
Discovering Performance Bounds for Grid Scheduling by
using Evolutionary Multiobjective Optimization

Christian Grimme Joachim Lepping Alexander Papaspyrou

Robotics Research Institute
Section Information Technology

Dortmund University of Technology
Otto-Hahn-Strasse 8, 44227 Dortmund, Germany

{firstname.lastname}@udo.edu

ABSTRACT
In this paper, we introduce a methodology for the approxi-
mation of optimal solutions for a resource allocation problem
in the domain of Grid scheduling on High Performance Com-
puting systems. In detail, we review a real-world scenario
with decentralized, equitable, and autonomously acting sup-
pliers of compute power who wish to collaborate in the pro-
vision of their resources. We exemplarily apply NSGA-II in
order to explore the bounds of maximum achievable bene-
fit. To this end, appropriate encoding schemes and variation
operators are developed while the performance is evaluated.
The simulations are based upon recordings from real-world
Massively Parallel Processing systems that span a period
of eleven months and comprise approximately 100,000 jobs.
By means of the obtained Pareto front we are able to iden-
tify bounds for the maximum benefit of Grid computing in
a popular scenario. For the first time, this enables Grid
scheduling researchers to rank their developed real-world
strategies.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems—Computa-
tions on Discrete Structures; G.2.1 [Mathematics of Com-
puting]: Discrete Mathematics—Combinatorics; I.2.8 [Ar-
tificial Intelligence]: Problem Solving, Control Methods,
and Search—Heuristic Methods; I.6.4 [Computing Me-
thodologies]: Simulation and Modeling—Model Validation
and Analysis

General Terms
Experimentation, Algorithms, Performance

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’08, July 12–16, 2008, Atlanta, Georgia, USA.
Copyright 2008 ACM 978-1-60558-130-9/08/07…$5.00.

Keywords
Multi-Objective Optimization, Scheduling, Grid Computing

1. INTRODUCTION
Since Foster and Kesselman [13] introduced the concept

of Grid Computing, it has become a common term for the
collaborative usage of heterogeneous and geographically dis-
tributed resources. The main goal is to enable users to access
these resources as services in a transparent way. Although
the nature of provisioning is not limited to bare computa-
tional power, it is still the most common case for produc-
tion Grid environments. These High Performance Comput-
ing (HPC) Grids comprise several Massive Parallel Process-
ing1 systems, so called Grid sites, each of which capable of
running highly demanding applications. Examples of such
are simulations in the area of earth system science [3], biol-
ogy [14], or high energy physics [9].

One of the most important challenges in current Grid re-
search is to find scheduling strategies that offer a good job-
to-resource assignment. However, since resources are usu-
ally owned and maintained by different institutions or orga-
nizations and, as such, situated in different administrative
domains, the problem is far more complex than parallel job
scheduling [12]: in addition to the assignment of jobs to local
resources (which already poses an NP-complete problem), a
suitable Grid site has to be chosen in the first place.

Most theoretical and experimental works do not consider
these two problems separately: heuristic strategies handle
both job interchange between computing sites as well as lo-
cal scheduling and assume an unrealistic model by build-
ing upon complete knowledge regarding the systems’ dy-
namic performance. By doing so, they ignore real world
requirements: current HPC Grid installations usually run
autonomous local batch management systems with schedul-
ing strategies tailored to the needs of the funding organi-
zation’s individual user communities. In addition, most re-
source providers consider data on the performance of their
systems confidential, usually denying access to metrics such
as machine utilization, number of current jobs and the like.

Thus, a major concern should be the optimization of job
interchange mechanisms between autonomous and equitable
sites, leaving local systems and strategies untouched as far
as possible. Additionally, there is a strong need for perfor-

1Such as parallel or cluster computers.

1491

mance values regarding the attainable frontiers of scheduling
heuristics in general and distribution decision algorithms in
particular. This could provide a solid foundation for perfor-
mance comparison during the development of such strate-
gies.

In this paper, we propose—using the Non-dominated Sort-
ing Genetic Algorithm (NSGA-II) [5] as one standard method
for multi-objective optimization—a methodology to deter-
mine near optimal exchange of jobs between heterogeneous
Grid sites. To this end, we consider the problem of finding
an optimal partition of the overall workload submitted to
all sites. In order to model real world scenarios and user be-
havior as exact as possible, we consider real machine config-
urations, common local scheduling strategies and real work-
load recordings consisting of 50,000 to 150,000 jobs. The
perceived results point out the benefit of Grid computing,
and—together with a realistic infrastructure model—form
an early test suite for future strategy development.

The remainder of this paper is organized as follows: in
Section 2 we review the problem of job interchange and Grid
scheduling in more detail. Then, we explain the considered
model in Section 3 and the applied methodology in Section 4.
Following, we present the reference sets that quantify the
benefit of Grid job interchange in Section 5 and conclude
the paper in Section 6.

2. BACKGROUND
The problem of job distribution between federated com-

pute clusters has been continuously studied since the emer-
gence of Grid computing; today’s research however focuses
on the behavior of centralized Grid scheduling services [2,
10] and yields only limited innovation regarding efficient al-
gorithms for resource allocation. Ernemann et al. [8] point
out advantages of hierarchical scheduling in general by con-
sidering the Average Weighted Response Time objective. In
another work, they propose an adaptive algorithm which
decides—based on the overall system state—whether to split
up a job to execute it on different Grid sites (Multi-site com-
puting) [7]. Kurowski et al. [19] identify multiple objectives
for efficient job scheduling in Grids and propose a strategy
based on prediction mechanisms and resource reservation.
Of course, due to the highly dynamical character of the prob-
lem, nature-inspired techniques for adaptive scheduling have
also been proposed during the last years: besides GA-driven
Metaschedulers [4], hybrid heuristics were applied [1, 18].

For the decentralized scenario, only few results that sup-
port the application of job delegation in Grids have been
published so far. England and Weissman [6] give an estima-
tion of benefits and costs but base their results on synthetic
workloads and review the average slowdown only. Hamscher
et al. [17] use different job sharing strategies on two real
workloads but give no quantification of the resulting bene-
fit. Recently, Grimme et al. [15] analyze the prospects of
collaborative job sharing in Grids. They compare their re-
sults to the non-cooperative scenario of the same machines
but do not give a quantitative estimation of possible collab-
orative benefits.

Here, we adapt the model of Grimme et al. by omitting
any central component and allow direct communication be-
tween sites. Unlike the before cited works, we do not aim
to propose a new scheduling heuristic, but to set a corner-
stone for further algorithm development by highlighting the
obtainable benefit of Grid computing.

3. SCENARIO
The considered Grid scenario setup consists of K inde-

pendent HPC sites, each of which representing a parallel
machine with mk, k ∈ {1, . . . , K} identical processors. It
is assumed that submitted jobs (a) can be executed on any
subset of the mk processors and (b) that the machine config-
urations of all sites only differ in the amount, but not in the
speed of available resources. The current trend in large MPP
systems however shows that, in most cases, systems consist
of CPUs with more or less equal speed ratings2, making this
simplification justifiable.

Further, we assume the workload of each site to consist
of nk rigid3 parallel batch jobs, which is the common case
in such systems [21]. These jobs need exclusive access to
mj ≤ mk processors during their execution. The paral-
lelism value of a job j is provided at its release date rj ,
while the processing time pj of the job is unknown until its
completion time Cj . Until then, only a user-provided, usu-
ally inaccurate estimate p̄j is known to the system. As no
overuse of resources is allowed, the processing time is deter-
mined as pj = min{pj , p̄j}, following the common policy of
canceling jobs whose real processing time exceeds the user’s
estimation.

Each site comprises two elements that influence job-to-
resource mapping decisions: the batch management system
with its local scheduling heuristics and a decision maker
component that handles the acceptance and distribution of
jobs between participating Grid sites.

Figure 1: Schematic depiction of the considered
Grid scenario with independent sites using decen-
tralized scheduling. The decision maker (1) accepts
workload from a local user community and either (2)
assigns jobs to the local site’s resource management
system or (3) offers them to another site’s decision
maker.

Figure 1 depicts this process: jobs are submitted by a local
user community to the site’s scheduling system. There, it is
enqueued (1) and—depending the decision maker strategy—
either started locally (2) or moved to another site (3). The
on-site assignment to processors is finally done by the local
batch management system.

The process of job exchange can be realized on the basis
of two different protocols: in active delegation the local de-

2Such as MIPS (million floating point operations per sec-
ond), see http://top500.org.
3The jobs are neither moldable nor malleable concerning
processing time or resource consumption.

1492

cision maker offers jobs to remote sites in a proactive way,
while in passive delegation remote sites request jobs that the
local decision maker is willing to dispatch. In either case,
the local decision maker has to publish information on the
contents of its local waiting queue. Depending on the policy
of its administrative domain, this data can be restricted to
a subset. The decision on how many and which jobs to dis-
close to remote sites is in any case left to the local decision
maker.

As the workload is arriving over time, Grid scheduling
belongs to the class of online problems and poses two algo-
rithmic challenges:

1. Find a decision strategy that accepts submitted jobs
and determines whether to hand over a job to the local
resource management system or to a remote site while
keeping the performance of the local systems high.

2. Assign ultimately accepted jobs that are waiting in the
queue to local resources in an efficient way.

While different heuristics for the second step are currently
in use on real HPC installations, only few strategies have
been proposed for the decision of job acceptance and dele-
gation. As such, the latter is still an open research problem.

4. METHODOLOGY AND ALGORITHM
In this paper, we utilize a multi-objective optimization

method to determine the maximum profit the application
of job interchange in the afore described model may yield.
Of course, the here described approach will not identify the
overall optimal interchange results for all site setups; more-
over, we develop a methodology for generating reference val-
ues to rate newly designed decision strategies not regarding
the non-cooperative case but the best achievable interchange
behavior.

To this end, we modify the decision maker component
in Figure 1 to allow submission only to the local resource
management system. The interchange of jobs is modeled
in an offline manner by workload partitioning, leading to
differing amounts of workload on each site. Now, if a huge
amount of the workload from site A is migrated to site B the
performance of site A typically improves at the expense of
the performance of site B. Thus, we obtain a multi-objective
problem of finding best trade-offs for workload distribution
for all sites.

The following sections introduce the representation of the
problem and the applied methodology: first, we describe
the encoding scheme for a Grid consisting of two connected
sites. Note, however, that this methodology is also appli-
cable for an arbitrary number of Grid participants. Then,
we present the recombination and mutation operators that
have been adapted to the problem. After introducing the
actual computation of the objectives, we discuss issues like
search space limitation, constraint handling, and creation of
a start population.

4.1 Encoding Scheme
The genotype of an individual I = [a1, a2, . . . , al(I)] has

to respect the partitioning of the original workload traces
with nk jobs each into K sets, where K is the total number
of grid sites and l(I) =

�K
k=1 nk determines the length of

individual I.

1 1 2

…

0

2 3 4 53 4 5

…1 1 0 1 0 0 0 1 0

1 2 4 3 4 5

1 32 5

Ordered by Release Dates

Individual

Merged

Workload

Sequence

Partitioned

Workload 1

Partitioned

Workload 2 …

Ordered by Release Dates

…

Original

Workload 1

Original

Workload 2

1 4 5

1

2 3

2 3 4 5 …

…

Ordered by Release Dates

O
ri
g
in

a
l

T
ra

c
e
s

G
e
n
o
ty

p
–

P
h
e

n
o
ty

p
e

M
a
p
p
in

g

P
a
rt

it
io

n
e

d

T
ra

c
e
s

Figure 2: Encoding scheme of an individual an the
resulting workload partition.

By merging the original workload traces, we create one
job sequence that is sorted by the jobs’ release dates rj .
This job sequence is considered as reference workload and
its partition is now represented by the individuals’ allele
values. To this end, an individual must assign each job to a
Grid site and requires consequently l(I) genes.

Each grid site is then represented by a number from the
interval of possible alleles a ∈ [0, K −1]. For the here exam-
ined examples, we set K = 2 which reduces the genotype to
a binary representation. The mapping between geno- and
phenotype results in the desired two workloads. Still, the
order by release dates is preserved. Due to this encoding
scheme we have to deal with a very high dimensional search
space as one gene position for each job is required.

The whole process is depicted in Figure 2. It is notewor-
thy that the assignment of a job j to a machine during the
manipulation of a certain gene can be vetoed: if the job re-
quires more processors than the site can provide, mj > mk,
it is reassigned to its originating site.

4.2 Mutation Operators
Commonly, the NSGA-II algorithm is applied with mainly

recombination while mutation plays a minor role. During
simulations, we first applied a random mutation in which
each gene ai ∈ I is changed with probability Prand to

ai = [ai + �(K + 1) · U(0, 1)�] mod K (1)

where U(0, 1) is a uniformly distributed number between
0 and 1. This mutation exclusively favored the exchange
of jobs between different partitions and led to a beneficial
assignment of better fitting jobs.

However, our experiments showed that it is crucial to also
vary the partition size: not doing so resulted in a limited
coverage of the Pareto front. Consequently, it was necessary
to introduce an additional mutation which realizes a one-
sided shift of jobs.

This shift mutation is described in Algorithm 1: first, the
site ks where jobs will be shifted to is determined randomly
(Line 1). Then, the number of jobs to be shifted ns is deter-

1493

Algorithm 1 Job Shift Mutation

Require: Individual I, Shift step-size σ, Grid size K
1: ns = �|N (0, σ)|+ 0.5�
2: ks = �(K + 1)U(0, 1)�
3: while ns > 0 do
4: p := uniform random position in individual I
5: if I[p] �= ks then
6: I[p] = ks

7: ns = ns − 1
8: end if
9: end while

mined (Line 2) and, until this number is reached (Line 3),
shift operations are performed. Herefor, a uniform random
position in the individual is selected (Line 4) and, if a shift
is possible4 (Line 5), the corresponding gene is modified to
reflect the change towards the target site (Line 6).

The algorithm requires three parameters:

1. the individual I to modify,

2. the step-size σ which specifies the standard deviation
for normal distribution, and

3. the number K of sites participating in the Grid.

In order to incorporate both variation methods we switch
between both operators with probability Pshift. In each gen-
eration we mutate every individual with probability Pshift

using the shift algorithm and with probability (1 − Pshift)
with random mutation. For the latter, we change each gene
with the above mentioned probability Prand.

4.3 Recombination Operator
The typical application of NSGA-II implies the dominant

influence of the recombination operator. Since the effect of
its properties to scheduling problems is not sufficiently stud-
ied, we resort to choosing among the standard operators [22].
Uniform Crossover (UCX), where each bit is swapped be-
tween two parents with fixed probability, is not appropriate
as it results in an exchange of jobs only, but almost no vari-
ation in partition size. As mentioned above this is required
in order to discover a diverse front. A swap between parents
would result on average in the same number of assigned jobs
to each partition.

n-Point Crossovers, in contrast, are capable to combine
both desired variation characteristics and to enable an ex-
change and balance variation between the partitions at the
same time. Therefore, we apply the Two-Point Crossover
(TPX) operator with a probability of Precomb.

4.4 Objective Functions
As we aim to discover the potential benefits of job ex-

change in Grid computing, we have to formulate appro-
priate objective functions. In theory of scheduling [23] as
well as in practical evaluation of algorithms [11], the user-
centric perspective is commonly reflected by the response
time RTj = Cj − rj objective of a job j. This objective
is defined as the timespan between the submission of job j
at its release date rj and the actual completion time Cj at

4The job was not already assigned to the target site, that
is.

site k. The shorter the response time the less the user has
to wait for the results of the submitted job.

AWRTk =

�
j∈πk

pj · mj · (Cj − rj)

�
j∈πk

pj · mj
(2)

In order to determine the schedule quality for all jobs j ∈
πk that are executed at site k, we compute the Average
Weighted Response Time AWRTk, see Equation (2).

Here, each job is weighted with its resource consump-
tion (pj · mj). Following Schwiegelshohn et al. [25], this
ensures that neither splitting nor combination of jobs can
influence this objective function in a beneficial way.

However, a shorter AWRT for users at a certain site comes
along with longer AWRT values for users at other sites. This
reveals the conflicting nature of Grid collaboration. In this
paper, we determine the Pareto front of AWRT values that
can be achieved between different sites. In other words, we
solve the multi-objective optimization problem

MOP := min

�
��

AWRT1

...
AWRTK

�
�� (3)

by finding optimal assignments of jobs to Grid sites.

4.5 Limitation of the Search Space
The multi-objective search space of the tackled problem is

extraordinarily large and therefore hard to discover: when
most jobs are migrated to one site, leaving the other site
with almost none, the AWRT values deteriorate extremely,
since even the most efficient local scheduling system is un-
able to compensate for an oversized workload. Heavy load
on one site causes a general congestion of jobs resulting in
very long AWRT values. Such results, however, are not ac-
ceptable in practice and therefore of minor interest. In fact,
AWRT values that exceed the results obtained when com-
pletely obviating collaboration by 30% and more obviously
foil the participation in HPC Grids on the whole. For the
used workloads, see Table 1, we consequently limited the
search space by restricting possible response time values us-
ing

AWRTk ∈ [0 . . . 100, 000] ∀ k = 1 . . . K (4)

such that if an individual achieves a higher AWRT, its ob-
jective is assigned an infinite value, effectively discarding it
from the prospective evolutionary process.

4.6 Generation of an Initial Population
Due to the size of the search space it is further necessary

to start the evolution in an area of interest. As we aim to
find Pareto optimal solutions better than exclusive single
site execution, we take the results from a well performing
and highly popular local scheduling heuristic as the start
solution.

This algorithm, the Extended Argonne Scheduling Sys-
tem [20] (EASY) works as follows: First, the job at the head
of the waiting queue is examined. If this job can be started
immediately on the locally available nodes, it is removed
from the waiting queue and executed directly. Otherwise, its
earliest possible start time—calculated on the basis of the
users’ runtime estimations of the already running jobs—is

1494

assumed as a reservation. Then, for every other waiting job
the following two conditions are tested: (1) it will terminate
before the first job is expected to start and (2) it will not
interfere with the nodes reserved for the first job. The first
candidate that meets either condition is used as a backfill
and started immediately.

In order to create a sufficient amount of start solutions, we
used the workloads from two original recordings, simulated
their processing and and shuffled them by uniformly swap-
ping the allocation of 5,000 jobs. This is achieved flipping
their corresponding genes in each individual, guaranteeing
a certain degree of diversity close to the EASY reference
solution.

5. EVALUATION
As we aim to evaluate our methodology and its application

on realistic data originating from real-world Grid setups, we
first introduce the data sources used for our experiments.
This is followed by a detailed explanation of four different
Grid site setups. Before discussing our results in detail,
we describe two heuristic approaches used for the matter
of comparison.

5.1 Used Real Workload Traces
The Parallel Workloads Archive5 provides job submission

and execution traces recorded on real-world HPC sites, each
of which containing information on relevant job characteris-
tics. For our evaluations, we restrict the set of used work-
loads to those which contain valid runtime estimations, since
the EASY algorithm depends on this data. This results in
the following five traces:

1. the KTH trace which contains records from a 100 pro-
cessor IBM RS/6000 SP system at the Swedish Royal
Institute of Technology in Stockholm over a period of
eleven months,

2. the CTC trace from a 430 processor IBM RS/6000 SP
system at the Cornell Theory Center in Ithaca, NY,
which also covers a timespan of eleven months,

3. the SDSCxx logs recorded at the San Diego Supercom-
puter Center in La Jolla, CA; they comprise

(a) the SDSC00 trace containing submissions to a
128 processor IBM RS/6000 SP system over 24
months,

(b) the SDSC03 “Blue Horizon” trace of a 1152 pro-
cessor IBM RS/6000 SP system over 24 months,
and

(c) the SDSC05 “DataStar” trace recorded on a IBM
eServer pSeries 655/690 system with a total of
1664 processors during 13 months.

The original workloads record time periods of different
length. In order to be able to combine different workloads
in a multi-site simulations we shortened the workloads to
an 11-month recording, the minimum required length of all
participating workloads. Details on the used traces are given
in Table 1.

5http://www.cs.huji.ac.il/labs/parallel/workload/

5.2 Simulation Setup
We evaluate four different setups with two sites each, see

Table 1. Our first setup comprises two smaller sites (100 and
128 processors) that represent typical department-size clus-
ter installations, see Setup I. As an example of one small and
one medium-sized machine, we evaluate Setup II, a collab-
oration between 100 processors and 430 processors; the lat-
ter representing a fairly standard-sized university compute
center. Another configuration combines a small and a large
site (100 and 1,152 processors), reflecting one small/medium
business system which acquires additional compute cycles
from a large HPC center. Finally, we investigate the effects
when connecting two large HPC centers (1,152 and 1,664
processors), each attempting to balance their local load.

Regarding the configuration of the NSGA-II algorithm, we
use a population size of μ = 70 individuals with a total of
200 generations for each simulated setup. We apply tourna-
ment selection without replacement and a tournament size
of 2. In detail, we randomly select two individuals without
replacement and copy the best individual to the mating pool.
This process is repeated until μ individuals are selected. As
the crossover operator, we use TPX with a probability of
Precomb = 0.9. For mutation, we apply shift and random
mutation with equal probability of 50%, using a shift step
size of σ = 2, 000. The random mutation flips each gene
with a probability of Prand = 0.1.

The evaluations where performed on a 120 processor clus-
ter comprising standard PCs with Pentium IV 2.4 GHz pro-
cessors running on Linux. On this setup, each generation
took approximately 15 minutes to evaluate in parallel, lead-
ing to a simulation time of about two days per setup. All
simulations were based on a variant of Sastry’s [24] C++
implementation of the GA toolbox for MATLAB and the
Java-based teikoku Grid Scheduling Framework [16].

5.3 Reference Values
In order to verify the approximation results produced by

our methodology, we generate a solution for job interchange
between two sites using a request heuristic (RQ) with com-
plete insight into each site’s waiting queue which operates
as follows:

• When a job arrives at the decision maker component
that has been submitted from the local user commu-
nity, it is added to the end of the local waiting queue.

• On every modification of the local waiting queue, the
local scheduling algorithm (in our case EASY) is in-
voked. During this step, either the first job in the
local waiting queue is started, or one other job from
the local waiting queue may or may not be backfilled.

• The decision maker requests all remote queues from
all sites and—subsequently iterating over all remote
jobs—adds each job that could be started immediately
to the end of the local waiting queue. During this
step, the number of potentially free resources at the
current instant is reduced by the number of requested
resources of each added remote. Note however, that
the real number of currently unused resources is left
untouched.

Due to the combination of requesting potential backfilling
candidates from remote sites and the inherent characteris-
tics of the EASY algorithm, we anticipate the RQ heuristic

1495

Setup Workload Machine Size Number Jobs Total Jobs AWRT (EASY) AWRT (POOL) AWRT (RQ)

I
KTH-11 100 28,479

58,289
75,157.63 63,011.46 61,448.95

SDSC00-11 128 29,810 73,605.86 58,772.48 57,918.61

II
KTH-11 100 28,479

105,678
75,157.63 58,056.65 55,462.28

CTC-11 430 77,199 52,937.96 51,742.31 51,347.65

III
KTH-11 100 28,479

94,063
75,157.63 58,497.60 55,527.87

SDSC03-11 1,152 65,584 50,772.48 50,809.59 50,601.24

IV
SDSC03-11 1,152 65,584

140,487
50,772.48 43,731.50 44,264.10

SDSC05-11 1,664 74,903 54,953.84 48,628.57 46,498.92

Table 1: Properties and reference results for the examined Grid setups. The AWRT values (in seconds) are
given for exclusive single site execution (EASY), the job pool exchange mechanism (POOL), and the request
heuristic (RQ).

to perform near optimal for our use case. Note that the as-
sumption of a holistic view on the waiting queues of remote
sites is unrealistic, since the common real-world policy for
publishing information, see Section 3, on the local waiting
queue is restrictive, allowing no direct access at all. Still,
this approach is justifiable against the background of our
stated goal to discover a theoretically achievable result.

Additionally, we use results determined by Grimme et
al. [15] to exemplary show the application of our proposed
methodology for the assessment of developed Grid job in-
terchange algorithms. In their approach (POOL) a central
job pool is used to migrate jobs between Grid sites: in case
a considered job cannot be executed locally, the decision
maker publishes it into a central pool. At the same time,
each site includes the pooled jobs into its local scheduling
process and thus enables job exchange between independent
sites.

5.4 Results
The obtained results are depicted in four figures for each

setup separately. In addition to the Pareto front, each figure
contains the results of the POOL strategy, the RQ heuristic,
and the non-collaborative EASY algorithm for both objec-
tives. Further, we mark the area of benefit limited by the
EASY algorithm results and the coordinate system’s origin.

In all examined cases, it is possible to find a diverse front
within the specified search interval. Obviously, there exists
a large set of trade-off solutions for job exchange apart from
the already known heuristics results. In order to judge on
the quality of the NSGA-II generated Pareto front we can
only refer to the single RQ heuristic reference result, see
Section 5.3. As all Pareto fronts contain this solution we
conjecture that also the rest of the front is approximated
appropriately. Further, this indicates that the application
of NSGA-II to the presented problem of job exchange in
HPC Grids works fine.

In detail, Figures 3 and 6 show results for the two similar-
sized Setups I and IV. In both cases, a convex Pareto front is
obtained which covers the whole range of the search space.
The heuristic solutions produce results in the center of the
front while it is actually reached by the RQ heuristic.

Figures 4 and 5 yield similar results for the front. How-
ever, compared to the non-collaborative EASY reference re-
sult, the potential of AWRT improvement is much smaller
for the larger site than for the smaller site. Note that the
axes are scaled in a smaller range for AWRT2 in both figures.

Using our proposed methodology we discover two bounds
for the benefit of collaborative Grid computing: (a) the non-

4 5 6 7 8 9 10

x 10
4

4

5

6

7

8

9

10
x 10

4

AWRT
1
 (KTH)

A
W

R
T 2 (

S
D

S
C

00
)

Pareto Front
EASY
RQ Heuristic
POOL

Figure 3: Results for Setup I with KTH (m = 100)
and SDSC00 (m = 128) workloads after 200 genera-
tions.

3 4 5 6 7 8 9 10

x 10
4

4.5

5

5.5

6

6.5

7
x 10

4

AWRT
1
 (KTH)

A
W

R
T 2 (

C
T

C
)

Pareto Front
EASY
RQ Heuristic
POOL

Figure 4: Results for Setup II with KTH (m = 100)
and CTC (m = 430) workloads after 200 generations.

collaborative case where no jobs are exchanged marks the
upper bound, and (b) the Pareto solutions within the area of
benefit which marks approximated lower bounds among the

1496

3 4 5 6 7 8 9 10

x 10
4

4.5

5

5.5

6

6.5

7

7.5

8
x 10

4

AWRT
1
 (KTH)

A
W

R
T 2 (

S
D

S
C

03
)

Pareto Front
EASY
RQ Heuristic
POOL

Figure 5: Results for Setup III with KTH (m = 100)
and SDSC03 (m = 1, 152) workloads after 200 gener-
ations.

3 4 5 6 7 8 9 10

x 10
4

3

4

5

6

7

8

9

10
x 10

4

AWRT
1
 (SDSC03)

A
W

R
T 2 (

S
D

S
C

05
)

Pareto Front
EASY
RQ Heuristic
POOL

Figure 6: Results for Setup IV with SDSC03 (m =
1, 152) and SDSC05 (m = 1, 664) workloads after 200
generations.

beneficial trade-off solutions. Reasonable real-world heuris-
tics must yield performance results within these bounds in
order to be applicable for Grid scheduling in an advanta-
geous means. Further, those heuristics become comparable
as they can be ranked with respect to both the Pareto front
and the EASY results.

Exemplarily, we analyze the performance of the POOL
strategy for the here given setups, although it ignores real-
world restrictions. By utilizing jobs in a central pool, this
strategy is enabled to reach an almost perfect compromise
between partners.

Furthermore, knowledge about the Pareto front allows
more advanced evaluations of a heuristic’s quality. In our
case studies, it is possible to show for the first time that
the common heuristics tend to balance the load between
sites. As a consequence, the resulting AWRT values range
in the same order of magnitude while representing the most
balanced trade-off solutions in the whole front. However,

for the size-wise heterogeneous Setups II and III, see Fig-
ures 4 and 5, these solutions seem to be fair when the whole
Pareto front is taken into account, but considering only the
area of mutual benefit reveals that those ”fair” solutions can-
not develop the full potential of trade-offs disclosed within
this area. In other words, a good Grid job exchange heuris-
tic should not only lead to a single compromise within the
whole Pareto front but should achieve balanced results in
the whole area of benefit.

6. CONCLUSION
In the work at hand, a methodology for the approxima-

tion of compromise solutions for real-worlds job exchange
strategies between HPC systems has been described and ex-
emplarily applied. The NSGA-II based approach explored
the bounds of maximum achievable benefit in Grid schedul-
ing by generating reference results for selected Grid setups.
We compared existing Grid scheduling heuristics with re-
spect to the Pareto front and found new insights in quality
assessment, allotment of profit, and fairness aspects. With
these concepts and the obtained results, any kind of Grid
job exchange strategy can be compared and ranked.

For future research a generalization of our methodology
may include various aspects: The used NSGA-II might be
substituted by another multiobjective optimization algorithm
or alternative nature inspired concept. Further, our case
studies can be regarded as a first effort that leaves ample
room for future research: the investigation of more complex
Grid scenarios of multiple partners, for example, would re-
quire the consideration of more than two objectives.

For Grid scheduling research, the identified results moti-
vate the design of new exchange strategies that are capa-
ble to reach desired points in the Pareto front by handling
the job exchange more flexibly. Within this context, our
methodology and the achieved results can be seen as a cor-
nerstone for such future development endeavors.

Acknowledgement
Joachim Lepping is member of the Collaborative Research
Center 531, ”Computational Intelligence”, at the Dortmund
University of Technology with financial support of the DFG
(Deutsche Forschungsgemeinschaft).

7. REFERENCES
[1] A. Abraham, R. Buyya, and B. Nath. Nature’s

heuristics for scheduling jobs in computational grids.
In P. Sinha and R. Gupta, editors, Proceedings of 8th
IEEE International Conference on Advanced
Computing and Communications, pages 45–52, New
Delhi, India, 2000. Tata McGraw-Hill Publishing.

[2] P. Andreetto, S. Borgia, A. Dorigo, et al. Practical
Approaches to Grid Workload and Resource
Management in the EGEE Project. In Proceedings of
the Conference on Computing in High Energy and
Nuclear Physics (CHEP), Interlaken, Switzerland,
September 2004. Organisation Européenne pour la
Recherche Nucléaire (online).

[3] D. Bernhold, S. Bharathi, D. Brown, K. Chanchio,
et al. The Earth System Grid: Supporting the Next
Generation of Climate Modeling Research. Proceedings
of the IEEE, 93(3), March 2005.

1497

[4] J. Carretero, F. Xhafa, and A. Abraham. Genetic
algorithm based schedulers for grid computing
systems. International Journal of Innovative
Computing, Information and Control, 3(6):1–19, 2007.

[5] K. Deb, S. Agrawal, A. Pratab, and T. Meyarivan. A
Fast Elitist Non-Dominated Sorting Genetic
Algorithm for Multi-Objective Optimization:
NSGA-II. In M. Schoenauer et al., editors, Parallel
Problem Solving from Nature VI, volume 1917 of
Lecture Notes in Computer Science (LNCS), pages
849–858. Springer, 2000.

[6] D. England and J. B. Weissman. Cost and Benefits of
Load Sharing in the Computational Grid. In D. G.
Feitelson, L. Rudolph, and U. Schwiegelshohn, editors,
Proceedings of Job Scheduling Strategies for Parallel
Processing, volume 3277 of Lecture Notes in Computer
Science (LNCS), pages 160–175. Springer, 2004.

[7] C. Ernemann, V. Hamscher, U. Schwiegelshohn,
A. Streit, and R. Yahyapour. Enhanced Algorithms
for Multi-Site Scheduling. In M. Parashar, editor,
Proceedings of the 3rd International Workshop on Grid
Computing, volume 2536 of Lecture Notes in Computer
Science (LNCS), pages 219–231. Springer, 2002.

[8] C. Ernemann, V. Hamscher, U. Schwiegelshohn,
A. Streit, and R. Yahyapour. On Advantages of Grid
Computing for Parallel Job Scheduling. In Proceedings
of the 2nd International Symposium on Cluster
Computing and the Grid, pages 39–46. IEEE Press,
May 2002.

[9] M. Ernst, P. Fuhrmann, A. Papaspyrou, M. Radicke,
L. Schley, and R. Yahyapour. A Computational and
Data Scheduling Architecture for HEP Applications.
In Proceedings of the Conference on High Energy
Physics (CHEP), Mumbai, India, February 2006.

[10] D. W. Erwin and D. F. Snelling. UNICORE: A Grid
Computing Environment. In G. Goos, J. Hartmanis,
and J. van Leeuwen, editors, Proceedings of the 7th
International Euro-Par Conference, volume 2150 of
Lecture Notes in Computer Science (LNCS), pages
825–834, Manchester, UK, August 2001. Springer.

[11] D. G. Feitelson. Metrics for parallel job scheduling and
their convergence. In D. G. Feitelson and L. Rudolph,
editors, Job Scheduling Strategies for Parallel
Processing, volume 2221 of Lecture Notes in Computer
Science (LNCS), pages 188–206. Springer, 2001.

[12] D. G. Feitelson, L. Rudolph, and U. Schwiegelshohn.
Parallel Job Scheduling – A Status Report. In
D. Feitelson, L. Rudolph, and U. Schwiegelshohn,
editors, Proceedings of Job Scheduling Strategies for
Parallel Processing, volume 3277 of Lecture Notes in
Computer Science (LNCS), pages 1–16, Boston (MA),
USA, June 2005. Springer.

[13] I. Foster and C. Kesselman, editors. The Grid:
Blueprint for a Future Computing Infrastructure.
Morgan Kaufman, 1st edition, 1998.

[14] J. Garzon, E. Huedo, R. Montero, I. Llorente, and
P. Chacon. Adaptation of a Multi-Resolution Docking

Bioinformatics Application to the Grid. Journal of
Software, 2:1–10, 2007.

[15] C. Grimme, J. Lepping, and A. Papaspyrou. Prospects
of Collaboration between Compute Providers by
means of Job Interchange. In E. Frachtenberg and
U. Schwiegelshohn, editors, Proceedings of Job
Scheduling Strategies for Parallel Processing, volume
4942 of Lecture Notes in Computer Science (LNCS),
pages 132–151. Springer, June 2007.

[16] C. Grimme, J. Lepping, A. Papaspyrou, P. Wieder,
R. Yahyapour, A. Oleksiak, O. Wäldrich, and
W. Ziegler. Towards a standards-based Grid
Scheduling Architecture. CoreGRID Technical Report
TR-0123, Institute on Resource Management and
Scheduling, December 2007.

[17] V. Hamscher, U. Schwiegelshohn, A. Streit, and
R. Yahyapour. Evaluation of Job-Scheduling
Strategies for Grid Computing. In R. Buyya and
M. Baker, editors, Proceedings of the 7th International
Conference on High Performance Computing, volume
1971 of Lecture Notes in Computer Science (LNCS),
pages 191–202. Springer, 2000.

[18] W. Jakob, A. Quinte, K.-U. Stucky, and W. Süss.
Optimised Scheduling of Grid Resources Using Hybrid
Evolutionary Algorithms. In R. Wyrzykowski et al.,
editors, Proceedings of the 6th International
Conference on Parallel Processing and Applied
Mathematics, number 3911 in Lecture Notes in
Computer Science (LNCS), pages 406–413, 2005.

[19] K. Kurowski, J. Nabrzski, A. Oleksiak, and
J. Weglarz. Scheduling Jobs on the Grid -
Multicriteria Approach. Computational Methods in
Science and Technology, 12(2):123–138, 2006.

[20] D. A. Lifka. The ANL/IBM SP Scheduling System. In
Proceedings of Job Scheduling Strategies for Parallel
Processing, volume 949 of Lecture Notes in Computer
Science (LNCS), pages 295–303. Springer, 1995.

[21] U. Lublin and D. G. Feitelson. The Workload on
Parallel Supercomputers: Modeling the
Characteristics of Rigid Jobs. Journal of Parallel and
Distributed Computing, 63(11):1105–1122, 2003.

[22] Z. Michalewicz. Genetic Algorithms + Data Structures
= Evolution Programs. Springer, 2 edition, November
1998.

[23] M. Pinedo. Scheduling: Theory, Algorithms, and
Systems. Prentice-Hall, New Jersey, second edition,
2002.

[24] K. Sastry. Single and Multiobjective Genetic
Algorithm Toolbox for Matlab in C++. Technical
Report 2007017, Illinois Genetic Algorithms
Laboratory, University of Illinois at
Urbana-Champaign, 117 Transportation Building, 104
S. Mathews Avenue Urbana, IL 61801, 2007.

[25] U. Schwiegelshohn and R. Yahyapour. Fairness in
Parallel Job Scheduling. Journal of Scheduling,
3(5):297–320, 2000.

1498

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

