
Optimizing Task Schedules Using An Artificial Immune
System Approach

Han Yu
Physical and Digital Realization Research Center, Morotola Labs

1301 East Algonquin Road Room 1014
Schaumburg, Illinois 60196, USA

a37377@motorola.com

ABSTRACT
Multiprocessor task scheduling is a widely studied optimiza-
tion problem in the field of parallel computing. Many heuristic-
based approaches have been applied to finding schedules that
minimize the execution time of computing tasks on parallel
processors. In this paper, we design an algorithm based on
Artificial Immune Systems (AIS) to scheduling for heteroge-
neous computing environments. This approach distinguishes
itself from many existing approaches in two aspects. First, it
restricts the use of AIS to find optimal task-processor map-
ping, while taking advantage of heuristics used by determin-
istic scheduling approaches for task sequence assignment.
Second, the calculation of the affinity takes into account
both the solution quality and the distribution of population
in the solution space. Empirical studies on benchmark task
graphs show that this algorithm significantly outperforms
HEFT, a deterministic algorithm. Further experiments also
indicate that the algorithm is able to maintain high quality
search even though a wide range of parameter settings are
used.

Categories and Subject Descriptors: H.4 [Information
Systems Applications]: Miscellaneous

General Terms: Algorithms

Keywords: Artificial Immune Systems, Parallel Comput-
ing, Task Scheduling

1. MULTIPROCESSOR TASK
SCHEDULING

Scheduling a group of computing tasks on parallel proces-
sors is an intensively studied problem in parallel computing.
By decomposing a computation into smaller tasks and then
executing these tasks on multiple processors, we can poten-
tially reduce the total execution time of the computation.

The problem of multiprocessor task scheduling is typically
given by two inputs: a group of dependent computing tasks
and a group of interconnected processors. Tasks are depen-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’08,July 12–16, 2008, Atlanta, Georgia, USA.
Copyright 2008 ACM 978-1-60558-130-9/08/07 ...$5.00.

dent if the execution of some tasks relies on the execution
of other tasks within the group. The data dependency and
the execution procedure among tasks can be described with
a directed acyclic graph (DAG). The goal of scheduling is
to minimize the total execution time of tasks, also known as
makespan, by assigning the execution of the tasks to the pro-
cessors. Many variations of scheduling problems exist. They
vary by different assumptions on either the interconnection
and processing ability of processors or the permission on task
duplication. Traditional scheduling problems assume a ho-
mogeneous computing environment in which all processors
have the same processing abilities and they are fully con-
nected. Recent studies have been diverted to scheduling for
heterogeneous computing environments in which the execu-
tion time of a task may vary among different processors, not
all processors are directly connected, and the bandwidth of
communication links connecting each pair of processors may
also be different. In addition, some scheduling problems al-
low the same task to be executed on multiple processors (as
doing so may reduce the makespan in some cases), while
other problems restrict a task to be executed on only one
processor.

In this paper, we focus on the study of scheduling for
heterogeneous computing environments. We assume that
processors are fully connected with the same communica-
tion links (i.e., with the same bandwidths), but they have
different processing abilities. In addition, a task are not al-
lowed to be executed on more than one processor. As tasks
may be dependent, the communication time between two
dependent tasks (i.e., the data transfer time between tasks)
should be taken into account if they are assigned to differ-
ent processors. We also assume a static computing model in
which the dependence relations and the execution times of
tasks are known a priori and do not change over the course
of scheduling and task execution. In addition, all processors
are fully available to the computation on the time slots they
are assigned.

Figure 1 shows an example DAG that contains ten tasks,
t1 to t10. The arrows represent data dependencies among
tasks. The numbers represent the communication times
needed to transfer data between two dependent tasks. Ta-
ble 1 lists the execution times of each task on each of three
processors, P1, P2, and P3. Figure 2 shows an execution
schedule of tasks on these three processors with a makespan
of 153.

For a pair of dependent tasks, ti and tj , if the execution
of tj depends on the output from the execution of ti, then ti

151

t1

t4t3t2

t7

t6t5

t8

t9

t10

15
22

35

10
16

28

22

14 20 29

31
8 17

Figure 1: An example DAG containing ten tasks.

Table 1: The computation times of ten tasks in Fig-
ure 1 on three processors, P1, P2, and P3.

P1 P2 P3

t1 27 21 30

t2 19 15 18

t3 35 21 27

t4 17 12 26

t5 11 18 14

t6 19 32 28

t7 26 15 31

t8 22 22 20

t9 22 31 22

t10 16 19 24

P
1

t
1

Makespan

0

20

40

60

80

100

120

140

P2 P3

t3

t
2t

4

t6

t
5

t10

t
8

t
7

153

t9

Figure 2: A schedule for the task graph in Figure 1
on three processors. The makespan of the schedule
is 153.

is the predecessor of tj , and tj is the successor of ti. We use
pred(t) and succ(t) to denote the set of predecessor tasks
and successor tasks of task t, respectively.

2. RELATED WORK
The search for an optimal solution to the problem of multi-

processor scheduling has been proven to be NP-hard ex-
cept for some special cases [6]. Numerous approaches have
been developed to solve the problem. These approaches can
be mainly classified into two categories: deterministic ap-
proaches and non-deterministic approaches.

Deterministic approaches attempt to exploit the heuris-
tics extracted from the nature of the problem in guiding the
search for a solution. They are efficient algorithms as the
search is narrowed down to a very small portion of the so-
lution space; however, the performance of these algorithms
is heavily dependent on the effectiveness of the heuristics.
Therefore, they are not likely to produce consistent results
on a wide range of problems.

Of all the deterministic approaches, many of them belong
to list scheduling algorithms. The search in list scheduling
algorithms is divided into two phases: in the first phase,
a priority value is given to each task according to some
criteria; in the second phase, tasks are assigned to pro-
cessors in decreasing order of their priorities. ISH [11],
DSH [11], MCP [22], and CPFD [2] are typical list schedul-
ing approaches to homogeneous computing systems, while
HEFT [17] and CPOP [17] are list scheduling algorithms de-
signed for heterogeneous computing systems. A drawback
of list scheduling algorithms is that the static assignment
of task priority is not able to capture the dynamics in task
execution because less important tasks may be scheduled

152

earlier, causing the delay of execution of more important
tasks. Dynamic approaches, such as DCP [12], attempt to
overcome this problem by overlapping the phases of task
order assignment and task scheduling.

Another group of deterministic algorithms is clustering al-

gorithms [10, 23]. These algorithms assume that there are
an unlimited number of processors available to task execu-
tion. Clustering algorithms will use as many processors as
possible in order to reduce the makespan of the schedule.
If, however, the number of processors used by a schedule is
more than the number actually available in a given prob-
lem, a mapping process is required to merge the tasks in
the proposed schedule onto the actual number of available
processors.

Contrary to deterministic algorithms, non-deterministic
algorithms incorporate a combinatoric process in the search
for solutions. Non-deterministic algorithms typically require
sufficient sampling of candidate solutions in the search space
and have shown robust performance on a variety of schedul-
ing problems. Genetic algorithms [8, 13, 19, 18, 21], sim-
ulated annealing [4, 9, 15], tabu search [16], and artificial
immune systems [14, 7, 5, 20] have been successfully ap-
plied to various scheduling problems. Non-deterministic al-
gorithms, however, are less efficient and have much higher
computational cost than deterministic algorithms.

There are also reported studies on incorporating both
non-deterministic and deterministic algorithms for multi-
processor scheduling. Ahmad and Dhodhi’s approach [1]
uses genetic algorithms for evolving priorities of tasks and
a list scheduling algorithm for mapping tasks to processors
in a homogeneous computing environment. Boeres et al. [3]
use a similar hybrid approach for finding optimal schedules
for heterogeneous computing environment. Genetic algo-
rithms are used for task priority determination, while vari-
ous heuristics are used to produce schedules based on prior-
ities.

3. ALGORITHM DESIGN
The design goal of our algorithm is to exploit the advan-

tages of both non-deterministic algorithms and determinis-
tic algorithms while avoiding their drawbacks. Our algo-
rithm differs from previous hybrid approaches in that we
use an AIS-based algorithm to perform task-processor map-
pings rather than evolving task priorities. The search for an
optimal solution, therefore, is divided into two phases. In
the first phase, AIS is used to map each task to one of the
processors. After a mapping is found, a heuristic approach
is then employed to determine the order of tasks assigned to
the same processor.

3.1 An AIS Algorithm for Task Mapping
An algorithm based on AIS is used to perform task map-

ping, i.e., to assign the execution of each task to one of the
available processors. The following sections gives detail de-
scription of the AIS algorithm.

3.1.1 Encoding of Antibodies
The population consists of a group of antibodies and each

antibody represents a candidate solution to a given schedul-
ing problem. Solutions are encoded as strings of integers,
and each integer represents the processor to which a task is
assigned. Suppose there are n tasks and m available pro-
cessors. Each solution contains n integers, and the value of
each integer in the solution ranges between 1 and m. Let us
assume that each task is assigned a unique id (from task t1 to
tn). The ith integer represents the processor to which task ti

is assigned. The search space of the algorithm, therefore, is
mn. Figure 3 shows the encoding of a solution corresponding
to the schedule in Figure 2.

2 3 2 2 3 1 1 1 2 1

Figure 3: The string of integers that encodes the
schedule shown in Figure 2. Each integer in the
string represents the processor to which a task is
assigned.

3.1.2 Calculating the Affinity of Antibodies
Maintaining a delicate tradeoff between the exploration

and exploitation of search space is always an important con-
sideration in designing any evolutionary algorithms. In our
algorithm, we attempt to address the issue in the calculation
of the affinity of antibodies, which consists of two compo-
nents. The first component, called fitness affinity or Fa,
evaluates the quality of encoded solutions. As in a typical
optimization problem, we do not have an optimal solution
that we can refer to as antigen in calculating the affinity.
Instead, we compare the makespan of a solution with the
makespan of the best solution in the current population. A
solution that generates shorter makespan is preferred and
given high fitness affinity. We calculate the fitness affinity
of an antibody i with Equation 1.

Fa(i) =
1

(makspan(i) − bmakespan + 1)
(1)

, where makespan(i) is the makespan of the schedule that
antibody i encodes, and bmakespan is the makespan of the
best solution found in the population. The values of fitness
affinity ranges between 0 and 1. The shorter the makespan,
the higher the fitness affinity. The best solution in the pop-
ulation receives a fitness affinity of 1.

The second component of the affinity, called adjacency

affinity or Aa, encourages the algorithm to explore new solu-
tion spaces and maintain population diversity. To calculate
the adjacency affinity of an antibody, the schedule encoded
in the antibody is compared with those encoded in the other
antibodies in the population. We calculate the average dis-
tance between the schedule and the rest of the population
in the solution space. A longer average distance results in
higher adjacency affinity. To save the computational cost on
pairwise distance calculation, we randomly select a portion
of the population to compute the adjacency affinity instead
of using the whole population. The proportion of random
antibodies to be selected from the population is given by a
parameter called sampling rate. Therefore, the adjacency
affinity of an antibody i can be calculated using Equation 2.

153

Aa(i) =

∑Ns

j=1
dist(i, j)

Ns × Nt

(2)

, where Ns and Nt represent the number of sampling anti-
bodies and the number of tasks in a solution, respectively,
and dist(i, j) denotes the distance between antibody i and
the jth selected antibody for comparison. The distance be-
tween two antibodies is given by the number of tasks that are
assigned to different processors in the two correspondingly
encoded schedules.

The overall affinity of an antibody, then, is the weighted
sum of its fitness affinity and adjacency affinity. We assign
the weight of each component based on the average fitness
and adjacency affinities in a population, using Equation 3.

Affinity(i) = Fa(i) × Average(Aa) + Aa(i) × Average(Fa)
(3)

There are two advantages of using this method to combine
the two components of affinity. First, it avoids the human
factors in determining the weight of each components, a pro-
cess in many cases resulting in arbitrary decisions. Second,
as the method takes into account the relative values of fit-
ness and adjacency affinities, it is applicable to all scheduling
problems without reassigning weights for different schedul-
ing problems. Although the value of adjacency affinity is rel-
atively stable, the fitness affinity that an antibody receives
is largely dependent on the optimal makespan that a solu-
tion can reach. For instance, a scheduling problem whose
solution has longer makespan typically receives lower fitness
affinity. In this case, our method, observing the relatively
lowered fitness affinity, is able to assign a higher weight on
the fitness affinity and automatically rebalance these two
components.

3.1.3 Selection
Selection is performed in every generation based on the

affinity of antibodies. The expected number of times an
antibody being selected is proportional to its affinity. The
selected antibodies replace the existing population and form
the next generation of population.

3.1.4 Mutation
Mutation is performed on all selected antibodies. All tasks

in a solution have equal probability of being mutated. When
a task is selected for mutation, we reassign the task to a
random processor.

3.2 A Heuristic-based Algorithm for Task
Order Assignment

After tasks are mapped to processors, we need to deter-
mine the order of tasks to be executed on each processor
and calculate the makespan of the schedule. We apply a
heuristic-based algorithm for task order assignment. Tasks
are assigned in the execution queue one by one, and in each
step, we choose one of the tasks that are ready for execution.
A task is ready if it has no predecessor or all its predeces-
sor tasks are already scheduled. Among all ready tasks, the
priority is given to the one whose execution is critical to
potentially reduce the makespan of a schedule.

Determining the makespan of partially scheduled tasks is
important when we choose a ready task to be executed in

each step. The calculation of makspan, if a given task is cho-
sen to be executed, should take into account both the com-
pletion time of the task (i.e., the duration of time needed
from the beginning of the computation until the task fin-
ishes execution) and the execution time of all tasks that
depend on the execution of this task. The completion time
of a task can be calculated, but the latter aspect cannot be
accurately determined as the execution order of successor
tasks is not known yet (although we have already known to
which processors they are mapped). We use the notion of
upward rank to give an estimation. The upward rank of a
task is used in HEFT algorithm to determine the priority
of task assignment [17]. While our purpose of using upward
rank is the same as in HEFT, we use a different method in
calculating the upward rank. First, in HEFT, the average
execution times of tasks are used in the calculation. As in
our algorithm the task-processor mapping is performed be-
fore the task sequence assignment, we can use the execution
time of the tasks on their mapped processors in the calcula-
tion. Second, the communication times between dependent
tasks are always counted in HEFT, even though some of
them may potentially be executed on the same processor.
We, instead, can use the task mapping results and ignore
the communication times for dependent tasks executed on
the same processor. Therefore, our method is able to pro-
duce more accurate estimation on the execution time of the
unassigned tasks. The upward rank of a task t, ur(t) is
calculated recursively using Equation 4.

ur (t) =

0 if succ(t) = φ

max(comp(tj , proc(tj))+
real comm(t, tj)), ∀tj ∈ succ(t) otherwise

(4)
where comp(t, p) denotes the computation time of task t

on processor p, proc(t) denotes the processor to which task
t is mapped, and real comm(t1, t2) denotes the communica-
tion time between two tasks during task execution and can
be calculated using Equation 5:

real comm(t1 , t2) =

{

0 if proc(t1) = proc(t2)
comm(t1, t2) otherwise

(5)
Using the above method for estimating the total execu-

tion time of partially scheduled tasks, we always choose a
task whose sum of completion time and upward rank is the
largest among all ready tasks, as we believe that assign-
ing the execution of this task earlier will help to reduce the
makespan. The selected task is then appended to the execu-
tion task queue of the processor and removed from Sready.
Any tasks that become ready due to the execution of the
task are added to Sready. We repeat the above steps until all
tasks are scheduled. After that, we calculate the makespan
of the schedule which in turn determines the fitness affinity
of the antibody.

3.3 Procedure of Algorithm
Combining both the AIS algorithm and heuristic-based

algorithm, we show the procedure of the our algorithm as
follows:

a) initialize a population of antibodies
b) for each generation, do

b.1) for each antibody, do
b.1.1) map tasks to processors according to the

154

encoded solution
b.1.2) determine the order of task execution
b.1.3) calculate the makespan of the schedule
b.1.4) calculate the fitness affinity based on the

makespan
b.1.5) calculate the adjacency affinity and

overall affinity
b.2) perform selection to produce antibodies for the

next generation
b.3) perform mutation on selected antibodies

c) select the best solution in the final generation as
the solution of the algorithm

The detailed procedure of determining the order of task
execution (step b.1.2) is:

a) calculate the upward rank of each task based on the
task mapping result encoded in the antibody

b) initialize the set of ready tasks that includes tasks
with no predecessors

c) while the set of ready tasks is not empty, do
c.1) for each ready task, do

c.1.1) calculate the completion time of the task
on the assigned processor

c.1.2) calculate the sum of its completion time
and upward rank

c.2) select the task whose sum is the largest among
all ready tasks and assign the task to the
processor

c.3) update the set of ready tasks by removing the
scheduled task and adding new ready tasks

4. EXPERIMENTS

4.1 Test Bed
We use the 21-task and 28-task Gauss-Jordan graphs to

evaluate the performance of our algorithm. Figure 4 shows
the DAG for the 21-task Gauss-Jordan Graph. The DAG
for the 28-task graph has additional seven tasks on above of
the top layer of the 21-task graph. The average computa-
tion time of each task in both graphs is 40. For each graph,
we test cases with different communication to computation
ratios, ranging between 0.25 and 3. For each case, the com-
munication time between each pair of dependent tasks are
the same. For instance, if the communication to computa-
tion ratio is 0.25, the data transfer time between dependent
tasks, if they are assigned to different processors, is 10.

4.2 Parameter Settings and Metrics for
Performance Evaluation

For each test case, we randomly generate ten task graphs.
The computation time of each task on each processor varies
among the ten graphs and it follows Poisson distributions.
We run the algorithm fifty times for each task graph. In
each run, we calculate the speedup of the schedule using the
following equation:

speedup =
serial execution time

makespan
(6)

where serial execution time is the shortest makespan that
can be achieved if we schedule the execution of all tasks
on any single processor. The higher the speedup, the more
effective the distribution of task execution on parallel pro-
cessors.

For each task graph, we calculate both the average speedup
of solutions over fifty runs with 95% confidence interval (CI)

t7 t10
t9t8 t11

t14
t13t12 t15

t17
t16 t18

t19 t20

t21

t2 t5
t4t3 t6

t1

Figure 4: The DAG for 21-task Gauss-Jordan graph.
The average communication time of tasks is 40. The
communication to computation ratios of task graphs
used in our experiments range between 0.25 and 3.

and the highest speedup achieved in fifty runs. Then we
calculate the average value of these results for the ten task
graphs in each test case.

Unless otherwise specified, we use the parameter settings
shown in Table 2 in all runs.

Table 2: Parameter settings used in the experiment.

Parameter Value

Population Size 200

Number of Generations 200

Sampling Rate 10%

Mutation Rate 0.1

Selection Proportional to Affinity

The experimental results are compared with the perfor-
mance of HEFT on the same task graphs. HEFT is a list
scheduling algorithm and the priority of tasks is give by their
upward ranks. As a deterministic algorithm, HEFT is run
only once for each task graph. We calculate the average
speedup of the solutions to the ten task graphs in each test
case.

4.3 Experimental Results and Analysis
Figures 5 and 6 show the comparison of the results be-

tween our algorithm and HEFT on 21-task and 28-task Gauss-
Jordan graphs. Our algorithm consistently outperforms HEFT,
producing schedules with average speedups higher than those
produced by HEFT in all test cases. The experiment also
shows that as the communication to computation ratio of
task graphs increases, the speedup of execution on parallel
processors drops due to longer data transfer times among de-
pendent tasks. We also observe that the gap in the speedups
reached by the two algorithms are more noticeable in task
graphs with higher communication to computation ratios
(e.g., ratio of 3.0). We believe that to schedule a task graph

155

with a high communication to computation ratio, proper
task-to-processor mapping is essential to avoid or reduce
long data transfer time. The use of AIS for task mapping
enables the our algorithm to explore a larger solution space
than HEFT, so it is more likely to find better mappings.

1

1.5

2

2.5

3

3.5

0.25 0.5 1.0 2.0 3.0

E
xe

cu
tio

n
S

pe
ed

up

Communication to Computation ratios

HEFT
AIS Best

AIS Average

Figure 5: The performance comparison between the
AIS algorithm and HEFT on 21-task Gauss-Jordan
graphs with varying communication to computation
ratios. The results for AIS runs are given by the best
speedup and the average speedup with 95% confi-
dence intervals from 50 runs in each task graph.

1

1.5

2

2.5

3

3.5

0.25 0.5 1.0 2.0 3.0

E
xe

cu
tio

n
S

pe
ed

up

Communication to Computation ratios

HEFT
AIS Best

AIS Average

Figure 6: The performance comparison between the
AIS algorithm and HEFT on 28-task Gauss-Jordan
graphs with varying communication to computation
ratios. The results for AIS runs are given by the best
speedup and the average speedup with 95% confi-
dence intervals from 50 runs in each task graph.

One of the unique features of our algorithm is that we
separate the phases of task-processor mapping and task se-
quence determination. As the task mapping results are avail-
able before task sequence determination begins, we are able
to provide more accurate estimation on the execution time
needed for the unassigned tasks using a revised method of
calculating the upward rank. We performed additional ex-
periments using the traditional method for calculating the
upward rank (i.e., the method used in HEFT). The com-
parison of results between the two methods are shown in
Figures 7 and Figure 8.

1

1.5

2

2.5

3

3.5

0.25 0.5 1.0 2.0 3.0

E
xe

cu
tio

n
S

pe
ed

up

Communication to Computation ratios

Best Speedup Using Modified Method
Average Speedup Using Modified Method

Best Speedup Using HEFT Method
Average Speedup Using HEFT Method

Figure 7: The performance comparison of our algo-
rithm using two methods of calculating the upward
ranks of tasks: the modified method that takes into
account the task mapping results and the method
used in HEFT. Results are given by the execution
speedups achieved on 21-task Gauss-Jordan graphs
with varying communication to computation ratios.

1

1.5

2

2.5

3

3.5

0.25 0.5 1.0 2.0 3.0

E
xe

cu
tio

n
S

pe
ed

up

Communication to Computation ratios

Best Speedup Using Modified Method
Average Speedup Using Modified Method

Best Speedup Using HEFT Method
Average Speedup Using HEFT Method

Figure 8: The performance comparison of our algo-
rithm using two methods of calculating the upward
ranks of tasks: the modified method that takes into
account the task mapping results and the method
used in HEFT. Results are given by the execution
speedups achieved on 28-task Gauss-Jordan graphs
with varying communication to computation ratios.

Figures 7 and 8 show that the revised method helps the
algorithm find better solutions in all test cases. The im-
proved accuracy in estimating the task execution times pro-
vided by the revised method enables the algorithm to pro-
duce better task execution sequences that take into account
the task mapping results, so it can potentially further reduce
the makespan of task execution.

We also study the effect of two parameters, the mutation
rate and sampling rate, on the performance of the algorithm.
We rerun the algorithm on all task graphs with varying mu-
tation rates from 0.01 to 0.20, and sampling rates from 10%
to 100%. The results show very consistent behaviors in all
test cases. Due to page limitation, we only report the results
on the 21-task graphs with communication to computation
ratio of 1. Figures 9 and 10 show these results.

156

2.1

2.12

2.14

2.16

2.18

2.2

2.22

2.24

2.26

2.28

2.3

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

E
xe

cu
tio

n
S

pe
ed

up

Mutation Rate

Best Speedup
Average Speedup

Figure 9: The performance comparison of our al-
gorithm using varying mutation rates from 0.01 to
0.20. Results are collected from runs on 21-task
Gauss-Jordan graphs with communication to com-
putation ratio of 1.

2.1

2.12

2.14

2.16

2.18

2.2

2.22

2.24

2.26

2.28

2.3

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

E
xe

cu
tio

n
S

pe
ed

up

Sampling Rate

Best Speedup
Average Speedup

Figure 10: The performance comparison of our al-
gorithm using varying sampling rates from 10% to
100%. Results are collected from runs on 21-task
Gauss-Jordan graphs with communication to com-
putation ratio of 1.

Figures 9 indicates that the algorithm with mutation rate
between 0.07 and 0.15 produces the best search performance,
with the average speedup reaching above 2.18. The search
performance gradually degrades with mutation rate lower
than 0.06 or higher than 0.15 but not significantly. A mu-
tation rate of 2.0, which exhibits the lowest performance
within the range of mutation rates in our experiment, still
produces an average speedup of around 2.12, much better
than HEFT (with speedup less than 2.0).

Figure 10 shows that the sampling rate does not have
much impact on the search quality of the algorithm. The
execution speedups fluctuate very slightly with varying sam-
pling rates. The computation time of the algorithm, how-
ever, increases significantly when a higher sampling rate is
used. Figure 11 shows the increase in the average compu-
tation times in runs with higher sampling rates over runs
with a 10% sampling rate. The computation time increases
linearly with the sampling rate. Running the algorithm
with full sampling (i.e., 100% sampling rate) requires more

than three times of computation cost than running with
a 10% sampling rate, without significant performance im-
provement. Therefore, a partial population sampling (as low
as 10%) appears to be sufficient to guarantee search quality.

0

0.5

1

1.5

2

2.5

3

3.5

4

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

C
om

pu
ta

tio
n

T
im

e
ov

er
 1

0%
 S

am
pl

in
g

R
un

s

Sampling Rate

Increase in Computation Time

Figure 11: The increase in average computation
times in runs with higher sampling rates over runs
with 10% sampling rate.

5. CONCLUSIONS
This paper presents an AIS-based algorithm for finding

optimal execution schedules for tasks running on hetero-
geneous computing processors. Two unique features dis-
tinguish our algorithm from many other scheduling algo-
rithms. First, we separate the phases of task mapping and
task sequence determination. We restrict the use of AIS
to task mapping while using a heuristic from deterministic
approaches to assigning the order of task execution. As a
result, this algorithm effectively reduces the solution space
to allow AIS a more sufficient sampling during the search.
Also, the separation of the two phases enables the algorithm
to find more efficient schedules by assigning task execution
order based on the task mapping result. Second, the affin-
ity of an antibody in AIS is determined by both the quality
of encoded solution and its phenotype distance to the rest
of the population. This affinity function enables the AIS
to maintain a dynamic balance between exploration and ex-
ploitation during the search for an optimal solution.

The experiment shows that our algorithm consistently
outperforms HEFT, a deterministic algorithm, finding sched-
ules with higher execution speedup. Additional experiment
also reveals that the use of task mapping results for task
sequence assignment is able to improve the search result.
The study on the parameters indicates that the algorithm is
able to maintain high quality search within a wide range of
mutation rates and sampling rates. A low sampling rate of
10% used in the calculation of affinity is sufficient to guar-
antee the search quality without the need for a complete
population sampling.

6. REFERENCES

[1] I. Ahmad and M. K. Dhodhi. Multiprocessor
scheduling in a genetic paradigm. Parallel Computing,
22:395–406, 1996.

157

[2] I. Ahmad and Y. Kwok. On exploiting task duplication
in parallel program scheduling. IEEE Transactions on

Parallel and Distributed Systems, 9(9):872–892, 1998.

[3] C. Boeres, E. Rios, and L. S. Ochi. Hybrid
evolutionary static scheduling for heterogeneous
systems. In Proceedings of the IEEE Congress on

Evolutionary Computation, pages 1929–1935, 2005.

[4] S. W. Bollinger and S. F. Midkiff. Processor and link
assignment in multicomputers using simulated
annealing. In Proceedings of the International

Conference on Parallel Processing, pages 1–7, 1988.

[5] A. Costa, P. Vargas, F. V. Zuben, and P. Franca.
Makespan minimisation on parallel processors: An
immune based approach. In Proceedings of the

Congress on Evolutionary Computation, pages
920–926, 2002.

[6] M. R. Garey and D. S. Johnson. Computers and

intractability, a guide to the theory of

NP-Completeness. W. H. Freeman, New York, 1979.

[7] E. Hart and P. Ross. An immune system approach to
scheduling in changing environments. In Proceedings

of Genetic and Evolutionary Computation Conference,
pages 1559–1565, 1999.

[8] E. S. Hou, N. Ansari, and H. Ren. A genetic algorithm
for multiprocessor scheduling. IEEE Transactions on

Parallel and Distributed Systems, 5(2):113–120, 1994.

[9] K. Hwang and J. Xu. Mapping partitioned program
modules onto multicomputer nodes using simulated
annealing. In Proceedings of the International

Conference on Parallel Processing, pages 292–293,
1990.

[10] S. J. Kim and J. C. Browne. A general approach to
mapping of parallel computation upon multiprocessor
architectures. In International Conference on Parallel

Processing, volume 2, pages 1–8, 1988.

[11] B. Kruatrachue and T. G. Lewis. Duplication
Scheduling Heuristic, a new precedence task scheduler
for parallel systems. Technical Report 87-60-3, Oregon
State University, 1987.

[12] Y. Kwok and I. Ahmad. Dynamic critical-path
scheduling: An effective technique for allocating task
graphs to multiprocessors. IEEE Transactions on

Parallel & Distributed Systems, 7(5):506–521, 1996.

[13] Y. Kwok and I. Ahmad. Efficient scheduling of
arbitrary task graphs to multiprocessors using a

parallel genetic algorithm. Journal of Parallel and

Distributed Computing, 47(1):58–77, 1997.

[14] M. Mori, M. Tsukiyama, and T. Fukuda. Adapative
scheduling system inspired by the immune system. In
Proceedings of the IEEE Conference on Systems, Man

and Cybernetics, pages 3833–3837, 1998.

[15] A. K. Nanda, D. DeGroot, and D. Stenger. Scheduling
directed task graphs on multiprocessors using
simulated annealing algorithms. In Proceedings of the

12th International Conference on Distributed

Computing Systems, 1992.

[16] S. C. S. Porto and C. C. Ribeiro. A tabu search
approach to task scheduling on heterogeneous
processors under precedence constraints. International

Journal of High-Speed Computing, 7(2), 1995.

[17] H. Topcuoglu, S. Hariri, and M. Y. Wu.
Performance-effective and low-complexity task
scheduling for heterogeneous computing. IEEE

Transactions on Parallel & Distributed Systems,
13(3):260–274, 2002.

[18] T. Tsuchiya, T. Osada, and T. Kikuno. Genetic-based
multiprocessor scheduling using task duplication.
Microprocessors and Microsystems, 22:197–207, 1998.

[19] L. Wang, H. J. Siegel, V. P. Roychowdhury, and A. A.
Maciejewski. Task matching and scheduling in
heterogenous computing environments using a
genetic-algorithm-based approach. Journal of Parallel

and Distributed Computing, 47(1):8–22, 1997.

[20] G. Wojtyla, K. Rzadca, and F. Seredynski. Artificial
immune systems applied to multiprocessor scheduling.
In Proceedings of the 6th International Conference on

Parallel Processing and Applied Mathematics, pages
904–911, 2005.

[21] A. S. Wu, H. Yu, S. Jin, G. Schiavone, and K.-C. Lin.
An incremental genetic algorithm approach to
multiprocessor scheduling. IEEE Transactions on

Parallel & Distributed Systems, 15(9):824–834, 2004.

[22] M. Y. Wu and D. D. Gajski. Hypertool: A
programming aid for message-passing systems. IEEE

Transactions on Parallel & Distributed Systems,
1(3):330–343, 1990.

[23] T. Yang and A. Gerasoulis. DSC: Scheduling parallel
tasks on an unbounded number of processors. IEEE

Transactions on Parallel & Distributed Systems,
5(9):951–967, 1994.

158

