
Genetic Algorithms for Mentor-Assisted
Evaluation Function Optimization

Omid David-Tabibi
∗

Department of Computer
Science

Bar-Ilan University
Ramat-Gan 52900, Israel
mail@omiddavid.com

Moshe Koppel
†

Department of Computer
Science

Bar-Ilan University
Ramat-Gan 52900, Israel
koppel@cs.biu.ac.il

Nathan S. Netanyahu
‡

Department of Computer
Science

Bar-Ilan University
Ramat-Gan 52900, Israel
nathan@cs.biu.ac.il

ABSTRACT
In this paper we demonstrate how genetic algorithms can
be used to reverse engineer an evaluation function’s param-
eters for computer chess. Our results show that using an
appropriate mentor, we can evolve a program that is on par
with top tournament-playing chess programs, outperforming
a two-time World Computer Chess Champion. This perfor-
mance gain is achieved by evolving a program with a smaller
number of parameters in its evaluation function to mimic the
behavior of a superior mentor which uses a more extensive
evaluation function. In principle, our mentor-assisted ap-
proach could be used in a wide range of problems for which
appropriate mentors are available.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning—Parameter learn-
ing

General Terms
Algorithms

Keywords
Computer chess, Fitness evaluation, Games, Genetic algo-
rithms, Parameter tuning

1. INTRODUCTION
Since the dawn of modern computer science, game playing

has posed a formidable challenge in the field of Artificial
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Intelligence. Many founding figures of computer science and
AI (including Alan Turing, Claude Shannon, Konrad Zuse,
Arthur Samuel, John McCarthy, Ken Thompson, Herbert
Simon, and others) developed game-playing programs and
used games in AI research.

The ongoing key role played by and the impact of com-
puter games on AI should not be underestimated. If nothing
else, computer games have served as an important testbed
for spawning various innovative AI techniques in domains
and applications such as search, automated theorem prov-
ing, planning, and learning. In addition, the annual World
Computer Chess Championship (WCCC) is arguably the
longest ongoing performance evaluation of programs in com-
puter science, which has inspired other well-known compe-
titions in robotics, planning, and natural language under-
standing.

Computer chess, while being one of the most researched
fields within AI, has not lent itself to the successful applica-
tion of conventional learning methods, due to its enormous
complexity. Hence, current top chess programs use manu-
ally tuned parameters for their evaluation function, which is
the most critical component of any chess program.

In this paper, we introduce a novel mentor-assisted
approach for automatically evolving the parameters
of a chess program’s evaluation function through the
use of genetic algorithms (GA). The results show
that our mentor-assisted approach for application
of GA efficiently evolves the parameters of the eval-
uation function from randomly initialized values to
highly tuned ones, yielding a program that outper-
forms its original version by a wide margin. Such
performance was achieved for an evolved program
whose evaluation function is considerably more com-
pact than that of the mentor, in terms of its number
of parameters.

In Section 2 we review past attempts at applying evo-
lutionary techniques in computer chess, and also compare
alternative learning methods to evolutionary methods, ar-
guing why the latter are more appropriate for the task in
question. Section 3 provides our mentor-assisted approach,
including a detailed description of the chess programs we
used, and the framework of the GA as applied to the prob-
lem. Section 4 provides our experimental results, and Sec-
tion 5 contains concluding remarks and suggestions for fu-
ture research.
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2. LEARNING IN COMPUTER CHESS
The enormously complex game of chess, referred to as

“the touchstone of the intellect” by Goethe, has always been
one of the main battlegrounds of man versus machine (John
McCarthy [20] refers to chess as the “Drosophila of AI”).
Chess-playing programs have come a long way over the past
several decades. While the first chess programs could not
pose a challenge to even a novice player, the current ad-
vanced chess programs are on par with the strongest hu-
man chess players, as the recent man vs. machine matches
clearly indicate. This improvement is largely a result of deep
searches possible nowadays, thanks to both hardware speed
and improved search techniques. While the search depth of
early chess programs was limited to only a few plies, nowa-
days tournament-playing programs easily search more than a
dozen plies in middlegame, and tens of plies in late endgame.

Despite their groundbreaking achievements, a glaring de-
ficiency of all top chess programs today is their near total
lack of a learning capability (except in most negligible ways,
e.g., “learning”not to play an opening that resulted in a loss,
etc.). The resulting criticism is that despite their intelligent
behavior, these top chess programs have no underlying intel-
ligence, and are mere brute-force (albeit efficient) searchers.

2.1 Conventional vs. Evolutionary Learning
in Computer Chess

During more than fifty years of research in the area of
computer games, many learning methods such as reinforce-
ment learning [28] have been employed in simpler games.
Temporal difference learning has been successfully applied
in backgammon and checkers [25, 29]. Although temporal
difference learning has also been applied to chess [4], the re-
sults showed that after three days of learning, the playing
strength of the program was merely 2150 Elo (see Appendix
B for a description of the Elo rating system), which is a
very low rating for a chess program. Wiering [31] provided
formal arguments for the failure of these methods in more
complicated games such as chess.

The problem of learning in computer chess is basically
an optimization problem. Each program plays by conduct-
ing a search, with the current position being the root of
the search tree, and applying static evaluation function at
leaf nodes. In other words, sophisticated as the search al-
gorithms may be, most of the knowledge of the program
is in its evaluation function. Even though automatic tuning
methods, based mostly on reinforcement learning, have been
successfully applied to other simpler games such as checkers,
none of them have found their way into the state-of-the-art
chess engines. Currently, all top tournament-playing chess
programs use hand tuned evaluation functions, since con-
ventional learning methods cannot cope with the enormous
complexity.

We believe that genetic algorithms are best suited for au-
tomatic tuning of an evaluation function’s parameters, for
the following reasons:

(1) The space to be searched is huge. It is estimated that
there are up to 10200 possible positions that can arise in
chess. As a result, any method based on exhaustive search
of the problem space is infeasible.

(2) The search space is not smooth and unimodal. An
evaluation function’s parameters in any top chess program
are highly co-dependent. For example, in many cases in-
creasing the values of three parameters will result in a worse

performance, but if a fourth parameter is also increased,
then an improved overall performance would be obtained.
Since the search space is not unimodal, i.e., does not consist
of a single smooth “hill”, any gradient-ascent algorithm such
as hill climbing will perform poorly.

(3) The problem is not well understood. As will be dis-
cussed in detail in the next section, even though all top
performing programs are hand tuned by their programmers,
finding the best value for each parameter is mostly based on
educated guessing and intuition. (The fact that all top pro-
grams continue to operate in this manner, attests to the lack
of practical alternatives.) Had the problem been well under-
stood, a domain-specific heuristic would have outperformed
a general-purpose method such as GA.

(4) We do not require a global optimum to be found. Our
goal in tuning an evaluation function is to adjust its pa-
rameters so that the overall performance of the program is
enhanced. In fact, a unique global optimum does not exist
for this tuning problem.

At first glance, automatic tuning of the evaluation func-
tion appears like an optimization task, well suited for GA.
The many parameters of the evaluation function (bonuses
and penalties for each property of the position) can be en-
coded as a bit-string. We can randomly initialize many such
“chromosomes”, each representing one evaluation function.
Thereafter, one needs to evolve the population until highly
tuned “fit” evaluation functions emerge.

However, there is one major obstacle that hinders the ap-
plication of GA, namely the fitness function. Given a set
of evaluation parameters (encoded as a chromosome), how
should the fitness value be calculated? For many years, it
seemed that the solution was to let the individuals in each
generation (each individual being a chess program with the
appropriate evaluation function) play against each other a
series of games, and subsequently, take the score of each
individual as its fitness value.

The main drawback of this approach is the unacceptably
large amount of time needed to evolve each generation. As
a result, severe limitations are imposed on the length of the
games played after each generation, and also on the size of
the population involved. With a population size of 100, and
by an extreme limitation of 1 minute per game for each side,
assuming each individual plays at least 10 games, it would
take 2000 minutes for each generation to evolve. With these
time constraints, reaching the 50th generation would take
no less than 70 days.

In the next section we present our mentor-assisted ap-
proach for using GA in state-of-the-art chess programs. Be-
fore that, we briefly review previous work in applying evo-
lutionary methods in computer chess.

2.2 Previous Evolutionary Methods Applied
to Chess

Despite the abovementioned problems, there have been
some successful applications of evolutionary techniques in
computer chess, subject to some restrictions. Genetic pro-
gramming was successfully employed by Hauptman and Sip-
per [15, 16] for evolving programs that can solve Mate-in-N
problems and play chess endgames.

Kendall and Whitwell [19] used evolutionary algorithms
for tuning evaluation function parameters. Their approach
had limited success, due to the very large number of games
required (as previously discussed), and the small number of
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parameters used in their evaluation function. Their evolved
program managed to compete with strong programs only if
their search depth (lookahead) was severely limited.

Similarly, Aksenov [2] used genetic algorithms for evolving
evaluation function parameters, using games between the
organisms for determining their fitness. Again, since this
method required a very large amount of games, the method
evolved only a few evaluation function parameters with lim-
ited success. Tunstall-Pedoe [30] also suggested a similar
approach, without providing an implementation.

Gross et al. [14] used a hybrid of genetic programming and
evolution strategies to improve the efficiency of an already
existing search algorithm using a distributed computing en-
vironment on the internet.

In the following section, we present a novel approach that
facilitates the use of GA for efficiently evolving an evaluation
function’s parameters. As our results will demonstrate, this
method is very fast, and the evolved program is on par with
the world’s strongest chess programs.

3. MENTOR-ASSISTED FITNESS
EVALUATION

Due to the impediments already discussed, establishing
fitness evaluation by means of playing numerous games is
not practical. However, we can exploit a vast reservoir of
previously under-utilized information. While the evaluation
functions of existing chess programs are carefully guarded
secrets, it is standard practice for a chess program to (par-
tially) reveal the score for any given position encountered in
a game. We propose to use genetic algorithms to essentially
reverse engineer these evaluation functions. We will see that
such reverse engineering can be carried out very rapidly and
successfully, and that in fact a program based on an evalua-
tion function learned from a particular mentor, can perform
as well as the mentor. Specifically, the program evolves its
evaluation function from a mentor using the steps appearing
in Figure 1.

1. Generate a list of random problems.

2. For each problem, let the mentor evaluate the problem
and store the result.

3. Let each individual evaluate all the problems, and for
each problem calculate the average difference between
the value given by the individual and the value issued
by the mentor. The fitness of the individual will be
inversely proportional to this average difference.

Figure 1: Mentor-assisted fitness evaluation.

In our case, each problem is associated with a chess po-
sition, and the mentor is the evaluation function of a state-
of-the-art chess engine. In other words, we generate a list of
random chess positions for each generation, and let a strong
chess engine evaluate all of them. Afterwards, we let the
evaluation function of each of these individuals evaluate the
positions. The closer the evaluation of an individual to the
evaluation of the mentor is, the higher its fitness value will

be. In the following subsections, we describe in detail the
chess programs, the implementation of our mentor-assisted
approach, and the GA parameters used.

3.1 The Chess Programs
For this work, we used the Maestro and Falcon chess

programs. Falcon is a 2700+ Elo rated grandmaster-level
chess program, which has successfully participated in two
World Computer Chess Championships. (See Appendix B
for Elo rating system.) Falcon uses NegaScout/PVS [9,
22] search, with null-move pruning [5, 10, 12], internal iter-
ative deepening [3, 26], dynamic move ordering (history +
killer heuristic) [1, 13, 23, 24], multi-cut pruning [7, 8], selec-
tive extensions [3, 6] (consisting of check, one-reply, mate-
threat, recapture, and passed pawn extensions), transposi-
tion table [21, 27], futility pruning near leaf nodes [17], and
blockage detection in endgames [11].

Falcon has an extensive evaluation function consisting of
several thousand lines of code, using more than 100 evalua-
tion function parameters. Maestro, an experimental pro-
gram which is considerably weaker than Falcon, employs
identical search techniques, and differs from Falcon only by
its evaluation function. Maestro’s evaluation function is
much smaller, consisting of fewer than 40 parameters. Since
the two programs differ only in their evaluation function,
this element is solely responsible for their vastly different
performances.

3.2 Encoding the Evaluation Function
We use the stronger program, Falcon, as the mentor, and

evolve the evaluation function of Maestro to mimic the be-
havior of its mentor, thereby improving its strength. We use
only the output of Falcon’s evaluation function, and oth-
erwise assume we know nothing about the methods Falcon
uses to compute this function. Thus, we use Falcon’s scores
to optimize the parameters of Maestro, not the parameters
of Falcon, which (for our purposes) are unknown to us.

While having a simpler evaluation function than Fal-
con’s, Maestro’s evaluation function does cover all im-
portant aspects of a position. The main features of an eval-
uation function are material, piece mobility and centricity,
pawn structure, and king safety. We show that comparable
performance can be achieved with a considerably smaller
number of parameters than that of the mentor’s evaluation
function.

In order to demonstrate the effectiveness of this mentor-
based approach, we chose to entirely ignore the initial values
of the evaluation function parameters, and instead, assign
random values to all of them. In other words, if Maestro
was 120 Elo weaker than Falcon, after initializing randomly
its evaluation function parameters, it will play like a novice
that has no knowledge about the game (apart from making
legal moves and certain built-in tactics).

We represent the evaluation function parameters of Mae-
stro as a binary bit-string (chromosome size: 230 bits),
initialized randomly. In addition to the random initializa-
tion, we further impose the following restriction: Except for
the five parameters representing the material values of the
pieces, all the other parameters were assigned a fixed length
of 6 bits per parameter. Obviously, there are many parame-
ters for which 3 or 4 bits will suffice. However, we allocated
a fixed length of 6 bits to all parameters so that a priori
knowledge would not bias the algorithm in any way.
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3.3 Mentor-Assisted Fitness Function
As already described, our goal is to evolve the parameters

of Maestro so that its evaluation function would produce
as close a score as possible to the evaluation function of
Falcon, given the same position.

For our experiments, we used a database of 10,000 grand-
master games (rating above 2600 Elo), and randomly chose
one position from each game. Of these 10,000 positions, we
selected 5,000 positions for training, and 5,000 for testing.
For all of the positions we assumed it was White’s turn to
move (since this is more likely to permit materially imbal-
anced positions in our sample).

At first, we let Falcon search each of the 10,000 positions
to a depth of 2 plies, and stored its evaluation of the posi-
tion. (We denote this mentor’s score for position p by Sm,p.)
Then, in each generation we randomly selected 1,000 posi-
tions out of the 5,000 designated positions for the learning
phase. This random selection of positions in each generation
introduces additional variety, which should help prevent pre-
mature convergence to suboptimal values.

For each organism we translate its chromosome bit-string
into a corresponding evaluation function, and apply the eval-
uation function to each of N positions examined (in our case
N = 1000). Organism i’s score for position p is denoted by
Si,p. For each position p we define the organism’s error as

Ei,p = |Sm,p − Si,p|,
and the overall error for the organism, Ei, will be the

average error over the N positions, i.e.,

Ei =

N∑

p=1

Ei,p

N
.

Finally, the fitness value of organism i will be Fi = −Ei,
i.e., the smaller the average error, the higher the fitness
value.

3.4 GA Parameters
Apart from the special fitness function described above,

we used a standard implementation of GA with proportional
selection and single point crossover. The following are the
parameters we used:

population size = 1000
crossover rate = 0.75
mutation rate = 0.002
number of generations = 300

At the end of each generation, we replicated the best or-
ganism, and deleted the worst organism.

Note that each organism is in fact a unique encoding of the
evaluation function values, which is loaded by the Maestro
engine.

In the following section we provide our experimental re-
sults, both in terms of the learning efficiency, and the per-
formance gain of the best evolved individual.

4. RESULTS
We first present the results of running the mentor-assisted

GA as described in the previous section. Then, we provide

the results of several experiments that measure the strength
of the evolved program in comparison to its original version.

4.1 Learning Results
Figure 2 shows the average error per position of the best

organism and the population average for 300 generations.
An evaluation unit in chess programs is commonly called
a centipawn, i.e., 1/100th of the value of a pawn. Tradi-
tionally, a pawn value is assigned a value of 100, and all
the other figures are assigned relative values to that of the
pawn. However, the value of pawn itself need not necessarily
be 100, so a unit of evaluation may no longer necessarily be
equal to 1/100th of a pawn. Despite this inconsistency, the
term centipawn is still used to denote the smallest evaluation
unit.

Figure 2: Average error per position for the best
organism and the population average in each gener-
ation (total time for 300 generations: 442 seconds).

The results in Figure 2 show that in the first few genera-
tions the average error was more than 250 centipawns, and
the best organism’s error was more than 130. This huge
initial error is not surprising, as we initialized all the values
randomly (i.e., the initial individual did not even know that
a queen is worth more than a pawn). This lack of initial
knowledge results in very large initial errors, which corre-
spond to very low fitness values for the organisms. This re-
sults in the rapid extinction of individuals with highly erro-
neous parameter values. As early as generation 35, the best
organism’s average error drops below 50 centipawns. At this
stage, large parameter values (such as material values, etc.)
are already well-tuned for most of the organisms, and for the
remaining generations, the smaller values are fine tuned. At
generation 300, the average error of the best organism is 28
centipawns, and the average error of the population is 47
centipawns. Figure 3 provides the evolved values of the best
individual.

With the completion of the learning phase, we used the
additional 5,000 positions set aside for testing. We let our
best evolved organism evaluate these positions, and com-
pared its evaluation with that of its mentor (Falcon). The
average error here was 30 centipawns. This indicates that
the first 5,000 positions we used for training cover most types
of positions that can arise, as the average error is very sim-
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PAWN_VALUE 83

KNIGHT_VALUE 322

BISHOP_VALUE 323

ROOK_VALUE 478

QUEEN_VALUE 954

PAWN_ADVANCE_A 2

PAWN_ADVANCE_B 4

PASSED_PAWN_MULT 5

DOUBLED_PAWN_PENALTY 21

ISOLATED_PAWN_PENALTY 10

BACKWARD_PAWN_PENALTY 3

WEAK_SQUARE_PENALTY 7

PASSED_PAWN_ENEMY_KING_DIST 5

KNIGHT_SQ_MULT 7

KNIGHT_OUTPOST_MULT 8

BISHOP_MOBILITY 5

BISHOP_PAIR 44

ROOK_ATTACK_KING_FILE 30

ROOK_ATTACK_KING_ADJ_FILE 1

ROOK_ATTACK_KING_ADJ_FILE_ABGH 21

ROOK_7TH_RANK 32

ROOK_CONNECTED 2

ROOK_MOBILITY 2

ROOK_BEHIND_PASSED_PAWN 48

ROOK_OPEN_FILE 12

ROOK_SEMI_OPEN_FILE 6

ROOK_ATCK_WEAK_PAWN_OPEN_COLUMN 7

ROOK_COLUMN_MULT 3

QUEEN_MOBILITY 0

KING_NO_FRIENDLY_PAWN 27

KING_NO_FRIENDLY_PAWN_ADJ 17

KING_FRIENDLY_PAWN_ADVANCED1 12

KING_NO_ENEMY_PAWN 11

KING_NO_ENEMY_PAWN_ADJ 3

KING_PRESSURE_MULT 8

Figure 3: Evolved parameters of the best individual.

ilar to the average error for the testing set. The entire 300
generation evolution lasted 442 seconds on our machine (see
Appendix A), that is, less than 8 minutes.

The results clearly demonstrate that the evolution con-
verges very quickly to values that are very close to those
of the mentor. In other words, within a few minutes we
evolved an evaluation function from random values to val-
ues that result in a behavior closely resembling that of the
mentor.

4.2 Performance of the Evolved Organism
In this subsection we provide the results of a series of

matches between the programs. All matches consisted of
300 games at a time control of 3 minutes per game for each
side. We are interested in comparing the performance of the
original Maestro vs. Falcon (in order to obtain a base-
line), and the performance of the evolved program (which
we will call MaestroGA) against its mentor, Falcon. We
also compare the evolved MaestroGA against the original
Maestro. Table 1 provides the results of the 900 games
played.

Match Result W% RD

Falcon - Maestro 199.0 - 101.0 66.3% +118
Falcon - MaestroGA 151.5 - 148.5 50.5% +3
MaestroGA-Maestro 202.5 - 97.5 67.5% +127

Table 1: Results of 900 games between the three
programs (W% is the winning percentage, and RD
is the Elo rating difference). Win = 1 point, draw
= 0.5 point, and loss = 0 point.

The results of the match between Falcon and Maestro
show that Falcon is considerably stronger than Maestro.
As we mentioned earlier, these two programs differ only in
their evaluation function, with Falcon having a larger eval-
uation function.

It should be noted that in terms of its choice of param-
eters and in all respects other than the values assigned to
each parameter, MaestroGA is basically the original Mae-
stro program1. Despite having a smaller evaluation func-
tion, our mentor-assisted GA evolves parameter values such
that MaestroGA’s performance is essentially identical to
that of the mentor, Falcon. In head to head competition
against Falcon, it proves to be Falcon’s equal. Moreover,
the evolved MaestroGA resoundingly defeats the original
version by scoring 67.5%.

Our results clearly demonstrate the importance of efficient
automatic parameter tuning. Despite the fact that the eval-
uation function parameters in the original Maestro were
manually tuned, automatic tuning that started from ran-
dom values managed to produce much better results than
those do human-picked values, resulting in a vast rating dif-
ference.

Finally, we ran three additional matches each consisting
of 300 games against the chess program Crafty, by Robert
Hyatt [18]. Crafty has successfully participated in numer-
ous World Computer Chess Championships (WCCC), and is
a direct descendent of Cray Blitz, the winner of 1983 and
1986 WCCC. Crafty is frequently used in the literature as
a standard reference. Thus, we compared our original Mae-
stro, the evolved MaestroGA, and the mentor, Falcon,
against Crafty. Table 2 provides the results.

Match Result W% RD

Maestro - Crafty 140.5 - 159.5 46.8% −22
MaestroGA - Crafty 177.0 - 123.0 59.0% +63
Falcon - Crafty 173.5 - 126.5 57.8% +55

Table 2: CRAFTY vs. MAESTRO, MAESTROGA,
and FALCON (W% is the winning percentage, and
RD is the Elo rating difference).

The results show that while Crafty is stronger than the
original Maestro, the evolved version is clearly superior to
Crafty. Interestingly, MaestroGA’s performance against
Crafty is actually marginally better than that of its men-
tor.

In another experiment, we again found that in certain
ways the evolved program can marginally outperform the

1Both Maestro and MaestroGA are in fact the very same
executable file, with the only difference being that Mae-
stroGA loads the values of its evaluation function’s pa-
rameters from an external “chromosome file”.
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mentor. For measuring the tactical strength of the pro-
grams, we used the Encyclopedia of Chess Middlegames
(ECM) test suite, consisting of 879 positions. Each pro-
gram was given 5 seconds per position. Table 3 provides
the results. As can be seen, MaestroGA solved signifi-
cantly more problems than did Maestro and even a few
more than Falcon.

Maestro MaestroGA Falcon

616 649 645

Table 3: Number of ECM positions solved by each
program (time: 5s per position).

In summary, the results show that our mentor-assisted ap-
proach for application of GA allows for an efficient evolution
of the parameters to exhibit a behavior that is very similar
to that of the mentor. Even though we evolved the param-
eters from scratch, with the chromosome being initialized
randomly, the evolved values proved to perform substan-
tially better than the hand tuned values in the original ver-
sion. The results of the 1800 games played, demonstrate the
marked performance superiority of the evolved version over
the original version.

5. CONCLUDING REMARKS AND
FUTURE RESEARCH

In this paper we presented a novel mentor-assisted ap-
proach for automatic tuning of parameters. Wherever an
already intelligent entity exists, it can serve as a mentor,
such that the GA will evolve the organisms to mimic the
behavior of the mentor. In other words, our approach en-
ables the duplication of another intelligent organism’s be-
havior, merely by looking at its behavior, with no access to
the underlying mechanism of this mentor.

Our experimental results showed that within a few min-
utes organisms were evolved from a randomly initialized
chromosome, to highly tuned parameters that produced sim-
ilar behavior to that of the mentor, in terms of the relative
performance observed with respect to the same set of po-
sitions. The results of the games played demonstrated the
significant gain of the evolved version, which clearly outper-
formed its original version. Note that the successful duplica-
tion of the mentor’s behavior was achieved despite the fact
that a considerably smaller number of parameters were used
in the evaluation function of the evolved program.

For future research, we intend to develop further capabil-
ities based on the presented mentor-assisted approach. In
this paper we showed how another computer program can
serve as a mentor. However, using human players as men-
tors is more difficult, as in this case we do not have access
to their numerical evaluation of the position. We believe,
though, that a database containing hundreds of games of a
human player will provide sufficient data for this learning
to take place. One method we intend to experiment with,
is to extract several thousand positions from games played
by a human mentor, and for each position assign a higher
fitness for the organism that produces the move played by
the mentor. This approach, if successful, would basically en-
able the program to behave like its mentor, without having
access to his/her “brain”. For example, we might be able
to develop a program that plays like Kasparov by learning
from his games.

In this work we used a single mentor. An alternative im-
plementation may use several mentors, using the “wisdom
of crowds” concept to evolve an individual which is “wiser”
than its mentors. It is well-known that each chess program
has its strengths and weaknesses. By using several mentor
chess engines, it might be possible to combine the strengths
of all of them, and outperform each individual mentor.

Our mentor-assisted approach could also be applied to
the problem of player recognition. Given a list of N players,
the simplest approach is to separately evolve N organisms,
each mimicking the behavior of the respective player. Then,
given a game played by one of the players, each of our N
organisms would apply their evaluation to the position, and
the player whose cloned organism agrees more closely with
the moves played in the game, is more likely to be the player
in the game.

Finally, we believe the method of GA-based parameter
tuning suggested here could be applied to a wide array of
problems in which the output of a mentor’s evaluation func-
tion is available for training purposes.
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APPENDIX
A. EXPERIMENTAL SETUP
Our experimental setup consisted of the following resources:

• Maestro and Falcon chess engines running under
UCI protocol, and Crafty 19.19 running as a native
ChessBase engine.

• Encyclopedia of Chess Middlegames (ECM) test suite,
consisting of 879 positions.

• Fritz 8 interface for automatic running of matches. Fritz
opening book was used for all games.

• AMD Athlon 64 3200+ with 1 GB RAM and Windows
XP operating system.

B. ELO RATING SYSTEM
The Elo rating system, developed by Prof. Arpad Elo, is

the official system for calculating the relative skill levels of
players in chess. The following statistics from the January
2008 FIDE rating list provide a general impression of the
meaning of Elo ratings:

• 18305 players have a rating above 2200 Elo.

• 2037 players have a rating between 2400 and 2499, most
of whom have either the International Master (IM) or
the Grandmaster (GM) title.

• 577 players have a rating between 2500 and 2599, most
of whom have the GM title.

• 141 players have a rating between 2600 and 2699, all
but one of whom have the GM title.

• 24 players have a rating between 2700 and 2799.

Only four players have ever had a rating of 2800 or above.
A novice player is generally associated with rating values of
below 1400 Elo. Given the rating difference (RD) of two
players, the following formula calculates the expected win-
ning rate (W , between 0 and 1) of the player:

W =
1

10−RD/400 + 1

Given the winning rate of a player, as is the case in our
experiments, the expected rating difference can be derived
from the above formula:

RD = −400 log10(
1

W
− 1)
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