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ABSTRACT 
Scheduling collective communications (CC) in networks based on 
optimal graphs and digraphs has been done with the use of the 
evolutionary techniques. Inter-node communication patterns 
scheduled in the minimum number of time slots have been 
obtained. Numerical values of communication times derived for 
illustration can be used to estimate speedup of typical applications 
that use CC frequently. The results show that evolutionary 
techniques often lead to ultimate scheduling of CC that reaches 
theoretical bounds on the number of steps. Analysis of fault 
tolerance by the same techniques revealed graceful CC 
performance degradation for a single link fault. Once the faulty 
link is located, CC can be re-scheduled during a recovery period. 

Categories and Subject Descriptors 
I.2.8 [Artificial intelligence]: Problem Solving, Control Methods 
and Search – heuristic methods, scheduling. 

General Terms 
Algorithms, Performance, Design. 

Keywords 
Collective communications, communication scheduling, 
evolutionary design, interconnection networks. 

1. INTRODUCTION 
High performance computing platforms have been recently 
dominated by clusters of multi-core processor nodes [1] or by 
many cores interconnected by a NoC (Network on Chip). The 
basic requirement for building the HPC systems turned out to be 
the low power consumption, in order that system parts could be 
close together and communication time thus minimized. For the 
same reason the CPU cores should be simple and processing 
nodes should be interconnected directly, without intermediate 
switches and routers. A class of interconnection networks of 

interest in this paper covers therefore direct networks, which for 
performance-driven environments converge on the use of pipe-
lined cut-through (CT)/wormhole (WH) message transmission 
and source-based routing algorithms. 

In this paper, we want to analyze the complexity of collective 
communications in a class of networks whose size is equal or 
close to upper bounds known for the given node degree and 
diameter. Simply said, as many nodes as possible are connected 
by a regular network with a uniform node degree d (a d-regular 
network), with inter-node distance up to D. Systems of this sort 
are more compact than others and can support faster 
communications, too. As far as the authors know, performance of 
collective communications on such networks has not been studied 
as yet. The reason may be that, until recently [2], these networks 
have not been used in commercial systems. Contribution of the 
paper is in assessment whether the theoretical lower bounds of CC 
times are reachable at all or how close we can get to them. This is 
shown directly by designing (evolving) initial invalid schedules 
up to the optimal or sub-optimal valid (conflict-free) variants.  

Evolutionary techniques applied already to CC scheduling 
problem on hypercubes of medium size (tens of nodes) [3] were 
able to find optimum solutions obtained by mathematical means. 
However, for networks studied in this paper no analytic methods 
for scheduling exist. The results can be compared to theoretical 
lower bounds only. The paper is structured as follows. In Section 
2, Moore networks and networks close to them in size are defined, 
based on underlying graphs and digraphs. Section 3 specifies the 
scheduling problem for CC and presents an improved 
evolutionary algorithm for its solution. The results of CC 
scheduling in various network topologies are summarized and 
discussed in Section 4. Section 5 deals with fault tolerance of 
interconnection networks and possible recovery from a faulty 
link. Results obtained by evolutionary approach are discussed in 
Conclusion and possible future improvements are suggested. 

2. OPTIMAL DIAMETER-DEGREE 
NETWORKS 
Pair-wise (point-to-point) as well as collective (group) 
communications involving all processors are frequently used in 
parallel processing and their timing complexity has a dramatic 
impact on performance. Since processors are connected only 
sparsely, the message can reach a destination processor directly, if 
source and destination processors are neighbors, or else through 
some intermediate nodes. The communication time from issuing 
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the send request by one CPU until receiving data by another CPU 
represents an overhead of parallel processing which has to be 
minimized. The pipelined message transmission is considered 
only little sensitive to the source-destination distance; however, 
accumulating delays when traversing several nodes on the way 
should be minimized as well. Therefore the networks of diameter 
D connecting the maximum number of nodes N of the given 
degree d are of interest [4].  

The upper bounds on the number of P nodes with degree d > 2 
that can be connected into an undirected graph, shorty graphs (1), 
or directed graph, shortly digraphs (2), of diameter D ≥1 are 
known as Moore bounds [4]: 
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A regular graph of degree d and diameter D whose number of 
vertices equals the above upper bound (1) is Moore graph. If we 
exclude fully connected graphs with D = 1, there exist only a few 
such graphs: 

D=2: d = 3, P = 10 (Petersen graph) 

D=2: d = 7, P = 50 (Hoffman-Singleton graph)  

and no others with the possible exception d = 57 (which is still 
undecided). There are no Moore graphs with D ≥ 3 and no Moore 
digraphs either (disregarding trivial cases D = 1 or d = 1). 

Whereas all above Moore graphs have length of the shortest cycle 
(girth) five, the even girth (6, 8 and 12 only) can also be 
considered, what leads to the worse upper bound  
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and to generalized Moore graphs. Few examples follow: 

D= 2: d = 3, P = 6 (utility graph)  

D= 3: d = 3, P = 14 (Heawood graph) 

D= 4: d = 3, P = 30 (Levi graph). 

It is an open problem if there are infinitely many generalized 
Moore graphs of each degree. 

Since there are not many known Moore graphs, it is of great 
interest to find graphs which for a given diameter D and 
maximum degree d have a number of vertices as close as possible 
to the Moore bound. The largest known graphs and digraphs are 
listed in [4] and [5]. The more systematic approach has been used 
to design “almost” Moore graphs that miss the upper bound by a 
small number [4] or whose number of nodes approximates the 
upper bounds asymptotically. The best networks in the latter case 
are based on Kautz digraphs with P = dD + dD-1 nodes. Table 1 
gives all three upper bounds (1) – (3), the largest known graphs 
[4], Kautz digraphs and generalized Moore graphs, all with degree 
d = 3. It turns out that the largest known digraphs are Kautz 
digraphs and that digraphs (2) are potentially much larger than 
graphs (1). 

In the following sections we will try to derive communication 
schedules on the above graph topologies. Since there have been 
no optimum schedules published, we can make comparison only 
with the known theoretical lower bounds on communication 
complexity. These bounds will serve us as a target we want to 
come to as near as possible.  

Table 1. The size of graphs and digraphs with degree d = 3 
and diameter D 

D 2 3 4 5 6 7 
(1) 10 22 46 94 190 382 
(2) 13 40 121 364 1093 3280 
(3) 6 14 30 62 126 254 
[4] 10 20 38 70 132 192 
Kautz 12 36 108 324 972 2916 
Moore 10 14* 30* - - - 

 

* denotes a generalized Moore graph; digraphs are in bold 

3. CC SCHEDULING PROBLEM 
In this section we are going to analyze only the frequently used 
collective communications involving all processors: one-to-all 
broadcast (OAB), all-to-all broadcast (AAB), one-to-all scatter 
(OAS, a private message to each partner), and all-to-all scatter 
(AAS). Some other CCs, like all-to-one gather (AOG), have the 
same complexity as the basic four types. 

Each CC can be seen as a set of point-to-point communications. 
The CC scheduling problem can be simply described as 
partitioning this set into as few subsets as possible that follow one 
another in a sequence of synchronized steps; all communications 
in one subset proceed in parallel. The main goal is to avoid any 
conflicts in shared resources – links (channels). Several messages 
between source-destination pairs can proceed concurrently and 
can be combined into a single subset if their paths are link-
disjoint. If the source and destination nodes are not adjacent, the 
messages go via some intermediate nodes, but processors in these 
nodes are not aware of it; the messages are routed automatically 
by the routers attached to processors. 

The number k of bi-directional channels between the CPU and 
a router (ports), that can be engaged in communication 
simultaneously, has a decisive impact on the number of 
communication steps; 1-port (k=1) or all-port (k=d) models are 
most common, see Fig. 1. For the highest performance we will 
consider only the all-port model (k=d). 

local 
CPU port 

a) 

local CPU 
ports 

b) 
 

Figure 1. Port models for 3-regular networks  
a) one-port router b) all-port router 
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Regardless the graph topology, there are known theoretical lower 
bounds on the number of communication steps. The broadcast 
communication (OAB) in WH network cannot be done in less 
than s steps, where s = ⎡logd+1P⎤ is given by the number of nodes 
informed in each step, that is initially 1, 1+1×d after the first step, 
(d+1)+(d+1)×d = (d+1)2 after the second step, etc.,…, and (d+1)s 

≥ P nodes after step s. 

In case of AAB communication, since each node has to accept 
P−1 distinct messages, the lower bound is ⎡(P−1)/d⎤. A similar 
bound is applied to OAS communication, because each node can 
inject into the network not more than d messages in one step. P−1 
pair-wise communications, d of them per step, must be packed 
into the lowest number of steps in such a way that paths traversed 
in the optimum broadcast tree are edge-disjoint in each step. 

For AAS communication pattern each of P processor sends an 
individual message to each of P-1 partners. A lower bound for 
AAS can be obtained considering that one half of messages from 
each processor cross the bisection and the other half do not. There 
will be altogether 2 (P/2)( P/2) of such messages in both ways 
and up to BC messages in one step, where BC is the network 
bisection width [6]. In case of digraphs (graphs), BC is taken as 
the (double) the number of (un)directed edges crossed by the 
bisection. However, some Δ messages originating and terminating 
in either half of a network cross the bisection as well. This gives 
the bound (P2/2 + 2Δ)/BC communication steps, since Δ messages 
cross the bisection twice. Another bound that concerns AAS used 
to be applied to SF [14] routing only. If Σ denotes the sum of all 
shortest paths in a graph (from any source to any destination 
node) and if we can utilize only Pd channels in one step to avoid 
conflicts, then we cannot schedule AAS in less than ⎡Σ/Pd⎤ steps. 
We have found that for the considered class of networks this latter 
bound is stronger, even for WH routing. 

Table 2 summarizes the lower bounds for general graphs and 
numerical values for three 3-regular graphs (Petersen P10, Kautz 
K12 and Heawood H14). Of course, communication bounds for 
AAB and AAS cannot be ever shorter than those ones for OAB 
and OAS respectively, if it applies. 

Table 2. Lower bounds on complexity of CC in d-regular 
networks with P nodes  

CC CT (WH) P10 K12 H14

OAB ⎡log d+1 P ⎤ = ⎡(log P)/log (d+1)⎤ 2 2 2 

AAB ⎡(P – 1) / d⎤  3 4 5 

OAS ⎡(P – 1) / d⎤ 3 4 5 

AAS max[ ⎡(P2 /2+2Δ)/BC)⎤, ⎡Σ/(Pd)⎤ ] 5 7 8 
 

4. CC SCHEDULING ALGORITHM 
The selection of Evolutionary Algorithms (EA) for the scheduling 
problem has been justified already in [3]. Although a new 
methodology of designing near-optimal CC schedules is 
independent of the particular evolutionary algorithm, we restricted 
ourselves only to a simple EDA evolutionary algorithm without 
gene dependencies (UMDA) in this work. 

Univariate Marginal Distribution Algorithm (UMDA) [9] is a very 
simple EDA [12] (Estimation of Distribution Algorithm) which does 

not reflect any interaction between genes (variables/solution 
parameters). The main advantages of this algorithm are better 
mixing of genetic material than is possible in standard GA [13], 
very simple implementation and much faster execution than more 
complex EDAs like BOA (Bayesian Optimization Algorithm [12]) 
algorithm. Of course, any other EA can be employed. Basic 
comparison of a success rate and execution time of other types of 
EA applied to CC scheduling problem can be found in [10, 11]. 

This section describes, in more details, the elements of our 
evolutionary approach. Section 4.1 shows the global data structure 
and a preprocessing phase. Section 4.2 describes how the dataset is 
encoded, Section 4.3 presents the evaluation function used in EA 
and Section 4.4 briefly describes acceleration and restoration 
heuristics used to increase a success rate and reduce execution time 
required to reach a good result. Parameters of used EA (UMDA) are 
outlined in Section 4.5. 

4.1 Preprocessing Phase  
An input data structure maintains a topology description, a 
definition of CC and a set of senders and receivers. The topology de 
description is saved in the form of a neighbors list for each node, 
where the nodes are considered to be neighbors only if they are 
connected by a simple direct link.  

After an input file is loaded, the data have to be preprocessed. The 
preprocessor takes the topology description and finds all paths 
(shortest ones in the case of minimal routing) between all source-
destination node pairs and stores them into a special data structure. 
This task is performed by a modified well known Dijkstra’s 
algorithm. 

4.2 Encoding 
As broadcast and scatter CCs are completely different 
communication services, candidate solutions are encoded in separate 
ways.  

An optimal OAS schedule designed for 8-node bidirectional ring is 
shown in Fig. 2. This schedule reaches the lower bound of 4 steps. 
The initiator, node no. 0, informs two other nodes in each of the first 
three steps by means of some of the shortest paths found in the 
preprocessing phase. The last node is informed during the fourth 
step via one of two possible paths. 

 
Figure 2. An OAS schedule reaching the lower bound on 

number of communication steps. 

0 1 2 3

7 6 5 4

0 2 3

7 6 5 4

1

0 3

7 5 46

1 2 0 3

7 6 5 4

1 2

1st step 2nd step 
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A direct encoding has been designed for OAS/AAS chromosome; 
i.e. a chromosome contains an exact description of a schedule. 
The OAS chromosome corresponding to Fig. 2 is displayed in 
Fig. 3. The chromosome contains P genes; each one represents a 
particular point-to-point communication between the initiator and 
a destination node. A gene consists of two items:  a utilized path 
(the first component) and the used time step (the second 
component). 

An AAS chromosome is created by extending the vector to a 
matrix, each row of which corresponds to one of OAS 
communications.  

 
Figure 3. The structure of OAS chromosome for 8-node 

bidirectional ring 

An optimal OAB schedule designed for 8-node bidirectional ring 
is shown in Fig. 4. This schedule reaches the lower bound of 2 
steps. The initiator, node no. 0, informs nodes no. 3 and 6 in the 
first step (solid arrows). Since the distributed messages are the 
same for all nodes, these three nodes can become initiators for the 
second step, such nodes no. 7 and 5 receive the message from the 
node no. 6, nodes no. 2 and 4 form the node no. 3, and finally 
node no. 1 from the node no. 0. 

 
Figure 4. An OAB schedule reaching the lower bound on 

number of communication steps  

An indirect encoding has been designed for OAB; a chromosome 
does not include a broadcast tree, but only instructions how to 
create it. Each chromosome consists of P genes, one for each 
destination node, see Fig. 5. Individual genes are composed of 
three items: a source node index for this destination, the index of 
the used path, and a step number. 

The main disadvantage of this encoding is possible formation of 
some inadmissible solutions during the process of genetic 
manipulation. We say that a solution is inadmissible if it cannot 
lead to a correct broadcast tree. E.g. the situation when in a 
certain step a node should receive a message from a node that has 

not received it yet (e.g. node 2 from node 1 in the first step). That 
is why admissibility has to be verified for each chromosome 
before evaluating fitness and if it is necessary, the chromosome is 
restored. The AAB chromosome is then a collection of P OAB 
chromosomes, a kind of a matrix chromosome. 

 
Figure 5. The structure of OAB chromosome for 8-node 

bidirectional ring 

4.3 The Conflict Counting Fitness Function 
The main idea of fitness function is based on testing a conflict-
free condition. We say two communications are in conflict if and 
only if they share the same channel in the same communication 
step (see Fig. 6). The fitness function is based on counting 
conflicts between all point-to-point communications realized in 
the same steps. The valid communication schedule for a given 
number of communication steps must be conflict-free. Valid 
schedules are either optimal (the number of steps equals the lower 
bound) or suboptimal. Evolution of a valid schedule for the given 
number of steps is finished up as soon as fitness (number of 
conflicts) drops to zero. If it does not do so in a reasonable time, 
the prescribed number of steps must be increased. 

conflict conflict free 

 
Figure 6. Two point-to-point communications  

4.4 Acceleration and Restoration Heuristics 
New heuristics have been developed to improve OAS/AAS 
optimization speed taking into account a search space restriction 
due to a limited message injection capability of network nodes. 
Because no node can send more than k messages in one 
communication step (k-port model), an acceleration heuristic 
checks this condition in the whole chromosome and redesigns 
port’s utilization in all communication steps before the fitness 
function is evaluated.  

The second OAS/AAS heuristic replaces the mutation operator in 
an employed EA. It randomly swaps time slots of two point-to-
point communications. These simple heuristics dramatically 
decrease the initial conflict count and lead to the better 
convergence of EA.  

0 0 1 ……. 0 0 0 6 0 1 

0 1 7 

destination node step number 

message source path index           gene        
(p2p communication)

2nd step 1st step 

0 

1 5

3 

2 

6

4 7

 
OAB schedule OAB broadcast tree
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7 6 5 4 

          gene        
(p2p communication) 
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0 0 0 1 4 0 

destination node 

 path index step number 
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New heuristics for OAB/AAB chromosome restoration have been 
also developed and employed. The restoration (a repair of the 
broadcast tree) proceeds in subsequent communication steps. A 
check is made for every node whether the node receives the 
message really from the node already informed. If not so, the 
source node of this point-to-point communication is randomly 
replaced by a node that has already received the message. A 
change of the source node has naturally an impact on utilized 
channels. Hence the original path is replaced by newly chosen 
one from a list of exploitable paths between new source-
destination pair. 

To accelerate the convergence of the EA, an OAB/AAB specific 
heuristics have been developed. The first optimization injects 
good building blocks into the initial population. For all point-to-
point communications of OAB, the time slot is set initially to the 
same value (step no. 0). By selecting correct time slots, the 
restoration heuristic produces corrected broadcast trees that 
violate the conflict-free condition in much fewer cases. 

The second heuristic is based on the search space pruning, and 
incorporated into the restoration heuristic. If for a given topology, 
this formula for lower bounds #(AAB steps) > #(OAB steps) is 
valid, AAB can be performed as a controlled flood; all processors 
send their message only to uniformed neighbors. In each steps, 
messages are propagated in waves through the interconnection 
network. This feature of the interconnection network and AAB 
communication can be employed with advantage for pruning of 
the search space. The set of possible receivers of broadcast 
message in a step can be restricted only to nodes within a given 
radius 2/,1 Dr∈ . This restriction leads to a massive reduction 

of possible engaged shortest paths (alleles for the second gene’s 
component). The suitable radius value is chosen according to a 
character of the interconnection network; for symmetric 
interconnection networks r=1. Generally, the lower values of 
radius lead to faster convergence, but in some cases it is necessary 
to choose larger values (D/2 in the case of OAB communication) 
to ensure retrieval a purposeful schedule. 

As a consequence of the reception restriction, the restoration 
heuristic has to be modified. In a process of building the 
broadcast tree, it can happen that there is no node that can inform 
a selected node in a given communication step. In this case, the 
communication has to be postponed to the later time slot, where at 
least one possible source of broadcast message already exists. In 
some cases this postponement can cause a number of 
communication steps is in excess of the requested maximum. This 
situation is handled by a penalization function. The amount of 
penalty is given by the sum of all point-to-point communications 
running over the prescribed maximum number of steps. Finally, 
this value is added to the conflict count computed by the fitness 
function. 

4.5 Parameters of EA 
The simple UMDA evolutionary algorithm has been used for the 
search for near optimal communication schedules. The value of 
the population size was set to 60 individuals because higher 
values did not improve the quality of founded schedules and did 
not justify an increased computation time. The binary tournament 
selects the better half of the current population to form the parent 
subpopulation. The univariate marginal probabilistic model is 

created according to the parent subpopulation in each generation. 
New chromosomes are generated by the sampling of the estimated 
probabilistic model. Each chromosome is mutated by a simple 
mutation operator with probability of 90%. This operator is 
responsible for testing and changing possible source-destination 
paths for particular point-to-point communications. The mutation 
rate is very high due to great number of source-destination pairs 
(thousands) whose amount growth exponentially with network 
diameter D. Finally, the newly generated solutions replace the 
worse half of the current population.  

5. RESULTS OF EVOLUTIONARY 
OPTIMIZATION 
The evolutionary algorithm described previously has been applied 
to several networks that either already found the commercial 
application (such as scalable Kautz networks, [2]) or are potential 
candidates e.g. for NoCs (like non-scalable Petersen (P=10) or 
Heawood (P=14) networks, Fig. 7). 
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Figure 8. Kautz network with d = 3 and D = 2 

As for the 12-node Kautz network (Fig. 8), number of steps in all 
four CCs is equal to the lower bound and cannot be improved any 
more. The resulting schedules are presented only for the most 
complex all-to-all communication patterns in Table 3 and 4. Some 
empty slots in Table 3 show that not all links are used in every 
step of AAS. On the other hand, the lower bound for AAB is very 
tight (12/3=4 steps) and indicates that all the links are busy in all 
4 steps.  

Let us note that the presented solution is not unique, several 
solutions have been found both for AAS and AAB patterns. 
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Table 3. AAS in 7 steps on Kautz12 network  

steps    → 
src 1 2 3 4 5 6 7 
0 9 2,4,5 3,7,A 6,B 1   8 
1 7,9 2,A 0,5,8 3 6 4,B   
2 7 1,3,8 4,9 0 5,B 6,A   
3   1 0,B 8 5,9 2,4,7 6,A 
4 A 0,6 1,8   3,B 2,5,9 7 
5 4,B 0 A 7,8 2 6,9 1,3 
6 2,5 0,4 1 A 8,9 3,7 B 
7 0,1,A 6   3,9 8 5,B 2,4 
8   2 9,B 1,7,A 4 3 0,5,6 
9 6,A 7 2,4 5,8 0,3,B 1   
A 1,7,B 8 3,6 2,5,9   4 0 
B 5,6   0,2 A 4,7 1,3 8,9 

 

Table 4. AAB on Kautz12 network in  
4 steps (x : message does not move) 

src id 
/msg  

three subtrees broadcasting 
source message 

01=0 0-3-1 
0-3-2 

0-4-x-x-9 
0-4-x-x-A 
0-4-x-x-B 

0-5-x-6 
0-5-x-x-7 
0-5-x-x-8 

02=1 1-6-3 
1-6-4 
1-6-x-x-5 

1-8-A 
1-8-x-9 
1-8-x-B 

1-x-7-0 
1-x-7-x-2 

03=2 2-9-8 
2-9-x-6 
2-9-x-7 

2-A-5 
2-A-x-4 
2-A-x-x-3 

2-B-1 
2-B-x-0 

10=3 3-0-4 
3-0-5 

3-1-8 
3-1-x-6 
3-1-x-7 

3-2-9 
3-2-A 
3-2-B 

13=4 4-9-6 
4-9-7 
4-9-x-8  

4-A-x-3 
4-A-x-x-5 

4-B-x-x-0 
4-B-x-x-1 
4-B-x-x-2 

12=5 5-7-2 
5-7-x-x-0 
5-7-x-x-1 

5-x-6-x-3 
5-x-6-x-4 

5-x-8-A 
5-x-8-x-9 
5-x-8-x-B 

21=6 6-3-x-0 
6-3-x-1 
6-3-x-2  

6-4-9 
6-4-x-A 
6-4-x-B 

6-x-5-7 
6-x-5-8 

20=7 7-0-x-4 
7-0-x-5  
7-0-x-x-3 

7-2-x-9 
7-2-x-A 
7-2-x-B 

7-x-1-x-6 
7-x-1-x-8 

23=8 8-9-x-x-6 
8-9-x-x-7  

8-A-3-x-0 
8-A-x-5 
8-A-x-x-4 

8-x-B-1 
8-x-B-2 

32=9 9-6-x-3 
9-6-x-4 
9-6-x-5  

9-7-0 
9-7-x-1 
9-7-x-2-B 

9-8-x-x-A 

31=A A-3-0 
A-3-x-x-1 
A-3-x-x-2  

A-4-B 
A-4-x-9-8 

A-5-7 
A-5-x-x-6 

30=B B-1-6 
B-1-x-8 
B-1-x-x-7 

B-x-0-3 
B-x-0-x-4 
B-x-0-x-5 

B-x-2-x-9 
B-x-2-x-A 

 

As the Kautz network is known for its fault tolerance, we have 
also tested performance degradation under a single link fault. A 
fault diameter of the Kautz12 network is D+2, meaning that 
among multiple links between any two nodes the longest path is 
4. The network performance under a single link fault is given in 
Table 5 (with node 01 as the source node for OAB and OAS), but 
the network could operate even under a double link fault. In any 
case, when the link fault is detected, the new schedule could be 
computed in 20 seconds on a single processor and then the cluster 
could continue with a lower performance. 

Table 5. Performance of Kautz12 network with a single faulty 
link (in # steps). A reduced performance is in bold. 

Link  OAB AAB OAS AAS 
No fault 2 4 4 7 
01-10 3 6 6 9 
01-12 3 6 6 9 
01-13 3 6 6 9 
02-20 2 6 4 9 
02-21 2 6 4 9 
02-23 2 6 4 9 
03-30 2 6 4 9 
03-31 2 6 4 9 
03-32 2 6 4 9 
10-01 2 6 4 9 
10-02 2 6 5 9 
10-03 2 6 5 9 
12-20 2 6 4 9 
All other 2 6 4 9 

 

Other network topologies investigated in this study have been 
Octagon [8] and 16-gon with D=2 and 3 and with d=3. The results 
are summarized in Table 6, together with uni- and bi-directional 
rings and a hypercube for comparison. Two integers in one cell 
separated by a slash indicate that the lower bound (a smaller 
integer) has not been reached. A single integer represents both the 
lower and the upper identical bounds reached by EA. An asterisk 
(*) indicates the fact that a non-minimum routing has been used; 
otherwise the minimum routing is used everywhere else. 

Table 6. Performance of selected networks (in steps) 

all-port model d OAB AAB OAS AAS 
Ring 8 1 3 7 7 16 
Ring 8 2 2 4 4 8 
Octagon 8 3 2 3 3 4 
Petersen 10 3 2 3 3 5 
Kautz 12 3 2 4 4 7 
Heawood 14 3 2 5 5 9/10 
16-gon 3 2 5 5 13/17 
Levi 30 3 3 10 10 28/31 
Hypercube 32 5 2 7 7 16 
Kautz 36 3 3 12 12 * 31/34 

 

In the simplest linear time model of CT (WH) communication in 
distributed memory systems, the real CC times can be obtained as 
a sum of communication steps, each step composed of a start-up 
delay plus the serialization delay m t1  
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where m is a message length (in bytes) and t1 per byte transfer 
time. Start-up latency t0 is the sw- and hw-based latency in the 
source and destination nodes for initializing the cache-to-cache or 
memory-to-memory DMA transfer and includes possible 
synchronization overhead. The hardware overhead in routers 
along the traversed path has been neglected in (4). Contention for 
links is associated delays are completely avoided in our 
schedules. 

For example a duration of one communication step in CC for 
typical cluster parameters [7] t0=1 μs, t1= 0.5 ns/byte and the 
message size 1024 byte has the value of 1.512 μs and the 
resulting CC times range from 4.54 μs (3 steps) up to 55μs (34 
steps). According to frequency of CCs and an amount of 
interleaved computation in a certain application, efficiency of 
parallel processing can be estimated. 

Table 7 shows average execution times of the EA during 5 
successful runs. For OAB communication, the values are less than 
one second for simple network topologies. The longest execution 
time (hypercube-32) is about 41 seconds. OAS communication is 
relatively easy; a solution takes always less than one second. On 
the other hand, a suitable solution for all-to-all communication 
takes much longer time, especially for AAS communication. An 
exponential increase of the execution time with network can be 
observed. 

All experiments were realized in sequential manner on IBM Blade 
servers equipped with 2x dualcore AMD Opteron 275 processors 
and 4GB RAM.  

Table 7. Execution times of EA in seconds, minutes, hours and 
days (average values during 5 successful runs) 

all-port model d OAB AAB OAS AAS 
Ring 8 1 <1s <1s <1s 5m6s 
Ring 8 2 <1s <1s <1s 57s 
Octagon 8 3 <1s <1s <1s 2s 
Petersen 10 3 <1s 2s <1s 12s 
Kautz 12 3 <1s 3s <1s 23s 
Heawood 14 3 <1s 5s <1s 9m17s 
16-gon 3 3s 1m41s <1s 22m36s 
Levi 30 3 3s 2h2m <1s 1d6h 
Hypercube 32 5 41s 28m38s <1s 4d5h 
Kautz 36 3 20s 9h50m <1s 3d5h 

 

6. CONCLUSIONS 
It is seen from the results, that for the networks of interest in this 
paper, the obtained upper bounds are mostly close or equal to 
theoretical lower bounds. The only exception is AAS 
communication in larger networks, where the lower bounds are 
apparently too tight. In fact, the obtained numerical results have 
led us to an improvement of theoretical lower bounds for AAS 
communication. The lower bound for AAS and WH networks in 
wide use has been [6], [14] 
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For orthogonal topologies such as hypercubes, the correction is 
not needed as Δ=0 and two expressions the maximum is sought of 
are equivalent. However, for other networks is the inclusion of the 
correction essential and may change the bound dramatically. E.g. 
for Kautz12 network the lower bound has changed from 3 to 7 
steps. The following Table 8 gives the old and new values of 
lower bounds, as well as all relevant parameters of the networks. 
(The number of nodes is given at the name of the network). The 
correction in bold digits has a dominant impact on the bound. If 
both corrections are in bold, they have the same influence. 

Table 8. Old (5) and new (6) lower bounds on the number of                          
AAS communication steps 

 all-port model d Bc 2Δ Σ (5) (6) 
Ring 8 1 2 0 128 16 16 
Ring 8 2 4 0 128 8 8 
Octagon 8 3 12 8 88 3 4 
Petersen 10 3 14 20 150 4 5 
Kautz 12 3 24 80 228 3 7 
Heawood 14 3 14 8 378 7 9 
16-gon 3 20 48 624 7 13 
Levi 30 3 22 76 2520 21 28 
Hypercube 32 5 32 0 2560 16 16 
Kautz 36 3 72 720 3252 9 31 

 

From all optimal diameter-degree networks, Kautz networks 
promise the best scalable performance, even though the node 
count can attain only a few values. However, the performance can 
be fine-tuned by the number of processors per node. Inter-node 
CC is then implemented by message passing, whereas intra-node 
CC can utilize either a synchronized access to the shared L2 
cache by threads or again passing messages among processes [2]. 
CC schedules designed by the presented evolutionary technique 
are targeted for micro-programmed DMA engines residing in 
nodes of the network. They can be easily re-programmed in case 
of a link failure so that CC can sustain the highest possible 
performance even under limited connectivity. 

Some of the found CC schedules attain the theoretical lower 
bound on the number of communication steps and thus there is no 
way to improve them further. Future research may reveal limits 
on a size of networks that can be handled by parallel 
implementation of evolutionary techniques. Another direction for 
future research could explore a combining model for CC on Kautz 
networks or generalize the obtained results for Kautz networks 
with fat nodes. A router architecture and local (intra-node) 
communication could also be a subject of future optimization. 
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