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ABSTRACT

Military missions are turning to more complicated and ad-
vanced automation technology for maximum endurance and
efficiency as well as the minimum vital risks. The path plan-
ners which generate collision-free and optimized paths are
needed to give autonomous operation capability to the Un-
manned Aerial Vehicles (UAVs). This paper presents an
off-line path planner for UAVs. The path planner is based
on Evolutionary Algorithms (EA), in order to calculate a
curved path line with desired attributes in a 3-D terrain.
The flight path is represented by parameterized B-Spline
curves by considering four objectives: the shortest path to
the destination, the feasible path without terrain collision,
the path with the desired minimum and maximum distance
to the terrain, and the path which provides UAV to ma-
neuver with an angle greater than the minimum radius of
curvature. The generated path is represented with the coor-
dinates of its control points being the genes of the chromo-
some of the EA. The proposed method was tested in several
3-D terrains, which are generated with various terrain gener-
ator methods that differ with respect to levels of smoothness
of the terrain.

Categories and Subject Descriptors

I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods and Search—Heuristic Methods; J.7 [Computers
in Other Systems]: Military

General Terms

Algorithms, Experimentation

Keywords

Unmanned Aerial Vehicles, Path Planning, Genetic Algo-
rithms, B-Spline Curves
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1. INTRODUCTION
Unmanned Aerial Vehicles (UAVs) have been recently used

in commercial applications [1] as well as in military areas for
different missions including weather reconnaissance, search
and rescue assisting operations in sea and mountains, aerial
photographing and mapping, fire detection and traffic con-
trol. The most important reasons of the popularity of the
UAVs are low force need, no vital risk by performing the
most hazardous missions and long endurance.

Autonomous operation of UAVs requires the development
of control systems that can work without human support
for long time periods. The vehicles are required to make
both low-level control decisions, such as path planning, and
high-level decisions, such as cooperative task assignment.
Task assignment is crucial for designing successful missions
in heavily defended environments while the path planners
which generate collision-free and optimized paths are needed
to give autonomous operation capability to the UAVs. Both
aspects of the fleet problem of the UAVs build up the optimal
flight while by deciding resource allocation and determining
the best trajectory.

There are many different approaches to path planning in-
cluding potential fields [2], A* graph search algorithm [3],
differential evolution [4], linear programming [5]. Genetic
Algorithms have been used to solve path planning problem
of ground vehicles. While there are works in which the bi-
nary representation and classical GA operators have been
used [6], floating point representation has been used in [7]
by using more sophisticated GA operators. Moreover, im-
proved genetic algorithms which tries to overcome the prob-
lems of the traditional GA have been applied on the path
planning of the mobile robots [8].

Evolutionary Algorithm gives successful results for 3-D
UAV path planning problem. Simple spline path represen-
tation with different path mutation mechanisms is simulated
in [9]. On the other hand, B-Spline curve representation is
applied to represent the flight path of the UAVs in [10, 14],
where they generate terrain using only mathematical func-
tions which requires a large set of experimentally predefined
constants.

In our work, an offline path planner of unmanned aerial
vehicle navigation is proposed for 3-D terrain structures that
are constructed by various terrain generator algorithms. The
flight path is represented by parameterized B-Spline curves.
We update the safety distance calculation given in [14] by
considering the semi-sphere region below the UAV and se-
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lecting the minimum one. Another difference of our work
is to present mission specific goal definitions such as sweep-
ing flights, flight envelope in a given line of sight etc. We
consider a more realistic model for the maneuver capability
and technical specifications of UAVs. Specifically, maximum
altitude constraint is considered as part of the fitness func-
tion evaluation. We also present problem specific mutation
operators which consider the feasibility of the path in order
to include new control points. In our study, the number of
control points can also be updated adaptively in order to
analyze the terrain more accurately.

The rest of the paper is organized as follows. The next
section describes the problem formulation including terrain
generation, path representation, objectives and constraints.
In Section 3, we present the implementation details of the
Genetic Algorithm approach for the path planning problem.
Section 4 summarizes results of the experimental study with
respect to selected terrains. Finally, conclusion and future
work are presented in Section 5.

2. PROBLEM DEFINITION
In this paper, we consider the path planning problem of

the Unmanned Aerial Vehicles in a 3-D environment. To
simulate a 3-D environment, jME (jMonkey Engine) [11], a
Java scenegraph API based on OpenGL, is used. The API
is easily adapted to generate and visualize terrain since it’s
open source and has many features. Landscape generation
phase creates heightmap data by different methods in dif-
ferent sizes. A heightmap is an image used in 3-D computer
graphics to store values. Heightmap is generally represented
by a two-dimensional matrix of which dimensions represent
coordinate axis, mostly X and Z. The value of the matrix’s
entry gives the height value, Y coordinate, of the correspond-
ing point. The scale of the matrix which gives the point in-
tervals may be changed by setting appropriate values. The
height value of a point may be found via this formula:

height = heighmap[(column + row ∗ size)] (1)

where column and row are dimensions of the heightmap
matrix and size is the size of the matrix. The height values
of the points which are not stored in the heightmap matrix
due to the scale may be found with linear interpolation via
the formula:

height = height1+

desired point − point1
point2 − point1

∗ (height2 − height1) (2)

where desired point is the point of which height value to
be calculated but not stored in the heightmap, point1 and
point2 are the closest points to the desired point stored in
the heightmap matrix, height1 and height2 are the height
values of the point1 and point2 respectively.

2.1 Path Representation
To apply genetic algorithms to the path planning problem,

the path needs to be encoded into genes to represent an
individual in the population. For better representation of
the path line, floating point coding is used in our work. Since
it’s not efficient way to represent the path line of a UAV by
straight line segments as in mobile robot applications [6] or

simple splines as in [9], the path is represented by using
B-Spline curves.

B-Spline curves are parametric curves constructed by cal-
culating basis functions [16]. Mathematically, given n +
1 control points P0, P1, ..., Pn and a knot vector U =
u0, u1, ..., um, the B-Spline curve of degree k defined by these
control points and knot vector is

C(u) =

n
X

i=0

Ni,k(u) ∗ Pi (3)

where Ni,k(u)’s are B-Spline basis functions of degree k.
With coordinates (x0, y0, z0), . . . , (xn, yn, zn), the coordinates
of the B-Spline can be written as:

X(t) =

n
X

i=0

Ni,k(u) ∗ xi (4)

Y (t) =
n

X

i=0

Ni,k(u) ∗ yi (5)

Z(t) =
n

X

i=0

Ni,k(u) ∗ zi (6)

The degree of the B-Spline curve determines the smoothness
of the curve. When the value of k becomes higher, it will
cause smoother curves. In this study, the degree is taken as
3 in order to provide required smoothness.

The B-Spline basis functions are used as weights like in
Bezier curves. The function domain is divided by knots and
the basis function values have always non-zero values. The
basis functions Ni,k are defined recursively with an algo-
rithm (called as de Boor recursion formula) using the knot
values. The details of B-Spline curve constructions including
the recursion formula can be found in [16].

In our path representation, the coordinates of the control
points which have floating point values, form the individuals’
chromosomes. The first (source) and the last (destination)
points of the curve are fixed. The dynamic control points
between these points which forms the route of the UAV are
used to construct the structure of the individual. B-Spline
curves are suitable to represent the path of the UAVs since
they need few variables to define complicated curve paths.
Moreover, an update in one of control points changes only
the area near the updated control point due to its local effect.

2.2 Objectives
The problem of computing the optimum navigation path

of an UAV is formulated as a minimization one, which takes
into account five general constraints that are listed below:

1. Constructing feasible paths without terrain collision,

2. Constructing a path within the desired minimum and
maximum distance to the terrain,

3. Constructing a path which provides UAV to to ma-
neuver with an angle greater than minimum radius of
curvature,

4. Minimizing the length of the path,

5. Targeting mission specific objectives (providing sweep-
ing flights or providing a flight envelope in a given line
of sight).
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These constraints can be classified into two categories: hard

constraints (or technological constraints) that must be sat-
isfied at the generated flight path, and soft constraints that
are evaluated in terms of the given measure for the quality of
the solution. The first three constraints listed above are hard
constraints and the remaining ones are the soft constraints.
In this paper, the first four constraints are considered for
path planning.

The quality of the constructed path by considering the
above constraints of an UAV is measured by a fitness func-
tion value calculated as the sum of four different cost terms:

f =
1

P4
i=1 wi ∗ fi

(7)

where fis are cost function values described below; and wis
are weights of each function determining the priority of the
function. Note that each fi is associated with the corre-
sponding constraint given above.

The term f1 in Equation 7 represents the number of curve
points inside the solid boundary. So, the penalty value is
proportional to the number of discretized curve points lo-
cated under the solid surface. All n path segments of the
flight path are checked whether or not pass through the ter-
rain by computing the distance between the curve point and
the terrain using heightmap data. If this is true for a discrete
point of the path line, a constant penalty is added to term f1.
Consequently, this term provides to construct the collision-
free paths by giving high penalty values to the curves with
more points inside the solid boundary. The formulation of
the cost f1 is as follows:

f1 =
n

X

i=1

yi, where yi =



1 if di <= 0
0 otherwise

(8)

where di is the distance between the curve point and the
terrain, and i is the index of curve points.

The term f2 is relevant to the distance penalty of the
curve. This term actually consists of two penalty values
including safety distance penalty (keep a safety distance be-
tween UAV and the ground) and maximum distance penalty
(maximum altitude because of technological restrictions or
mission specific constraints). Safety distance penalty aims
to provide a flight path far from specified minimum distance.
The distance for each discretized curve point is checked for
the safety distance and penalty value proportional to the dif-
ference between the distance and desired safety distance is
calculated. The penalty value for each curve point forms the
cost function value. However, to calculate the distance of the
curve point for only one terrain point cannot be sufficient
in 3-D environment since the curve point can be closer to
the any other points than the corresponding terrain point.
Therefore, for each curve point, the distance between the
corresponding terrain point and its neighbor points is cal-
culated; the maximum penalty value of the neighboring ter-
rain point distances is considered for each curve point as the
safety distance penalty value.

Maximum distance penalty provides a flight path that is in
the range of specified maximum altitude of the UAV. If this
term is ignored, the generated path might be the shortest
one but that path can not be realized with respect to UAV’s
technical specifications. The penalty value is calculated pro-
portional to the difference between the distance and allowed
maximum altitude; i.e.,the far the curve point is the larger
penalty value it has. The term f2 given below is represented

in two separate terms, f2,1 and f2,2, which are formulated
below:

f2,1 =

n
X

i=1

max
kεN(.)

˘

(dmin − di,k)/dmin

¯

∗ yi,

where yi =



1 if di,k <= dmin

0 otherwise
(9)

f2,2 =
n

X

i=1

˘

(di − dmax)/dmax

¯

∗ yi,

where yi =



1 if di >= dmax

0 otherwise
(10)

f2 = f2,1 + f2,2 (11)

where N(.) is the neighbor set of the specific terrain point,
di,k is the distance between the curve point and the terrain
point, dmin and dmax are the minimum and maximum safety
distance from the terrain respectively.

The term f3 indicates the minimum radius of curvature
penalty of the path. It is designed to prevent the UAV
from exceeding the lateral and vertical acceleration limits,
since the flight envelope determines the maximum radius of
turns for the UAV. Its aimed to achieve a flight path with a
specified minimum curvature angle by this term. To obtain
penalty value, angle between two line segments of the curve
is calculated for each three neighbor curve points. As in
previous terms, penalty value is added proportional to the
difference between the angle and specified minimum angle.
The term f3 can be formulated as the following:

f3 =
n

X

i=1

˘

(Θ−θi)/Θ
¯

∗yi, where yi =



1 if θi <= Θ
0 otherwise

(12)
where θi is the angle between the control point and the
neighbors, and Θ is the minimum curvature angle.

The term f4 is the length of the flight path calculated by
adding the distance of two neighbor curve points for each
discretized point. This term is used in order to minimize
the flight path lengths and can be formulated as:

f4 =
n

X

i=0

»

(xi+1 −xi)
2 +(yi+1 −yi)

2 +(zi+1 − zi)
2

–1/2

(13)

where n is the curve discretization number; x, y, and z values
are discrete coordinates of the points on the curve.

In order to evaluate fitness value, all fis are normalized
by using Equation 14 to get values in the same range after
their values are calculated. This normalization transforms
fi values into the range of [0, 1].

normalized value =
value − valuemin

valuemax
− valuemin

(14)

where value is the real value of the function, valuemin is the
minimum value which the function can take and valuemax

is similarly the maximum value which the function can take.
Since the objective is to minimize the cost function values,
the fitness function f in (7) is the inverse of the weighted
sum of the normalized cost functions.

The weights (wis) given in the main equation can be ex-
perimentally determined or can be set according to different
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aspects such as terrain specifications, mission specific goal
definitions (i.e., sweeping flights, flight envelope in a given
line of sight) etc. As the main objective is to obtain feasible
flight paths, weights may be determined in such a way that
the corresponding term (one of the fis) dominates the rest.
In our experimental study, equal weights are considered.

3. EA-BASED SOLUTION FOR PATH PLAN-

NING PROBLEM
In this section, we briefly explain the details of our evolu-

tionary algorithm which generates a 3D path according to
the provided constraints in a given terrain.

3.1 Representation of Individuals
In our study, each individual which is a path of the UAV is

represented by B-Spline curve control points. B-Spline curve
is a parametric curve which is described by control points.
Each chromosome has control points which have x,y and z
coordinates with floating point values in 3-D environment
case. The first and the last points of the individual repre-
sents source and destination points, respectively. These two
points are fixed for all individuals; the other free-to-move
control points, which are located in ordered manner in the
chromosome, may take different values. The number of con-
trol points may differ in different populations or in different
individuals in a same population.

3.2 Initial Population
Initial population of the evolutionary algorithm in our

problem is generated randomly by considering the bound-
aries of the terrain. The x and z coordinates are selected
randomly from the range [0..T errainSize − 1]; and the y
coordinate of the point, which will draw the height of the
individual, is a set randomly by considering the feasibility
in that case. To be able to help the feasibility of the curve,
the y coordinate of the control points are generated in up-
per side of the terrain. If a non-feasible point which collides
the terrain is created, its y coordinate is re-generated by
random number generator until it provides feasibility of the
point. This does not guarantee the collision-free B-Spline
curve since its curve points may collide the terrain although
its control points are feasible; but, this method increases the
probability of feasibility of the curves.

3.3 Crossover and Mutation Operators
One-point crossover is considered in our study. This oper-

ator simply cuts the parents from one point randomly, and
splits both parents at this point; then it creates two new
individuals by exchanging the portions left.

New knowledge based mutation operators which work on
the free to move control points of the individual are pro-
posed. The operators alter the number or the position of the
control points according to the fitness of the control point
under consideration. The B-spline curve is divided into seg-
ments, which are the separated parts between the control
points. In general, the operator starts working by finding
the worst segment namely the segment which has the mini-
mum fitness (maximum cost) of the individual curve. While
calculating the fitness of the curve segments, the length term
in the objective function is not considered, since it does not
effect the feasibility of the curve. We consider three different
mutation operators in our experiments.

• Update. This mutation operator updates the worst
control point of the individual. The quality of each
control point is computed by the aggregate cost of the
curve points on the two neighbor curve segments. For
instance, the cost of the control point 2 is calculated
by adding the cost of the segment 1 and segment 2,
where segment 1 is the piece of the B-Spline curve
which is between the control points one and two, and
the segment 2 is the piece of the B-Spline curve which
is between the control points two and three. After
the control point which has the maximum cost value
is found, and if it is not the source or the destination
point, this control point is replaced by a new one in
order to increase the fitness of the curve. In order to
achieve this objective, the new point is created in a
feasible region. The x and z coordinates of the new
point are set by considering the following equations

x = x + k ∗ ∆x + ε (15)

z = z + k ∗ ∆z + ε (16)

where k and ε are terrain-specific parameters and ∆x
and ∆z are the difference between the neighbor control
points for x and z axis, respectively. The y coordinate
of the new control point is randomly set from the feasi-
ble region generated by using the new x and z values.
The y coordinate is set by adding a displacement to
the current value of y so that final value will be within
the minimum and maximum safety distances.

• Insertion. This mutation operator increases the num-
ber of the control points in a given individual and tar-
gets to increase the quality of the individual. After
getting the fitness values of each curve segment, the
segment which has the lowest value is established. Al-
though update operator considers aggregate values of
segments in order to update a control point, the inser-
tion operator considers individual segments in order
to insert a new control point. In this operator, first
the worst curve segment is determined, then the curve
point on this segment which has the maximum cost is
found. By using the x and z coordinates of the se-
lected curve point, a new control point of the B-Spline
curve is created dynamically in a feasible region by
considering the safety distance constraints.

• Deletion. This operator also alters the number of the
control points in the individual. It finds the worst
control point in the B-Spline curve (by considering ag-
gregate fitness values of segments as in the update op-
erator) and simply deletes this point from the curve.
Therefore, this individual has one less control point
number. Figure 1 shows how to apply the three muta-
tion operators on a given B-Spline curve.

3.4 Parent and Survivor Selection
The selection of individuals for mating is carried out by

tournament selection method [15]. This selection process
has two stages:

• Select a number of k individuals randomly
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Figure 1: The Types of Mutation Operators.

• Select the parent with the best fitness among selected
k tournaments

where k is the tournament size, which is a variable parameter
of the Genetic Algorithm phase. In our implementation,
different tournament sizes are considered during the pre-
experimentation phase; and k is set to 5 according to the
results of experiments.

In our study, a steady-state population model is consid-
ered with an elitism-based survivor selection mechanism. At
each iteration or generation, crossover and mutation opera-
tors are applied on selected individuals in order to generate
two offsprings. Then, the best offspring among them is se-
lected and it is put in place of the worst individual in the
population.

4. EXPERIMENTAL STUDY
In our experiments, two terrain generator methods are se-

lected as test environments including the Midpoint Displace-
ment algorithm [12] and the Hill algorithm [13]. To test vari-
ous terrain types, these two algorithms are used by changing
algorithm parameters. Mainly, 128x128 terrain size is con-
sidered by using a set of additional arguments in order to set
roughness or smoothness of the terrain. Two terrains given
in Figure 2 are among the sample terrains considered in our
comparison study, where first terrain is generated by using
the Midpoint Displacement algorithm and the second one is
generated by using the Hill algorithm.

An experimental study is done in order to identify the set-
tings of various GA-parameters. Based on the experiments,
population size is set to 200, the tournament size is set to 5;
and the crossover rate is set to 0.8. In our experiments, we

Figure 2: Sample Terrains: Terrain 1 (generated by
the Midpoint Displacement Algorithm) and Terrain
2 (generated by the Hill Algorithm)

consider equal values for function weights given in Equation
7. The threshold values for distance and curvature radius
are set according to the terrain height values. It is observed
that different mutation rates give better results for differ-
ent mutation types. Specifically, update mutation gives its
best performance when the mutation rate is equal to 0.10;
and, the random insertion/deletion mutation gives its best
performance when mutation rate is equal to 0.15.

In our first set of experiments, the effect of generation
size on the performance is observed by getting the best and
the average fitness values. We set the GA parameters with
the observed values given in the pre-experimentation phase,
unless otherwise specified. We consider update mutation
operator for the first set of experiments. Additionally, the
number of control points are set with the values observed in
the pre-experimentation phase. Specifically, a chromosome
with 5 control points (including the source and destination
points) gives best results for the first terrain (Terrain 1);
and solutions with 7 control points outperforms other alter-
natives for Terrain 2. In order to measure the performance
of varying the numbers of control points, minimum number
of control points is set to 5. The effect of the number of con-
trol points on the quality of the solution is also measured as
part of our experimental study.

It was observed that our algorithm provides better per-
formance with the increase in the number of generations.
After a specific point, the performance can not increase as
previous increments while the running time increases almost
linearly. While average fitness of the population continues
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increasing as shown in Figure 3, the best fitness value be-
comes constant after a point (see Figure 4). We consider
these limit values (different values for different terrains) as
generation size for the later experiments.
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Figure 3: Average fitness value of each generation
for two terrains

We measure the feasibility of the results for the two dif-
ferent terrains as well. Individual feasibilities of the best
solution (with respect to three constraints of the given ob-
jective) are measured at each generation (see Figure 5). It’s
observed that collision penalty and curvature radius penalty
values are all zero beginning from the first generation; i.e.
it constructs feasible paths without terrain collusion where
UAV maneuvers with an angle greater than minimum radius
of curvature. On the other hand, safety distance penalty
(which is set when the constructed path is not within the
desired minimum and maximum distances to the terrain)
decreases to zero value at the end of the [800th-1000th] gen-
eration range.

As generation size grows, not only the feasibility of the
best individual increases but also number of feasible indi-
viduals in a given population increases. As shown in figure
6, while whole population of 200 individuals become feasible
with respect to curvature radius and collision at the end of
the GA run, most of the individuals still remain infeasible
with respect to the safety distance.

The number of control points in the B-spline structure is
also varied in order to measure its effect on solution qual-
ity. For easier terrains (i.e. normally one or two wide hills),
smaller number of control points have higher performance;
and fitness value of the best individual in a population gen-
erally decreases as number of control points increases. In
an experiment, the number of control points is set from the
range [5..11]. For the 128x128 size terrains, it seems that the
number of control points selected for test phase are enough
to observe the effect of the different number of control points.
It’s obviously seen that the most successful individuals have
5 control points in case of easier terrains as shown in fig-
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Figure 4: Best fitness value of each generation for
two terrains
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Figure 6: Number of feasible individuals with re-
spect to each constraint for two terrains

ure 7. For easier terrains, smaller number of control points
is enough to provide better paths. As number of control
points increase, the path to route becomes more complex
and especially the length of the path increases which results
in worse fitness values.

te r r a in  1

0
5

10
15
20
25
30
35
40
45
50

5 6 7 8 9 10 11

#  o f c o n tr o l p o in ts

fi
tn

e
s
s

 v
a

lu
e

Figure 7: Fitness value of the best solution by vary-
ing the number of control points for terrain 1

However, as terrain structure becomes harder (i.e there
are large number of hills with multiple peaks), more control
points are necessary to deal with the difficulty. Better results
are observed in our experiments for larger number of control
points. Generally, individuals which have 7-8 control points
give the best fitness in the population; while less or more
control points may results in fitness decline for difficult or
complex terrains. For terrain 2, the effect of the number of
control points on the fitness value is shown in figure 8.

As mentioned in Section 3.3, although three different mu-
tation operators are proposed in this study, it is clear that
some of them (such as deletion operator) may not be ap-
plied alone. Therefore, we consider following four different
test cases by using these three operators.

• Update mutation. In this case, we consider only up-
date mutation for all individuals at every generation.
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Figure 8: Fitness value of the best solution by vary-
ing the number of control points for terrain 2

• Random insert/delete mutation. In this case, the in-
sertion or deletion operator is selected randomly for
all individuals at every generation. Therefore, consec-
utive insertions or deletions can be possible.

• Insert/delete mutation with a threshold value. In
this case, the operation type is decided according to
the number of control points the individual has. If the
individual has number of control points less than or
equal to a specified threshold value, then the insertion
mutation is applied, else if the individual has number
of control points more than the threshold value then
the deletion mutation is applied. Thus, it’s not possi-
ble to have too many control points, since it generally
increases the cost; or it is not possible to have too lit-
tle number of control points, since it does not provide
sufficient representation of the individual.

• Random insert/delete/update mutation. The second
test case is extended with the update mutation opera-
tor.

The number of control points is set to 5 for the first ter-
rain; while best fitness value is set with 8 control points for
the terrain 2. In this set of the experiments, number of gen-
eration is set to 1000; and each experiments is repeated 10
times with different seeds. Minimum normalized cost values
(out of 10 runs) and average normalized costs of each muta-
tion type for both terrain 1 and terrain 2 are given in Tables
1 and 2, respectively.

Table 1: Normalized cost values for different muta-
tion types for terrain 1

Mutation Minimum Average
Type Cost Cost

update 0.001161 0.081276
random insert/delete 0 0.096683
smart insert/delete 0 0.085790

random insert/delete/update 0 0.110593

Figure 9 and Figure 10 show sample paths from source
to destination for terrain 1 and terrain 2 given in Figure 2,
respectively.

5. CONCLUSION
In this paper, we present a 3D path planner for the nav-

igation of Unmanned Aerial Vehicles (UAVs) by using evo-
lutionary algorithms. The flight path (represented by a
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Table 2: Normalized cost values for different muta-
tion types for terrain 2

Mutation Minimum Average
Type Cost Cost

update 0.004935 0.176629
random insert/delete 0 0.125249
smart insert/delete 0.001126 0.104528

random insert/delete/update 0 0.112339

Figure 9: Sample path for Terrain 1

parametrized B-Spline curve) is generated by considering
both maneuver and technical capabilities of the UAVs. We
are in the process of extending this study by including two
additional mission specific flights, which are sweeping flights
and flight envelopes in a given line of sight.

6. REFERENCES

[1] UAV 2003:A Roadmap for Deploying Unmanned
Aerial Vehicles (UAVs) in Transportation, Specialist
Workshop, December 2003, U.S. Department of
Transportation.

[2] Stefano Caselli, Monica Reggiani, Roberto Rocchi,
Heuristic Methods for Randomized Path Planning in
Potential Fields, Proceedings of IEEE Int.
Symposium on Computational Intelligence in
Robotics and Automation, pp. 426-431, 2001.

[3] Yao-hong Qu, Quan Pan, Jian-guo Yan, Flight Path
Planning of UAV Based on Heuristically Search and
Genetic Algorithms, IECON 2005, Industrial
Electronics Society, 31st Annual Conference of IEEE
2005.

[4] Ioannis K. Nikolos, Athina N. Brintaki, Coordinated
UAV Path Planning Using Differential Evolution,
Proceedings of the 13th Mediterranean Conference
on Control and Automation, pp. 549-556, 2005.

[5] Tom Schouwenaars, Jonathan How, and Eric Feron,
Receding Horizon Path Planning with Implicit Safety
Guarantees, Proceeding of the 2004 American
Control Conference, vol. 6, pp. 5576-5581, 2004.

[6] H. Burchardt, R. Salomon, Implementation of Path
Planning using Genetic Algorithms on Mobile

Figure 10: Sample path for Terrain 2

Robots, Congress on Evolutionary Computation,
CEC 2006, pp. 1831-1836, 2006.

[7] Yanrong Hu, Simon X. Yang, A Knowledge Based
Genetic Algorithm for Path Planning of a Mobile
Robot, Proceedings of the IEEE International
Conference on Robotics and Automation, pp.
4350-4355, 2004.

[8] Guo Tong-ying, Qu Dao-kui, Dong Zai-li, Research of
Path Planning for Polishing Robot Based on
Improved Genetic Algorithm, Proceedings of the
2004 IEEE International Conference on Robotics and
Biomimetics, pp. 334-338, 2004.

[9] D. Rathbun, S. Kragelund, A. Pongpunwattana, B.
Capozzi, An Evolution Based Path Planning
Algorithm For Autonomous Motion of a UAV
Through Uncertain Environments, Proceedings of
Digital Avionics Systems Conference, vol. 2, pp.
8D2-1-8D2-12, 2002.

[10] I. K. Nikolos, N. Tsourveloudis, and K. P. Valavanis,
Evolutionary algorithm based 3-D path planner for
UAV navigation, Proceedings of the 9th
Mediterranean Conf. on Control and Automation,
2001.

[11] jME graphics API: http://www.jmonkeyengine.com/

[12] Jason Shankel (Maxis) Fractal Terrain Generation -
Midpoint Displacement, Game Programming Gems,
pp. 503-507, 2000.

[13] Terrain Generation Tutorial: Hill Algorithm,
http://www.robot-frog.com/3d/hills/hill.html

[14] Ioannis K. Nikolos, Kimon P. Valavanis, Nikos C.
Tsourveloudis, Anargyros N. Kostaras, Evolutionary
Algorithm based Offline/Online Path Planner for
UAV Navigation, IEEE Transactions on Systems,
Man and Cybernetics - Part B: Cybernetics, vol.33,
no. 6, pp. 898-912, 2003.

[15] A.E. Eiben and J.E. Smith, Introduction to
Evolutionary Computing, Springer (Natural
Computing Series), 2003.

[16] Gerald Farin, Curves and Surfaces for CAGD
(Computer Aided Graphics and Design): A Practical
Guide, Fifth Edition, Morgan Kaufmann, 2001.

1506


