
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Figure 2: Best fitness during PSO training showing
individual runs and average.
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Figure 3: Precision/Recall for PSO-evolved Okapi
BM25 parameters on test collections

y-axis shows the corresponding precision, calculated for the
11 standard recall levels: 0%, 10%, .. 90%, 100%. At every
recall level the precision of the evolved Okapi is higher than
that for the default Okapi BM25.

4.2 Analysis of Evolved Parameters
The optimal value of b was 1.0 in all runs. As noted in

Section 2.3, this constant controls the IDL component with
a value of 1.0 giving long documents the harshest penalty.
This shows that length normalization is especially important
when searching for evidence of code plagiarism. This is all
the more interesting as the program lengths in Collection A
do not vary a great deal.

In all runs the evolved values for k1 were between 1.59 and
1.65 (mostly 1.61-1.63) and the evolved values for k3 were
between 0.24 and 0.31 (mostly 0.30-0.31). The similarity
in performance of the evolved parameters suggests that any
values between these ranges are appropriate. Low values of
k1 and k3 indicate that linear versions of within-document
term frequency and within-query term frequency should not
be used for code plagiarism detection. While within-query
term frequency is often ignored in text information retrieval,
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where queries usually do not contain duplicate terms, its
importance in code plagiarism detection is underlined by
evolved solutions favouring a narrow range of values for k3,
very far from the default value of 1000.

Intuitively one would expect that k1 would be equal k3

since query and document are interchangeable in the plagia-
rism situation. However, the best results are observed when
k1 is increased, and k3 is decreased. This indicates that
terms in the query should be assigned lower weight than
terms in the document. For our particular application this
seems counter-intuitive and merits further investigation.

5. GENETIC PROGRAMMING APPROACH
In the previous section we established that PSO could

be used to find parameters for the Okapi BM25 formula
that gave better detection performance than the defaults.
In this section we explore whether detection performance
can be further improved by using genetic programming to
find novel similarity formulas. We carry out this part of
the investigation in two phases - standard and specialized.
In the first phase we use standard tree based genetic pro-
gramming. In the second phase we use restrictions on the
structure of the formulas and parsimony pressure to favour
small solutions. Our expectation is that standard GP will
give more accurate formulas and that specialized GP will
give more understandable formulas.

Note that the the summation
P

tǫQ∩D
is not part of the

evolved individual. This summation is automatically applied
to all individual during fitness evaluation.

5.1 Standard Genetic Programming
The configuration for standard genetic programming is

shown in table 3.

5.1.1 Functions and Terminals
As in most applications of genetic programming consider-

able thought needs to be given to the components that make
up the solutions. If there are too few components, or they
are poorly selected, there may not be enough expressiveness
to obtain a satisfactory solution. Allowing everything would
make the search space impractically large.

We chose the set of terminals and functions to use after
examining various similarity functions used in information
retrieval, studying prior analysis of similarity functions [19],
and personal testing. As noted earlier, determining the
fitness measure required considerable experimentation and
much of this experimentation was with different functions
and terminals. Our final function set is interesting in that
it contains no minus operator. Early in the development
we had minus in the function set. This resulted in negative
fitness values which caused problems in the fitness evalua-
tion. Leaving out minus solved these problems without loss
of accuracy. The logarithm function was omitted for the
same reasons. However, since logarithms are known to be
useful in similarity functions we have added terminals that
incorporate logarithms.

We did not include any terminals that remain constant for
a given collection. While many similarity functions contain
terms such as N and avgDterms, the evolutionary process oc-
curs on a single collection resulting in these terms remaining
constant during an evolution run. For example, when using
Collection A, N and 296 would be interchangeable as N is
always equal to 296 throughout the run. Such terminals,

however, are still useful in certain circumstances so we com-
bine them with other related terminals to create combined
terminals. These include ft

N
, Dterms

avgDterms
and Qterms

avgDterms
.

We do not allow ft to be used independently, it signifies
the number of documents containing a particular term, and
its value is influenced by the collection size. By using ft

N

instead, the value is normalized between 0.0 and 1.0 and
represents the proportion of the collection containing the
term. This terminal is more stable across different collec-
tions. The inverse of this function is also added as it is used
within various similarity functions for IDF. While it is pos-
sible for GP to invert the terminal on its own, we do not
want to make it hard for the GP to use what is a funda-
mental component. For similar reasons we added relative
versions of Dterms and Qterms, comparing them to the aver-
age document size in the collection. While Qterms

avgDterms
makes

little sense for text information retrieval, for our application,
however, queries exist as documents in the collection.

We allow a random floating point number between 0.0 and
100.0 to be used as a terminal. Such a floating point number
could help in fine-tuning the similarity functions.

5.1.2 Other Considerations
Due to a number of implementation restrictions of the

search engine some of the evolved individuals are not valid
and cause the search engine to crash. An example is a divide
by zero error. A common solution to the divide by zero
problem, protected division, is not possible here since an
individual is converted into a C program and compiled and

Table 3: Genetic Programming Configuration .

Parameter Value
Population Size 200
Crossover Rate 0.68
Mutation Rate 0.30
Elitism Rate 0.02
Max Generations 50
Selection Tournament, size 5
Termination Perfect fitness or 50 generations
Replacement Generational replacement
Fitness NCRR on training data
Functions +,×, /
Terminals
fd,t within-document term frequency
fq,t within-query term frequency
Dterms document length
Qterms query length
ft

N
collection frequency (normalized)

N
ft

inverse collection frequency (norm))
Dterms

avgDterms
relative document length

Qterms

avgDterms
relative query length

1 + loge(fd,t) within-document term frequency
(logarithmic formulation)

1 + loge(fq,t) within-query term frequency (loga-
rithmic formulation)

loge(1 + N
ft

) inverse collection frequency (loga-
rithmic formulation)

drand random floating point number be-
tween 0.0 and 100.0
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Figure 4: Best fitness during GP (Standard) train-
ing.
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Figure 5: Best fitness during GP (specialized) train-
ing.

executed in the search engine environment. Any similarity
functions that cause errors receive a fitness value of zero,
and are unlikely to survive in the next generation.

The search engine cannot operate when the similarity func-
tion does not include fd,t. This makes sense since at the very
least, a similarity measure would need to know the existence
of terms within a document to calculate the similarity with
another document. We enforce the inclusion of this term,
and do not let any programs without fd,t enter the popu-
lation at any point. Initialization, crossover and mutation
routines are modified to impose this restriction.

5.2 Specialized Genetic Programming
The goal of this part of the work was to evolve programs

that could be understood. We used parsimony pressure to
favour small programs and experimented with various re-
strictions on function set, terminal set and allowable pro-
gram structure, for example, sum of products form.

We use a logarithmic size penalty:

fitnessi = performancei/ log1012(sizei) (6)

We have a preference to use this instead of a linear size
penalty because the penalty is consistent in proportion to
the performance. Linear variations penalize low performance
solutions comparatively severely. We chose the value of 1012

through empirical evaluation.
Some combinations of expressions that are hard to inter-

pret involve compounding of non-linear operators [11]. For
example, log(|log(x)|) is valid but very difficult to interpret
for humans. We address this issue by restricting the func-
tions such as log to certain situations only. Rather than
including log in the function set we provide new combined
terminals that represent popular uses of logarithms in simi-
larity functions.

Random numbers have been removed from the terminal
set. This is likely to improve generality, and preliminary
tests showed that removing random numbers has little effect
on the quality of solutions.

We experimented with a number of structural limitations
in the expectation of improved understandability. These in-
cluded a sum of products form similar to that suggested
in [11] and a function set consisting only of {+} with the
hope that a kind of accumulation-of-evidence-for-plagiarism
strategy might evolve and we would be able to interpret the
different components. However, the domain experts did not
find these functions any more understandable than the ones
evolved with parsimony pressure. The experts basically got
sick of us asking them to interpret our formulas. This in-
volves considerable mental effort and in general each evolved
formula had some components that “made sense” and the
experts could see why they were there, but also contained
other components that could not be explained.

The final configuration for the specialized GP was the
same as in table 3 but without the random constants and
with the parsimony pressure described above. The major
factor in improving performance in the specialized GP ap-
proach was the inclusion of complex terminals based on do-
main knowledge.

5.3 Results
The results for the 10 training runs on collection A are

shown in figure 4 for standard genetic programming. Those
for specialized genetic programming are shown in figure 5.
They are quite consistent and there is not much variability.
The training fitness for standard GP at 50 generations is
slightly higher than the for the specialized case due to the
size penalty. It is possible that the solutions could improve
if the evolutionary process were allowed to continue for more
generations, but we think that such improvements would be
minor.

The performance on the test collections is given in the
lines ‘GP Std’ and ‘GP Spec’ in table 4. The last column
in this table is the average fitness over all four collections.
Both GP approaches outperform the evolved Okapi. Con-
trary to our expectations the average NCRR for specialized
GP is higher than that for standard GP. However, closer in-
spection reveals that this is mostly due to vastly improved
performance on B1. Performance of the two GP methods
on the other collections is very similar.

While table 4 provides a comparison of the NCRR scores
for all of the methods it does not give very much intuition
into what the user would see and be required to deal with.
Some of this is presented in a limited, but normalized, fash-
ion in table 5. In this table Maxscore is the number of
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Table 4: Comparison of Approaches (NCRR).
Collections Average

B1 B2 C1 C2 NCRR
Okapi Def 0.1628 0.6693 0.8913 0.9499 0.6683
Okapi Evo 0.3705 0.8780 0.9031 0.9738 0.7813
GP Std 0.4763 0.9416 0.9064 0.9684 0.8232
GP Spec 0.8128 0.9414 0.8993 0.9689 0.9056
GP Std 2 0.9410 0.9209 0.9486
GP Std 3 0.9050 0.9508
GP Std 4 0.9469

Table 5: Comparison of Approaches (Detections).
B1 B2 C1 C2

Okapi - Default 2 48 42 93
Okapi - Evolved 6 56 45 102
GP Std 30 64 46 99
GP - Spec 30 63 46 102
JPlag - without basecode 22 48 39 84
JPlag - with basecode 22 66 46 88
Maxscore 50 90 70 126

plagiarised pairs in a collection. A perfect result for a col-
lection would have the have the all of the plagiarised pairs
as the first Maxscore outputs. The table shows the actual
number of plagiarised pairs in the first Maxscore outputs,
for example, for collection B1 for Okapi Default, 2 of the
top 50 outputs are plagiarised pairs. Note that while ‘GP
Std’ and ‘GP Spec’ both have 30 plagiarised pairs in the top
50 for collection B1, the NCRR score for ‘GP Std’ is much
lower. This is because there are two false positives near the
top of the ‘GP Std’ list. The table includes the performance
of the JPlag system on the same data.

A full comparison with the JPlag system is not possible
due to operational restrictions on the JPlag system. It was
not possible to get comparable JPlag data for table 4 and
the JPlag scores for collection C2 may be underestimates.
Also, since the evolved systems do not use basecode it is
fair to compare them to JPlag without basecode on collec-
tions B1, B2 and C1. On these collections the GP systems
are superior. The evolved Okapi is very poor on collection
B1, but otherwise competitive. It is interesting to note that
the evolved GP functions are competitive with JPlag with
basecode. Further work is needed to determine whether the
evolved systems could be improved with the basecode fea-
ture.

5.4 Analysis of Evolved Functions
Some of the best evolved functions using specialized GP

are shown in figure 6. Some manual simplification has been
done.

The prevalence of components related to inverse document
frequency in all three functions shows that term rarity is
very important. Interestingly, document length does not
appear in the evolved functions. This could be because it
is not important, or because we did not include suitable
terminals for the lengths to be used in the restricted format.
We suspect that the latter case is true, since our earlier PSO
experiments suggest that document length is important.

We analyze the first function in figure 6. This function
rates a query and document as similar when the terms com-

mon to both are rare within the collection but frequent
within the query and document. This is reinforced when
there are multiple occurrences of these terms. The lowest
scores are given when the terms common to both occur fre-
quently within the collection. The length of the document
(Dterms) works to negate the advantage aggregation gives
to longer documents since they naturally have more terms
(Two long documents will generally have more shared terms
than two short documents).

The fact that terms related to inverse document frequency
are so common in the evolved formulas suggests there are
better ways to favour term rarity than those currently in
use in human devised similarity functions.

5.5 Generalization
In section 3.3 we noted that using just collection A as the

training data might not lead to good generalization to other
collections. The results given in the first four lines of table 4
suggest that there is good generalization to other collections.
An open question at this point is whether the performance
can be improved by using more training data. We have in-
vestigated this question by performing some additional runs
with more collections in the training data. Row ‘GP Std
2’ shows the results for using two collections, A and B1, as
the training data. Note that the B1 column entry is now
blank. This is because collection B1 can no longer be used
as an independent test set. The Average NCRR entry is
also blank because an average for this row would no longer
be comparable to the values above. Row ‘GP Std 3’ shows
the results for using three collections, A, B1 and B2 as the
training data. Row ‘GP Std 4’ shows the results A, B1, B2
and C1.

In comparing ‘GP Std’ with ‘GP Std 2-4’ it can be seen
that the additional training data has helped in some cases
and not in others. While we have not carried out an ex-
haustive set of experiments with all possible combinations
of collections as the training data, it seems that the exam-
ples in collection A are adequate for evolving detectors with
good generalization.

6. CONCLUSIONS
Our goal in this work was to determine whether evolution-

ary computing could improve the similarity functions used
in code plagiarism detection. We found that particle swarm
optimization could be used to give better tunable parameters
for the human devised Okapi BM25 similarity function cur-
rently in use. We also found that genetic programming could
be used to give better performing similarity functions with
novel structure. On test collections where a fair compari-
son was possible, the plagiarism detection systems using the
evolved GP functions outperformed JPlag, the most widely
used state-of-the art plagiarism detection system. Analysis
of the evolved formulas suggested that human derived simi-
larity formulas could be improved by more consideration of
the effect of terms that are common in the collection, but
rare in a particular query and a similar document.

While we expended considerable effort in attempting to
evolve understandable functions, we were not totally suc-
cessful. Further work on alternative terminals, functions and
formula structures based on domain knowledge, and perhaps
multi-objective algorithms, is needed.

The focus of our work was on improved similarity func-
tions rather than developing a working plagiarism detection
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Figure 6: Best similarity functions evolved with specialized GP.

system. However, some additional work on user interface de-
velopment and highlighting of similar code blocks between
files would give a practical plagiarism detection system.
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