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ABSTRACT 
Interactive Evolutionary Computation (IEC) has been applied to 
art and design problems where the fitness of an individual is at 
least partially subjective.  Applications usually present a 
population from which the preferred individuals are selected 
before the usual evolutionary operations are performed to produce 
the next generation.  Large population sizes and numbers of 
generations impose significant demands on the user.  This paper 
proposes that selecting by means of eye movements could reduce 
user fatigue without sacrificing quality of fitness assessment.  In 
the first experiment, an eye-tracker is used to capture fixations 
and confirm the reliability of such a measure of attention as a 
fitness driver for subjective evaluation such as aesthetic 
preference.  In a second experiment, the robustness and efficiency 
of this technique is investigated for varying population sizes, 
presentation durations and levels of fitness sampling. The results 
and their consequences for future IEC applications are discussed. 

Categories and Subject Descriptors 

J.4 Social and Behavioural Sciences – Psychology  

J.7 Computers in Other Systems – Consumer products 

General Terms 
Algorithms, Design, Experimentation, Human Factors, 
Performance, Reliability. 

Keywords 
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1. INTRODUCTION 
The ability of evolutionary algorithms to search complex, multi-
dimensional solution spaces and locate highly fit individuals has 
been applied to art and design with varying degrees of success. 
When the fitness is primarily objective in nature, such as some 

combination of weight, size and cost of components constrained 
by properties such as stability and surface area, the algorithms 
have successfully generated feasible and innovative designs [1, 
2].  When the fitness includes a large subjective component, such 
as in evolutionary art [3, 4] and consumer based design [5], the 
most successful approach has been to use humans for the fitness 
evaluation, giving rise to the field Interactive Evolutionary 
Computation (IEC) [6]. 
IEC thus allows for true phenotypic fitness assessment, where the 
overall fitness cannot be reduced to some mathematical 
combination of the fitness of its parts.  However, the introduction 
of a human immediately limits the performance of such 
algorithms by slowing down the processing of a single generation, 
limiting the number of generations and restricting the number of 
individuals which can be presented for evaluation by the human 
observer [6, 7].  Attempts have been made to reduce user fatigue 
through fitness interpolation or including some degree of machine 
learning capability which enables the evolution to proceed 
without the involvement of the human at every generation [8].  
Such methods can reduce the rate of fitness improvement in the 
population, with sporadic jumps in fitness occurring when 
information from the user is obtained, but with relatively small 
gains when the fitness is estimated [7].  This suggests that more 
value could be obtained by increasing the speed and quality of the 
feedback from the human observer which would in turn facilitate 
more frequent sampling from the user, over and above the 
development of improved fitness estimation processes. 
The human visual system provides a well designed mechanism for 
the processing of complex object related information [9].  The 
subjective assessment of individuals in a population can be 
compared with ‘psychophysical’ paradigms, whereby stimulus 
properties are systematically adjusted according to the subjective 
responses of a human participant based on percepts [10].  We 
demonstrated that evolutionary algorithms can be applied to 
research into aesthetic perception where participants are requested 
to select their preferred stimulus - which is then used to generate a 
new population of offspring. This method generates results 
comparable with those of more established psychophysics 
methods [11].   
Visual search paradigms using eye-trackers, where eye-
movements and their associated latencies are used to research the 
parallel processing of visual features and contextual effects [9], 
provide a means of rapidly accessing quantitative measures of 
subjective preference which can then be integrated into real-time 
interactive evolutionary algorithms.  Wolfe’s guided visual search 
model proposes that in order to facilitate locating an object in 
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space, humans create spatial maps for each of the visual features 
they are interested in (e.g. brightness, orientation, size, colour, 
etc.) and use conjunctions between those features in space to shift 
the spotlight of their attention [12].  The Rizzolatti, et al. pre-
motor theory of attention suggests that the shift of the attentional 
spotlight is result of preparing to make an eye-movement 
(saccade) to an object of interest [13].  The common ground 
shared by these models is that eye-movements are a reliable 
indicator of shifts in overt attention.  Search accuracy is improved 
by instructing participants to make rapid saccades to the objects 
they are attending to [14], and the fixation points on the screen 
can be used as indicator of the location of overt attention.  The 
experiments described below establish the use of fixation 
positions and the duration of overt attention directed towards an 
individual as a robust measure of perceptual fitness in guided 
visual search experiments.   

2. EXPERIMENT 1 - AESTHETIC 
PERCEPTION 
Experiment 1 builds on a wealth of previous research into whether 
there exists an aesthetic preference for the Golden Ratio (1:1.618) 
[15, 16].  In a previous experiment we have shown that an 
evolutionary algorithm can be used to generate populations of 
rectangles consisting of mutations of the rectangle deemed “most 
beautiful” by the participant in the previous generation [11].  In 
this experiment, the selection of the preferred rectangle based on a 
key press is replaced by selection based on the amount of time 
spent fixating on the individual rectangles which is captured using 
an eye-tracker.  The results are compared with data from a 
previous experiment using the manual selection method. 

2.1 Representation 
The total surface area of the rectangle was held constant to 
maintain constant size on the retina, a necessary control in such 
experiments [16], and so a simple genetic representation of just 
one side of the rectangle was sufficient.  The length was encoded 
as a 9 bit Gray coded binary integer [17], which corresponded to 
the displayed horizontal length of the rectangle.  The smallest 
displayable length is one pixel, and as such the physical lengths 
were continuous to this degree of accuracy.  

2.2 The Algorithm 
A simple (1+λ) evolutionary strategy was used [18] i.e. the 
population of size n = 8 comprised the preferred individual from 
the previous generation (parent) plus λ= n-1 offspring generated 
using mutation only.  In this case mutation was via a simple bit-
flip operator at a random location, which occurred with a 
probability of 0.1.  All trials used a randomly generated starting 
population.   
The algorithm and all interfacing software were written in 
MATLAB. 

2.3 Experimental Set-up 
2.3.1 Stimuli 
Populations of 8 rectangles were rendered and displayed using a 
Cambridge Research Systems ViSaGe (Visual Stimulus 
Generator).  Stimuli were displayed on a 48cm CRT Monitor at a 
distance of 57cm from the participant.  Constant size (630mm2) 

and orientation (portrait or landscape) was maintained for all 
rectangles in the population.  The maximum range of ratios 
displayed was from 1:1 to 1:4.  This was chosen to ensure that the 
Golden Ratio was not the mid-point of the range.  Rectangles 
were displayed in a radial fashion to counter positional bias on the 
screen, with a small random positional jitter to ensure that 
participants could not exploit alignment of images in their 
assessment – see Figure 1.  The position of the parent rectangle on 
the screen was randomly selected for each generation.  Each 
participant ran through 6 trials comprising 10 generations, for 
both landscape and portrait orientation.  Participants were 
instructed to search for the most aesthetically pleasing rectangle. 

 

2.3.2 Timing 
Participants were initially presented with a black screen with a 
central fixation cross for 1000ms.  The population of rectangles 
was then presented together for a duration of 750, 2500 or 
5000ms, after which a black screen was presented for 3000ms 
before the fixation cross was displayed. This ensured that 
participants returned their gaze to the centre of screen between 
each generation, and allowed time for any after-images caused by 
the high contrast stimuli to fade.  In the manual selection 
condition, there was no limit on the presentation duration and 
participants were simply directed to respond when they identified 
a preference. 

2.3.3 Eye-tracking 
A Cambridge Research Systems 50Hz Video Eye-Tracker was 
used, which enables gaze location to be sampled every 20ms.  
Fixations were defined as periods of 100ms or more, within a 
zone which enclosed the rectangle.  Due to the size of the stimuli 
we used a 25mm tolerance window which eradicated noise caused 
by positioning eye-movements, small saccadic eye-movements 
within a fixated region and eye-movements which pass over a 
rectangle but do not stop to fixate on the rectangle. 

2.3.4 Fitness Assessment 
After presentation of the stimuli, the gaze positions on the screen 
were analyzed at 20ms intervals.  Any positional information 
which did not fulfill the criteria for a fixation (see above) was 
removed as well as any fixation which lay outside of the fixed 
zone containing each rectangle.  The total amount of time spent 
fixating in each zone was then calculated and the rectangle 
displayed in the zone with longest total fixation duration was used 
as the parent for the next generation.  In the event that the 

 

Figure 1.  Sample stimuli, showing starting 
populations of landscape and portrait 

rectangles. 
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participant did not fixate on any of the 8 rectangles, a parent for 
the next generation was selected at random. 

2.4 Results 
Not all participants were able to locate and fixate on a preferred 
rectangle for the 750ms presentation, so this data has been 
excluded.  Figure 2 shows the average ratio and standard 
deviation for the population at generation 10 for both landscape 
and portrait rectangles at the 2500ms and 5000ms presentation 
durations, which all four participants were able to complete.  As 
can be seen, there is no significant difference between the evolved 
ratios based on manual selection (key pad) or fixation duration.  
The results were stable for both the 2500ms and 5000ms 
presentations.  As expected, the variation in the results can be 
controlled through the presentation duration, with the variance 
within participants at 5000ms presentations being similar to that 
in the earlier manual selection experiment [11], where the mean 
rectangle selection time was 5583ms (st.dev = 2314ms). 
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Figure 2.  Average evolved ratio for manual and fixation 
duration based selection (2500ms and 5000ms) of most 

aesthetically pleasing rectangle.  Results are shown, with their 
standard deviations, for both landscape and portrait 

rectangles.  N = 4. 
 
Figure 3 shows average evolved ratios for the full range of 
exposure durations for the one participant who was able to 
complete the experiment at the shorter durations of 1000ms and 
750ms.  Again, the variance appears to increase with reduced 
exposure duration. 

2.5 Discussion 
The results show that, for simple phenotypes such as these, fitness 
selection based on fixation duration can be used to evolve 
individuals which are comparable with those evolved by manual 
subjective interactive selection, with significantly shorter 
presentation durations.   The stability of the results decreases with 
reduced presentation durations, with some untrained participants 
being unable to maintain stable fixations in the experiment at very 
short durations (750ms).  This suggests that some degree of 
training is needed if shorter durations are to be used.  The ability 
of a practiced participant to complete the experiment at durations 

of 1000ms or less suggests that eye-tracking might present us with 
the possibility to increase the number of individuals evaluated and 
generations used in IEC, which is important for larger solution 
spaces.  To validate this hypothesis, a more complex phenotype 
with a correspondingly larger solution space is needed, and is 
explored further in experiment 2 below. 
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Figure 3.  Average evolved ratio for manual and fixation 

duration based selection of most aesthetically pleasing 
rectangle.  Results are shown, with their standard deviations, 

for both landscape and portrait rectangles.  N = 1. 
 
The increased variability in the results at shorter presentation 
times might be due to a distractor effect.  As the population 
begins to converge, individuals that deviate significantly from the 
population average tend to “pop-out”.  Research has shown that 
such items tend to attract attention [19] suggesting that it might be 
preferable to apply a lower, or even zero weighting, to the first 
100ms.  However, the noise introduced by such involuntary 
attentional shifts may be of interest, particularly in product 
design, where the target packaging is intended to be a distractor 
itself, particularly when surrounded by competing brands.  An 
alternative approach to limiting distractor noise would be the 
introduction of dynamic display durations, where the exposure 
time is inversely proportional to the similarity of the targets.  
Similarly, the introduction of dynamic fitness weights 
proportional to the difference between an individual and a 
converging population could be used to promote distractor effects.   
   

3. EXPERIMENT 2 - MULTI-
DIMENSIONAL PERCEPTION 
In order to establish that eye-tracking can be used for aesthetic 
evaluation of more complex phenotypes it is important to 
understand the effects of increasing the solution search space and 
varying the exposure duration.  Experiment 2 explores these 
effects with an enhanced genetic algorithm which allows larger 
population sizes to be sampled for presentation as well as 
introducing crossover and partial replacement to avoid premature 
convergence.  To control for noise resulting from differences in 
participants’ aesthetic preference, participants were given a 
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specific target to search for and were instructed to look for the 
closest individual in the displayed stimuli. 

3.1 Representation 
The phenotype comprised a 3x2 array of four possible shapes – 
square, circle, triangle or blank.  Each of the shapes could be 
presented as a white shape on a black background, or a black 
shape on a white background.  Figure 4 shows the 8 possible 
occupants of each location in the grid.  Thus the chromosome 
comprised 6 such genes, with a total length of 18 bits, giving 218 = 
262,144 possible phenotypes.  Figure 5 shows an example of a 
randomly generated phenotype and the target phenotype.  
Participants were shown an example of the target and told to look 
for the individuals which were most like the target. 
 

 
Figure 4.  Binary representation of the 8 possible alleles for 

each of the 6 grid positions (genes). 
 

 

Figure 5.  Random population member (left) and target 
population member (right). 

3.2 The Algorithm 
For this experiment a simple genetic algorithm [17] employing 
both crossover and mutation was used to reduce the risk of 
premature convergence with the increased phenotype complexity. 
Simple bit-flip mutation was used, with a constant probability of 
0.05 and single-point crossover with a constant probability of 
0.75.  Roulette wheel selection was used with the probability of 
selection directly proportional to the fitness of the individual.  All 
trials used a randomly generated starting population.  
The algorithm was enhanced to facilitate partial replacement, 
which has been shown to reduce the risk of premature 
convergence [20].  A further enhancement to the algorithm was 
the sampling of the set of individuals to be presented from the 

total population.  This has the benefit of allowing for an increased 
population size while maintaining a relatively small number of 
presented individuals, and therefore reducing user fatigue, however 
it requires a means of estimating the fitness of the population 
members which are not presented.   
The algorithm and all interfacing software were written in 
MATLAB. 

3.3 Experimental Set-up 
3.3.1 Stimuli 
Samples of 8 individuals were rendered and displayed using a 
Cambridge Research Systems ViSaGe (Visual Stimulus Generator).  
As before, stimuli were displayed on a 48cm CRT Monitor at a 
distance of 57cm from the participant.  The physical size of an 
individual on the screen was 300mm2.  Sampling was with 
replacement, meaning that the same individual could be displayed 
more than once.  This was intended to limit contextual effects since 
the fitness is always relative to the other individuals presented. 
Individuals were displayed in a radial fashion as before, but without 
any positional jitter.  Each participant completed 10 trials of 20 
generations each, with presentations of 1, 2 and 4 samples per 
generation. 

3.3.2 Timing 
As in the previous experiment, participants were initially presented 
with a black screen with a central fixation cross for 1000ms.  
Samples of 8 individuals from the population were then presented 
together for display durations of 750ms and 1500ms after which a 
black screen was represented for 3000ms before the fixation cross 
was represented. 

3.3.3 Eye-tracking 
As in the previous experiment.  Fixations for the zone enclosing the 
entire phenotype were captured; fixations on individual features 
within the phenotype were not distinguished. 

3.3.4 Fitness 
When subjective fitness information is only available for a sample 
of the population it is necessary to estimate the fitness scores for the 
remaining population members.  Previous attempts at this in IEC 
have included interpolation of the fitness based on Euclidian 
distance of the individual from the most and least preferred member 
of the presented sample [7].  Eye-tracking provides the ability to 
capture fitness values for all members of the presented sample.   

 
Figure 6.  Example of presented display. 
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Let xij represent the ith population member in generation j.  Let 
the fitness of the ith individual in the jth generation be denoted by 
ƒ(xij) and be defined as the average amount of time spent fixating 
on that individual over all presentations for the jth generation.  
Then  
 

)) / N(xT(x)) / N(xT(x)f(x ijijijijij ∑=
i

                  (1) 

 
Where T(xij) is the total amount of time spent fixating on the ith 
population member in generation j, and N(xij) is the total number 
of presentations of the ith population member in generation j (1). 
Once all samples had been presented for one generation, the 
fitness of each un-presented individual was estimated.  Let 
H(xij,xkj) be the hamming distance the ith (un-presented) 
individual and the kth (presented) individual.  This is calculated 
for xij for all un-presented xkj, and the method of least squares is 
then used to estimate the equation of the line which best describes 
the points (H(xij,xkj), ƒ(xkj)).  This equation can then be used to 
estimate the fitness of the un-presented individual as follows: 
 

βα += ),(ˆ ljljlj) xxH (xf                                                 (2) 

 
Since the hamming distance of an individual with itself is always 
zero, β gives the estimated fitness of the un-presented lth 
population member (2).   
This process is repeated for all un-presented population members 
before the selection and reproduction stages of the algorithm. 
 

3.4 Results 
The performance of the algorithm can be evaluated in terms of its 
ability to evolve an individual which matches the target, but a 
more relevant measure for IEC is to look at the population as a 
whole.  This is especially important when the population is 
sampled for presentation to the participant, since a target might be 
evolved without the participant ever being aware of it.  Results 
shown are for an individual trained participant. 

3.4.1 Population Level Results 
The proximity of each individual to the target can be assessed 
genotypically in terms of hamming distance, or phenotypically in 
terms of visual similarity.  This latter measure is appropriate to 
the success measurement of a subjective interactive evolutionary 
algorithm.  The target comprises an array of 6 white circles on a 
black background (target characteristic), and so the visual 
similarity can be assessed in terms of the number of white circles 
on a black background in each individual.  Figure 7 shows a 
typical example of the target characteristic increasing in 
prevalence over time.  In all runs the average prevalence of the 
target characteristic can be seen to increase, suggesting that the 
fixation duration based fitness is successful in evolving the 
desired pattern.  

Population size (n), presentation duration and the number of 
presentations (samples) per generation each affected the 
performance of the algorithm, as can be seen in Figure 8.  For 
n=8, increased sampling through multiple presentations of the 
same 8 individuals improves the performance of the algorithm.  
1500ms presentations provided a small improvement in the 
average similarity to the target, although there is little difference 
between the two presentation durations. In all cases variance 
reduced with increased presentation duration. For n=96, increased 
sampling produced mixed results, showing a 50% reduction in the 
variance but no improvement in the prevalence of the target 
characteristic.  Increased presentation time produced more 
significant improvements in performance, with corresponding 
reductions in variance as well.  It is worth noting that over 20 
generations there seems to be no real gain from the increased 
population size, however, the prevalence does not show signs of 
saturation which can be seen in the smaller population size 
suggesting that further improvements in the average fitness could 
be achieved by allowing the experiment to run for more 
generations. 

Gene Expression - n = 8, presentations = 2,
presentation duration = 750ms (N = 1)
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Figure 7.  Typical expression of phenotypic characteristic over 
20 generations.  Averaged over 10 trials, N = 1. 

 

3.4.2 Fittest Individual Results 
As already mentioned, the ability to achieve the target is a 
somewhat irrelevant measure of the performance of this 
algorithm, especially in the event that the evolved target is not 
presented to the participant.  However, the proximity of the fittest 
individual to the target at each generation is of interest, as it is a 
measure of the algorithm’s ability to be directed towards to the 
target by the participant.   
Figure 9 shows that in all cases increasing the presentation time 
and sampling improves the fitness of the fittest individual in the 
population.  Although increased population size improves the 
fitness of the fittest individual in the population, which is simply 
the result of a larger initial sample, it does not affect the rate of 
fitness improvement.   
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3.5 Discussion 
The above results confirm that, whilst fixation duration is an 
appropriate fitness measure for use in IEC, its effectiveness is 
subject to the duration and number of presentations of sample 
individuals, as well as the underlying population size.  The 
improvements resulting from longer presentation durations are 
most likely the result of a longer final fixation, since participants 
tend to stop scanning the screen when they find an individual they 
consider to be closer to the target than they have seen before.  
This is comparable with a fixated gaze while pressing the 
selection button in a more traditional manual selection paradigm   
and results in a higher relative fitness score for the last fixated 
individual which, of course, manifests itself through an increase 
in the prevalence of its genes in the next generation.  This 
increased relative fitness seems to compensate for the increased 
signal-noise ratio in larger populations where fitness estimation is 
needed and consequently this effect virtually disappears for the 
smaller population.  This suggests some non-linear weighting of 
the fixation durations might be appropriate. 
The reduction in variance resulting from increased sampling is not 
surprising, since this also improves the reliability of the 
information, although the benefits were not fully realized in the 
larger population, suggesting sampling without replacement might 
be a better technique to use. 
A simple linear extrapolation technique was used to assign fitness 
to individuals that were not presented.  The effectiveness of this 
was constrained because the fittest individual presented represents 
a maximum fitness threshold for the generation.  As such, fitter 
individuals which are not presented are currently not properly 
rewarded which might explain the relatively low population 
averages; future versions of the algorithm will correct this along 
with a tournament selection, which is more appropriate in when 
the fitness function is not known [21] as well as introduction of 
reproduction operators more suited to evolutionary design  
The best fitness results show that in the search for a single 
optimal solution, larger populations improve performance.  This is 
a well documented result [6, 17], but this experiment clearly 
shows that it is not necessary to present the entire population in 
IEC, and with the quality of fitness data received from eye-
tracking, it is might not be necessary to invoke complex machine 
learning algorithms to exploit the information collected from a 
small sample of presented individuals. 

4. GENERAL DISCUSSION 
IEC is reliant on the ability of the user to assess the proximity of a 
presented individual to some notional optimal individual.  In the 
situation where this optimal individual can be visualized and 
retained in memory, this paper has shown that the use of 
oculomotor information, as indicator of observer attention, can be 
at least as effective as manual selection, with the added advantage 
of minimizing user fatigue through shorter presentation durations 
and sampling from a large underlying population.   
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    Key to graphs: 

 
 

Figure 8.  Expression of phenotypic characteristic for 
population sizes 8 and 96, presentation durations of 750ms 
and 1500ms and 1, 2 and 4 presentations per generation.  

Averaged over 10 trials, N = 1. 
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Average best individual - 750ms (N=1)
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       Key to graphs: 

 
 

Figure 9.  Expression of phenotypic characteristic for 
population sizes 8 and 96, presentation durations of 750ms 
and 1500ms and 1, 2 and 4 presentations per generation.  

Averaged over 10 trials, N = 1. 
 

Eye-trackers, such as the one used in these experiments, provide 
the opportunity for further development of the subjective fitness 
function to include other measures such as the order of fixations, 
the number of times the gaze returns to a specific individual and 
even changes in the pupil size during observation of the 
individuals.  The sequence order of fixations could be used to 
eliminate “pop-out” attentional effects as well as to enhance the 
fitness of the last location to be fixated, as this often represents 
the preferred choice of the user.  The number of returns to an 
individual could be useful assessing the strength of preference for 
one individual relative to the presented population as return 

fixations suggest the individual is being compared with other 
population members by the user.  It has been suggested that pupil 
diameter might provide an insight in to the strength of the user’s 
preference [22].  This would require all luminance and adaptation 
effects to be removed before it could be used, and as such requires 
further research before it could be applied. 
Repeated sampling of an individual improves the quality of the 
information obtained from it, as can be seen from the results of 
Experiment 2.  The current algorithm does not utilize this in 
estimation of fitness and so assumes the same degree of noise in 
all fitness values.  As sampling increases, so too does the potential 
to exploit this in the algorithm and implementation of such an 
enhancement might provide a control for some of the less 
consistent assessments of fitness which inevitably occur due to 
user fatigue, distractions or even blinking.  
An underlying assumption in the performance measurement of 
this algorithm is that proximity to target can be measured in terms 
of the number of white circles against a black background which 
are present in the evolved phenotype.  Whilst this is a valid 
measure, it became clear during executions of the experiment that 
participants tended to adopt more general strategies during the 
early generations to drive the evolution towards the target.  These 
strategies included searching for individuals with the most circles, 
regardless of colour, and searching for individuals with the most 
white shapes on a black background.  This suggests that IEC such 
as this might be able to exploit this through the introduction of a 
more sophisticated measure of similarity, perhaps by analyzing 
the fitness within each dimension and using this information to 
apply additional weight to the fitness scores for those phenotypes 
which show uni-dimensional convergence.  This approach would 
potentially result in a more rapid localization of the search, but 
probably only makes sense in a uni-modal solution space.  In 
multi-modal solution spaces, some form of Pareto optimization 
[17, 23] could be implemented. 
 

 
 

Figure 10.  Example of a generation 1 sample presentation 
(left) and generation 20 sample presentation (right).  

 
Figure 10 shows an example of a generation 1 presentation 
sample and a generation 20 presentation sample.  As has already 
been mentioned, the task of quickly searching the display for a 
definite preference becomes increasingly difficult as the 
population begins to converge.  This has the effect of increasing 
the noise in the user’s fitness assessment and explains why the 
rapid gains made in early generations flatten out in later 
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generations.  Additionally, in the example shown, the target 
individual already existed in the underlying population, but was 
never presented to the user.  These two problems could be 
addressed by introducing dynamic sampling and dynamic 
presentation durations.  As the population variance reduces, the 
sampling rate needs to increase.  As the sample variance reduces, 
the presentation duration needs to increase.  The effects of these 
enhancements will be the focus of future research. 

4.1 Conclusion 
Experiment 1 successfully employed an eye-tracker in the 
evolution of an aesthetically pleasing rectangle through IEC.  
Experiment 2 used an “evolve to target” paradigm to explore the 
performance of an evolutionary algorithm which uses fixation 
data captured by means of an eye-tracker to estimate the fitness of 
more complex individuals and assess the effects of varying the 
presentation duration, sample size and underlying population.  
Together these results firmly establish the appropriateness of the 
integration of attentional fitness drivers to the field of Interactive 
Evolutionary Computation and highlight some of considerations 
which must be addressed as part of any real-world applications of 
this technique. 
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