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ABSTRACT

In this paper, we report on work done evolving Bayesian
Networks with Genetic Algorithms. We use a Chain Model
GA [19] to induce a Bayesian network model for the real
world problem of Prostate Cancer management. Bayesian
networks can and have been used in a wide range of complex
domains, notably in medicine. In fact, they have shown
powerful capabilities in representing and dealing with the
uncertainties generally inherent in the clinical practice. In
this study, we investigate those capabilities by testing the
evolved model’s predictive power and exploring its potential
use as a more versatile alternative to the widely used Partin
tables for prostate cancer pathology staging.

Categories and Subject Descriptors

1.2.8 [Artificial Intelligence|: Problem Solving, Control
Methods, and Search - heuristic methods; 1.2.6 [Artificial
Intelligence]: Learning; 1.2.1 [Artificial Intelligence]:
Applications, Medicine and science

General Terms

Algorithms, Performance, Experimentation

Keywords

Genetic Algorithms, Bayesian Networks, Greedy Search, Med-

ical Decision Support, Real-World Applications

1. INTRODUCTION

Prostate cancer is the second most common cause of can-
cer death in men, after lung cancer. It is the most common
cancer among men in the United Kingdom [3]. Although
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little is known about its direct causes, a set of risk factors
and associations have been empirically observed. These in-
clude patients’ serum Prostate Specific Antigen (PSA) level,
digital rectal examination (DRE) finding, age, race, family
history, health status etc. Patients may or may not present
with any symptoms. The symptoms vary from some lower
urinary tract symptoms to back pain and anemia in ad-
vanced cases. Some of these may be associated with benign
conditions e.g. benign prostatic hyperplasia or prostatitis
instead of prostate cancer. The same applies to serum PSA
level which may be elevated in these benign conditions. Lack
of a specific test may result in unnecessary investigations
including invasive procedures e.g. prostate biopsy associ-
ated with possible complications. Diagnosed patients usu-
ally undergo further staging investigations to decide on the
most appropriate treatment based on current available evi-
dence. All treatments are associated with possible side ef-
fects. For simplification, the four main types of treatment in-
clude watchful waiting, hormone therapy, radiotherapy and
surgery. The clinicians have to partition and traverse a vast
space of parameters e.g. PSA level, DRE finding, symp-
toms, age, general health status etc to decide on the most
appropriate management plan for each individual patient.
In some cases, this is unclear and may result in over treat-
ment. It is this uncertainty surrounding the disease that
makes the prostate cancer an attractive area for AI medical
decision support.

In this paper, we are interested in the use of evolution-
ary algorithms in order to evolve Bayesian Networks for as-
sisting some parts of this medical decision making process
for prostate cancer management. In particular, we investi-
gate the potential of these evolved networks in improving on
Partin tables or nomograms, currently used to assist urolo-
gists in predicting the extent to which the disease has pro-
gressed. In the next section we will give more details on the
main indicators considered for prostate cancer management
and explore the patient journey. In Section 3, we intro-
duce the Bayesian networks formalism and our evolutionary
algorithm technique for inducing these networks from the
prostate patient data. We also describe how we make use
of this technique for prostate cancer management. Section
4 describes our experiments with patient data and presents
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our results. Implications of these results and possible appli-
cations are discussed in Section 5. In Section 6 we conclude
with a brief outline of future work.

2.

Generally a prostate cancer patient goes through a long
disease journey filled with uncertainties. A general view
of this journey is depicted in Figure 1. Recovery depends
mainly on the stage of the disease and the health status
of the patient. Prostate cancer is often slow growing and
therefore patients may die of old age before the cancer has
even spread. However, early diagnosis and an appropriate
management plan taking account of the stage of the disease
and other factors including the health status of the patient
are paramount to both survival and good quality of life with
the disease.

There may be no symptoms in the early stages of the disease,
therefore regular check ups are crucial. An elevated serum
PSA level and an abnormal DRE finding are suspicious of
prostate cancer. With these findings, patients usually un-
dergo ultrasound scan guided prostate biopsy. The biopsy
confirms the diagnosis and tumour grading which provide
the expected biology aggressiveness of the disease and this

PROSTATE CANCER PATIENT JOURNEY
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was shown to be an important prognostic factor of the dis-
ease. Gleason score is the most commonly used grading
system in prostate cancer [20]. Based on these results, the
patient may undergo further staging investigation e.g. MRI
scan or isotope bone scan to establish the extent of the dis-
ease. This extent of the disease is then categorized according
to the TNM classification of malignant tumours [28]. The
individual case is then discussed at a multidisciplinary meet-
ing in which decision on recommended treatment options is
made based on many parameters. The patient is then coun-
seled and a treatment option is finalized. It is important
to choose the most appropriate treatment plan with proper
follow up measures for each individual patient based on in-
dividual circumstances.

3. BAYESIAN NETWORKS FOR PROSTATE
CANCER MANAGEMENT

The use of Bayesian networks in medicine flourished in
the age of expert systems in the 1970s. The probability
based nature of medical decision making is inherent in these
networks and therefore fits well with the way medical prac-
titioners work. An example Bayesian Network based expert
system is the Pathfinder/Intellipath system which was de-
veloped at Stanford to provide assistance with identifying
disorders from lymph-node tissue sections [17]. Although,
one can find various work on the use of Bayesian networks
for the diagnosis and prognosis of various pathologies in-
cluding various cancers, work on prostate cancer tends to
be centered toward using traditional statistical techniques or
using artificial neural networks. On the latter, recent work
was carried out at the John Hopkins Hospital by Crawford et
al [14]. The research resulted in what is called the Prostate
Calculator which, given some inputs on patient disease in-
formation, outputs some diagnosis and staging probabilities
for the patient. Other applications of ANNs for prostate
cancer can also be found in [11,32]. In this paper we ex-
plore the potential use of Bayesian networks for prostate
cancer management. The white box nature of these net-
works assisted by their simple graphical representational as-
pect, should give us a more intuitive insight into the disease
and its management. First, we briefly review key ideas in
Bayesian networks.

3.1 The Bayesian Network Formalism

Bayesian Networks (BN) are probabilistic models useful
for reasoning with, or representing knowledge under uncer-
tainty. Essentially a BN can be defined as a pair (G, P).
Here, G is a Directed Acyclic Graph (DAG) G = (V,E)
with the vertices V' as the nodes in the network. Each node
represents a random variable X; relevant to the problem
domain and P = P(X) is the joint probability distribution
of those variables. The dependencies among these variables
are represented by the the set of edges E in the underlying
DAG providing the following useful factorization of P(X):

n

[T P(xilPa(Xi))

i=1

P(X1,X2,...,Xn)

(1)

with Pa(X;) as the set of parent nodes for node X;. To
exploit the power of Bayesian Networks in knowledge rep-
resentation and inference, they first have to be constructed
for the given domain. There are two parts to fully spec-
ifying a Bayesian network. We have to define both the



Directed Acyclic Graph (DAG) structure representing the
network and the underlying conditional probability distribu-
tion. This can be done manually given an extensive knowl-
edge or study of the problem domain, or automatically from
problem domain data. Where the former approach can be
very time consuming and not always possible especially for
domains where a great deal of uncertainty exists, numer-
ous algorithms have been developed to empirically induce
the networks from data instead. These algorithms gener-
ally fall into two categories: Search and Score methods and
Conditional Independence Testing methods. The latter is
a constraint based approach which relies on a number of
statistical tests to determine whether two variables are in-
dependent or dependent given a set of conditioned variables.
Tests such as Pearson’s Chi-Square and mutual information
are often used. Work by de Campos [10] and Spirtes and
Glymour’s PC algorithm [29] illustrate this. This approach
tends to give good results with sparse networks and small
samples of data however it does not scale very well for large
datasets and dense networks.

Learning Bayesian Networks is an NP-hard problem [4]. The
number of possible Bayesian network structures for a given
problem grows super exponentially given the number of vari-
ables in that problem. Robinson [27] quantifies the number
as O(n!2)) for a problem of size n. So where a 3 variable
problem would have 25 possible networks, a 5 variable prob-
lem would have 29,281 and a 6 variable problem would have
3,781,503 possible networks. This makes exact methods for
structure discovery impractical and seldom used without
imposing a great deal of restrictions [21]. The search and
score approach relies on approximate methods and involves
searching through the space of possible network structures
for one that best describes the data. An information cri-
terion to measure the goodness and differentiate between
candidate structures met while traversing the search space
is employed. The goal is to maximize this information mea-
sure or score by moving from one structure to another by
means of some local variation such as a deletion or an ad-
dition of a link between two nodes and then evaluating the
overall effect of the move. After a number of iterations, an
optimal score is found and the associated network is then
chosen to represent and explain the data. Examples of work
done in both score functions and search algorithms used for
this purpose can be found in [1,2,6-8,13,18].

3.2 Genetic Algorithms for Learning the Baye-
sian Network model

Staying within the scope of the search and score approach
and in order to avoid getting stuck in local optima and ex-
plore the networks’ search space better, work has been car-
ried out looking into methods which consider a group of
network structures at a time rather than a single structure.
A scoring function is used to evaluate the current group
(or population of structures) from which a new and better
population is created and then evaluated and so on until a
set stopping criteria is reached. A range of such algorithms
have been proposed. Mainly they are based on evolutionary
algorithms such as genetic programming [31] and genetic al-
gorithms [16,22,30].

In this work, we propose using the Chain-Model Genetic
Algorithm (chainGA) described in [19]. This algorithm has
shown promising results in terms of speed and efficiency as
well as suitability for decision making diagnostic networks.

1549

>{ Population
Evaluate
i !
; |
If fitter than X1X2X3X4 ’@‘@’@ score i
worst f X2X3xixa —> @’Q ;
individual  |! X1X4X3X2 }
Insert in !
lati i |
population H assign fitness !
|
!
; ‘ Selection ‘
!
Crossover Breed
One [}
offspring Mutation

End of Evolution

Xixaxaxq _ K2Search

=y £\°

Figure 2: Chain Model GA for Learning Bayesian
Networks

chainGA works by evolving a population of Bayesian net-
work topological node orderings. At each evaluation step,
a chain structure® of the given ordering is constructed and
evaluated using the Cooper and and Herskovitz metric [7].
The orderings then assume the fitness returned by their as-
sociated chains and are evolved, crossed over and mutated
for a predefined number of generations. At the end of each
run, the K2 greedy search algorithm [7] is run on a percent-
age of the best orderings found in order to search for the
best network structure. It can be seen that the low reso-
lution evaluation of chain structures acts as a pre-selection
phase where orderings with inferior scores are rejected and
those with promising scores are preserved for breeding.
The greedy search K2 algorithm used here was proposed by
Cooper and Herskovitz [7]. The algorithm assumes that a
priori, all structures are equally likely and that cases in the
data occur independently and are complete. Moreover, it
assumes the presence of a node ordering and imposes a max-
imum number of parents a node can have (inbound edges).
With these conditions satisfied, K2 starts with an empty an-
cestor set for each node and incrementally adds links that
maximize the score of the resulting structure. The algo-
rithm stops when no more ancestor node additions improve
the score. K2 was originally used along the CH score which
captures the probability of a candidate network structure
Bs given a set of data D. Formally the discrete probability
P(Bs, D) is given by

P (Bs,D) =

n—l
HH N _|_7.Z_1|HN7«J’€ (2)

11]1

Where ¢; denotes the number of possible different instances
the parent of variable X; can take. r; is the number of values

!The chain structure here is defined by the simple network
with an outgoing edge from each node to its immediate suc-
cessor in the ordering.



X has, Njji, denotes the number of cases in the dataset D
in which X; takes value k of its x; instance when its parent
Pa; has its jth value. N;; is the sum of all Ny for all
values z; can take. The use of the chain structures reduces
computation time since the number of links to evaluate is
fixed in contrast to K2. The best scoring Bayesian network
is chosen to be the optimal model to represent the data in
hand. The chainGA framework is illustrated in Figure 2.

3.3 The Data

For this work, we build our model from data which was
collected in collaboration with the Aberdeen Royal Infir-
mary (ARI), Scotland. A cohort of 320 patient cases was
assembled. The collection consists of retrospective data of
patients diagnosed and treated for prostate cancer in the
ARI over a period of two and a half years 2002-2004. The
patient records include data that depict the different stages
of the disease management process. It varies in its nature
and is both qualitative and quantitative. The qualitative
data includes most of the patient personal information such
as their occupation, location, as well as the additional in-
formation in form of free text, such as further comments
on past medical history, on the results of the scans and of
the patient’s diet. It also includes Yes and No data such
as presence of family history of the disease, a history of
respiratory disease, etc. The quantitative data available is
present in different formats: discrete values, such as age and
the International Prostate Symptoms Score (IPSS); continu-
ous values such PSA level and prostate volume; percentages
such as percentage cancer cells present in biopsied tissues,
categorical and ordinal data such as the DRE result and
treatment options. Table 1 illustrates some examples. In
this study, we choose to learn our network model over the
discretized domain and therefore the continuous variables
utilized are descritized prior to use. Although this might
limit the preciseness in capturing the characteristics of the
distribution of our continuous data, it allows us to learn
a model that can be efficiently used for inference and op-
timal decision making [12]. Moreover, in the case of our
medical problem at hand, the discretization process carried
on some variables such as PSA values follows an intuitive
and problem-specific discretization provided by the medical
experts or domain literature. Some variables such as age,
Gleason score, and others were also banded into suitable
categories reflective of the expert knowledge of the disease.

4. EXPERIMENTAL RESULTS

Following the steps of the chainGA algorithm described
above, we build our Bayesian network model that represents
the data we have collected so far. For the purpose of this
work, we only include a selection of the factors collected
for each patient. In this case, 37 variables or factors are
taken into consideration. These are illustrated in Table 2.
The choice of factors was made on the basis of importance
and on the extent of the actual amount of data available.
For some prostate cancer patients, certain information is
deemed sensitive or is for other reasons not collected. The
37 variables chosen span the collected patient database and
characterize each stage of the patient journey from diagnosis
to treatment and aftercare.

Our chainGA algorithm implementation was run 50 times
with 100 generations containing a population of 10 network
individuals at each time. Mutation and crossover rates were
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0.1 and 0.9 respectively. The best scoring resulting network
was then chosen as the optimal model for our problem at
hand. Figure 3 illustrates this Bayesian network model (Ge-
Nle snapshot [15]). As described earlier, the nodes in the
network represent the factors in our problem and the links
or edges between these nodes represent the relationships and
dependencies between these variables. At first glance, one
can already see some intuitive relationships formed in the
model. For example, there is strong interaction between the
values of PSA, DRE and Gleason score nodes and in turn
the PSA node has an interaction with the node representing
the decision to SCAN. In a Bayesian network, the direction
of the arrows indicates the direction of variable dependency
in the conditional factorisation but not necessarily causality.
For example, the decision to SCAN is temporally dependent
on PSA and DRE tests. In fitting Bayesian networks, there
will always exist equivalent networks that have the same
score while reversing some arrows. Such equivalent networks
represent the same information regardless of the direction of
the arrows. An account of equivalence classes in Bayesian
networks can be found in [5,26].

S. INFERENCE: APPLICATION AND USES

OF THE BAYESIAN NETWORK MODEL

Once the structure for the Bayesian network is discovered
and the probability distribution associated with it identified,
the model can be used extensively not only for describing the
existing relationships between the variables in our problem
environment, but also for inferential exploration of any un-
determined or hidden relationships among these variables.
The idea is to update the probabilities of outcomes based
on the relationships in the model and the evidence known
about the situation at hand. Evidence about recent events
or observations is applied to the model by instantiating or
clamping a variable to a state that is consistent with the
observation. The propagation of that evidence is then per-
formed to update the probabilities of all the other variables
that are connected to the variable representing the new evi-
dence. After the inference, the updated probabilities reflect
the new probabilities of all possible outcomes coded in the
model. So, for prostate management in this case, with such
a model, we would be able to not only answer a whole range
of questions about the patient and his disease but also to
get a very useful insight into a prostate cancer patient jour-
ney assisting us therefore in making decisions throughout
this journey from diagnosis to treatment and aftercare. In-
vestigation with our collaborators from the ARI has high-
lighted a range of important questions medical practitioners
can address using this model, which we discuss in the next
sub-sections.

5.1 Diagnosis and Early detection

Patient age and PSA levels are generally the first indica-
tors medicals expert have to analyze to determine whether
a patient has prostate cancer or not. However the PSA test
suffers from false positives and therefore other information
is needed to consolidate this result. To use the learnt model
for diagnosis, a hasCancer? node can easily be introduced
in the network where every known piece of information on
the patient would help us predict the probability of the pa-
tient having cancer or not. The proliferation and availabil-
ity of patient information stored nowadays also means more
peripheral factors not used before such as patient diet for



Data Item and example

Qualitative Occupation: Fisherman
Other Medical History: Renal failure
Any Family History of PC: Yes
Quantitative Age: 78
PSA: 1234

Gleason Score: 3+4
Tissue Involved: 30%

Other data (Categorical/ordinal)

DRE: Suspicious

Tumour(TNM): T1la
Recommended Treatment: Radical prostatectomy

Table 1: Nature of Data Available

Patient Age

Family History

PHS (Patient Health Score)

DRE(Digital Rectal Examination)

PSA

1PSS

PSAD (PSA Density)

Gleason Score

Scan (MRI- CT or Bone scan)

Tumour (none, bilateral, right etc.)

Metastasis (yes or no)

Staging Tumour (of the TNM system)

Staging Node

Staging Metastasis

Recommended Treatments

Treatment received by patient

PSA Progression (After treatment)

Death?

Prostatectomy (Retropubic or perineal)

Pathology Tumour (after prostatectomy)

Pathology Node (after prostatectomy)

Major Diseases:

Arrhythmias

Arthritis

Cerebral Vascular Disease

Congestive Heart Failure

Diabetes Mellitus

Gastrointestinal Disease

Hepatobililiary Disease

Hypertension

Ischemic Heart Disease

Malignancy

Myocardial Infraction

Other Heart Disease

Other Significant Disease

Peripheral Vascular Disease

Respiratory Disease

Other Related Disease

Table 2: Selection of factors used

instance can be modeled in the Bayesian network for di-
agnostic purposes. In the case of the model illustrated in
this paper, diagnosis is somewhat not possible as the data
used to learn our model is retrospective and that of patients
already diagnosed with prostate cancer. Consolidating the
data collection with patients where cancer was not found,
the model can be easily adapted to be used for diagnosis.

5.2 Scanning and Biopsy Decision

Part of the patient journey involves invasive procedures
(e.g. prostate biopsy) which can be associated with possi-
ble complications, expensive and create discomfort for the
patient. The Bayesian model provides us with accurate con-
ditional probabilities based on each individual patient’s data
which will greatly assist in the decision to undergo any scan-
ning or biopsy procedure.

5.3 Treatment Choice and Patient Quality of
Life Post Treatment

As is for most cancers, deciding on the most appropriate
treatment for an individual patient is not straightforward.
A team of medical experts in various disciplines relating to
prostate cancer gather to decide on an optimal treatment
for prostate cancer patients. The decision is often a balance
between how to best beat the disease without hindering the
after care life of the patient. It is based on the disease
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stage, general health state of the patient, his life expectancy,
etc. Possible side effects of the treatment on the patient’s
quality of life are also considered. This can be seen from the
network where the treatment node is influenced by various
other factors including the disease stage of the patient, their
age, their health state, etc. The Bayesian network model
can be used to enhance decision-making at this stage of the
patient journey.

5.4 Hospital Resources Planning

The model can constitute the basis for a robust and flex-
ible model for assisting the medical team in predicting the
journey a patient goes through from their personal and clin-
ical data. An audit of retrospective patient data can there-
fore help the clinicians as well as hospital managers to fore-
cast their needs for biopsies, scans and other treatment
equipment in order to make provision for their prospective
patients.

5.5 Patient Disease Education

Prostate cancer is a serious disease and every decision
made from diagnosis to aftercare can affect the patient’s
quality of life. It is therefore very important for the patient
to be aware of every aspect of his disease as to work along
his medical expert to manage the disease and prevent any
unnecessary aggravation or discomfort. A tool based on the



Figure 3: The Bayesian Network Model

Bayesian network model and endorsed with prostate can-
cer information could be developed to assist the patients by
giving them an intuitive interface with their disease, where
they can explain what their PSA level, or Gleason Score etc.
mean for them.

StagingTumour

PSA

GleasonScore

PathologyTumour
PatholegyMode

PathoStaging

Figure 4: Pathology Staging Bayesian Network

5.6 Pathological Staging : Partin Tables

Another area highlighted by the clinicians was prediction
of the final pathological staging of the disease. The Partin
tables are one technique which is used for this purpose. It
was originally developed by Partin et al [24,25] at the Brady
Institute of Urology at the John Hopkins University, USA.
The original study examined data from 703 patients with
clinically localized disease undergoing radical prostatectomy
between 1982 and 1991. The study evaluated the utility of
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TABLE I. Ciinical Stage Ti1c (nonpaipable, PSA elevated)

PSA Gleason Score

Range

(ng/mL) Pathologic Stage 2-4 5-6 3+4=17 L+3=7 8-10

0-25 Organ confined 95 (B9-99) 90 (88-93) 79 (74-85) 71 (62-79) 66 [54-76)
Extraprostatic extension 5(1-11) 9(1-12) 17 (13-25) 25 [18-34) 28 (20-38)
Seminal vesicle (+) = 0ro-1) 2(1-5) 2(1-5) 4(1-10)
Lymph nade [+) = = 1(0-2) 1(0-4) 1(0-4)

26-4.0 Organ confined 92 (82-98) 84 (81-86) 68(62-74) 58 (48-67) 52 (41-63)
Extraprostatic extension 8(2-18) 15(13-18) 27 (22-33) 37 (29-46) 40 [31-50)
Seminal vesicle (+) — 1(0-1) 4(2-1) 4 (1-7) 6(3-12)
Lymph node (+} C e 1(0-2) 1(0-3) 1(0-4)

4.1-6.0 Organ confined 90 (78-98) 80 (78-83) 63 (58-68) 52 [(43-60) 46 (36-56)
Extraprostatic extension 10 (2-22) 19 (16-21) 32 (27-36) 42 (35-50) 45 (36-54)
Seminal vesicle (+) — 1(0-1) 3(2-5) 3(1-6) 5(3-9)
Lymph node (+} = o-n 2(1-3) 3(1-5) 3(01-8)

61-10.0  Organ confined 87 (13-97) 15 (12-17) 54 (49-59) 43 (35-51) 37 (28-46)
Extraprostatic extension 13(3-27) 23 (21-25) 36(32-40) 47 (40-54) 48 (39-57)
Seminal vesicle (+) — 2(2-3) 8i6-11) 8 [4-12) 13 (8-19)
Lymph node (+) e 0(0-1) 2(1-3) 2(1-4) 5(1-5)

=10.0 Organ confined 80 (61-95) 62 [58-64) 37 (32-42) 27 (21-34) 22 (16-30)
Extraprostatic extension 20 (5-39) 33 (30-36) 43 [38-48) 51 (44-59) 50 (42-59)
Seminal vesicle (+) = 4 (3-5) 12(9-17) 11 (6-17) 17 (10-25)
Lymph nade [+) == 2(1-3) 8(5-11) 10 (5-17) 11 (5-18)

Figure 6: Partin Table

for Clinical Stage T1lc



logistic regression analysis combining PSA, Gleason score,
and clinical tumour stage as a predictor of the final patho-
logical staging. The results of the study proved the hy-
pothesis that the combination of the indicators gave bet-
ter prediction than any singly used indicator. These results
were then validated with a bigger patient dataset in a multi-
institutional study. Updated again in 2001, to incorporate a
larger set of 5079 patients, the Partin tables or nomograms
are nowadays the most popular and widespread predictive
tool for prostate cancer pathological staging used all over
the world. Doctors can use these nomograms with PSA,
Gleason score and estimated clinical staging information to
determine a representative probability of the disease extent
i.e. organ-confined, extraprostatic extension, seminal vesicle
invasion and pelvic lymph node invasion. This is important
to counsel patients in deciding the most appropriate course
of treatment and management of the disease. Although the
Partin tables were based on results obtained from a highly
regarded institution, some concerns with regards to their va-
lidity when applied to a new and heterogeneous dataset still
remain. This is particularly important when applying them
to a patient set from outside the USA where the ethnic mix,
and other social, dietary and environmental factors might
be different. Several studies have therefore been carried out
to validate the tables further. Results from these investi-
gations vary in their confirmation of the good performance
of the tables on one hand and the conclusion as to the lim-
itation of the information used in these nomograms when
compared to the proliferation of measured patient data that
could be used nowadays on the other hand. Research has
indeed shown that there is room for improvement as the
Partin tables do not provide information beyond pathologic
stage and use a very limited set of prostate cancer features.
A study by Crawford et al. [9] has also confirmed this result
by investigating the use of Artificial Neural Networks for
prostate cancer management. This study and a similar one
carried out by Djavan [11] have shown that the inclusion of
more input variables result in a higher accuracy. This how-
ever, is also claimed to result from the use of ANNs proving
a promising technique compared to linear regression for the
problem at hand. Nevertheless, the black-box effect of ANNs
makes the understanding of the resulting model highly com-
plex and therefore difficult to use.

We propose an intuitive alternative with Bayesian networks
which offer a sound probabilistic model based on concepts
such as causality and inference; well suited to the medical
practice.

5.7 Bayesian Networks and Partin Tables

In this section, we investigate the case for using a Bayesian
network model as a flexible alternative to Partin tables for
predicting prostate cancer pathological staging. One ap-
proach is re-doing the same exercise of building the previous
Bayesian network model, but this time the model is induced
from a reduced dataset focusing only patients having un-
dergone surgery and only on the variables used to generate
the Partin tables, notably: PSA, Gleason Score and Clinical
Staging information. This results in the network illustrated
in Figure 4. The Pathology Staging node was added in order
to simplify the reading of the pathology staging outcomes
described by the Pathology Tumour node. From our clini-
cians, we know that a result up to PT2 means the disease
is organ confined. PT3a mean extra-capsular extension and
PT3b means the cancer invades the seminal vesicle. For
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lymph node involvement, we look at the pathological node
variable, with PN1 meaning lymph node involvement and
PNO the opposite. We should note that some low risk early
prostate cancer patient did not have lymph node removed
and therefore the regional lymph node could not be assessed
(i.e. PNx). Consequently, in this study, an assumption was
made that PNx is equivalent to PNO. Figure 5 displays the
compiled network after evidence from a patient case with
PSA value of 7, clinical tumour stage of Tlc and a Gleason
score of 34+4. The outcome predictions from the appropri-
ate Partin table, depicted in Figure 6 are 54% for organ-
confined disease, extraprostatic extension at 36%, seminal
vesicle 8%, and lymph node involvement 2%. The predicted
staging probabilities from the Bayesian network model as
we can see in Figure 5 are 45.6% organ-confined disease, ex-
traprostatic extension at 26.8% and seminal vesicle 8.06%.
The Pathology Node shows a 77.8% of negative lymph node
involvement (PNx=PNO0). The inference was done using
the Netica tool for Bayesian networks [23]. As we can see,
the resulting probabilites from the model are specific to the
small sample used to generate the Bayesian network (only
46 prostatectomy patient cases) and the institution the data
was collected from. Moreover, the patient mix the Partin ta-
bles are based on is quite different to the mix in our cohort.
The advantage and flexibility of Bayesian networks in this
case, is that we can make the predictions more precise and
more powerful by using the general model built for prostate
cancer mangement in Figure 3 to infer pathology staging as
well instead of building separate models for each applica-
tion. Since the model built earlier includes the factors we
are interested in; PSA, Gleason Score and the clinical tu-
mour stage, then we could freely use the same network for
this task too. As a consequence we also profit from the other
patient and disease factors that could influence the staging
decision, or moreover predict those factors from available
pathology staging evidence to be used for explanation pur-
poses for instance.

6. CONCLUSION AND FUTURE WORK

In this paper we explored the versatile use of Bayesian
network for prostate cancer management in general and as
a Partin tables alternative in particular. We have built a
Bayesian network model to represent prostate cancer patient
data from the ARI, using a chain-model Genetic Algorithm
based on node orderings. The resulting model could be used
to answer various queries relating to prostate cancer man-
agement from diagnosis to treatment decision making and
pathology staging. For the latter purpose, we compared
some results to Partin tables and saw promising results in
spite of the small and limited data sample used. The dis-
crepancies in the model predictions can also be attributed
to the different patient sample used, Scottish patients in
this case. The potential of the use of Bayesian networks in
this case is to support decision making in a more intuitive
and population-centered approach to Partin tables. Models
can be developed to suit the patient mix and the medical
institution at hand. As a future step, one would need to
explore this by including more patient data in the model as
to do a large scale comparison. Furthermore, the predictive
potential for each of the prostate cancer applications of the
Bayesian network model proposed in the paper can be in-
vestigated in its own right.



7.
[1]

2]

8]

[4]

[5]

(6]

(7]

8]

[9]

(15]

(16]

(17]

REFERENCES

R. R. Bouckaert. Probabilistic network construction
using the minimum description length principle.
Lecture Notes in Computer Science, 747:41-48, 1993.
W. Buntine. Operations for learning with graphical
models. Journal of Artificial Intelligence Research,
2:159-225, 1994.

CancerResearchUK.
http://www.cancerresearchuk.org.

D. Chickering, D. Heckerman, and C. Meek.
Large-sample learning of Bayesian networks is
NP-Hard. J. Mach. Learn. Res., 5:1287-1330, 2004.
D. M. Chickering. Learning equivalence classes of
Bayesian-network structures. J. Mach. Learn. Res.,
2:445-498, February 2002.

C. Chow and C. Liu. Approximating discrete
probability distributions with dependence trees. IEEE

transactions on Information Theory, 14:462—-467, 1968.

G. Cooper and E. Herskovits. A Bayesian method for
the induction of probabilistic networks from data.
Machine Learning, 9:309-347, 1992.

R. G. Cowell, S. L. Lauritzen, A. P. David, and D. J.
Spiegelhalter. Probabilistic Networks and Expert
Systems. Springer-Verlag New York, Inc., Secaucus,
NJ, USA, 1999.

E. Crawford, E. Gamito, C. O’Donnell, A. Errejon,
D. Raben, M. Han, A. Partin, and A. Tewari.
Artificial neural network model to predict risk of
non-organ-confined disease and risk of lymph node

spread in men with clinically localized prostate cancer.

Journal of Urology, pages 165-233, 2001.

L. de Campos and J. Huete. On the use of
independence relationships for learning simplified
belief networks. International Journal of Intelligent
Systems, 12:495-522, 1997.

B. Djavan, M. Remzi, A. Zlotta, C. Seitz, P. Snow,
and M. Marberger. Novel artificial neural network for
early detection of prostate cancer. Journal of Clinical
Oncology, 20(4):921-929, February 2002.

N. Friedman and M. Goldszmidt. Discretizing
continuous attributes while learning Bayesian
networks. In Proceedings of the International
Conference on Machine Learning, pages 157-165,
1996.

N. Friedman and M. Goldszmidt. Learning Bayesian
networks with local structure. In Proceedings of the
12th Conference on Uncertainty in Al, pages 252262,
1996.

E. J. Gamito, E. D. Crawford, and A. Errejon.
Artificial neural networks for predictive modeling in
prostate cancer., chapter Handbook of Prostate
Cancer: Biology, Epidem. and Therapeutic Modalities.
2002.

GeNle. GeNle structural modelling tool
http://genie.sis.pitt.edu/.

J. Habrant. Structure learning of Bayesian networks
from databases by genetic algorithms-application to
time series prediction in finance. In ICEIS, pages
225-231, 1999.

D. Heckerman. An empirical comparison of three
inference methods. In Proceedings of the 4th
Conference on Uncertainty in Al pages 283-302, 1990.

1554

(18]

(19]

20]

(21]

(22]

(26]

27]

28]

32]

D. Heckerman, D. Geiger, and D. M. Chickering.
Learning Bayesian networks: The combination of
knowledge and statistical data. In KDD Workshop,
pages 85-96, 1994.

R. Kabli, F. Herrmann, and J. McCall. A chain-model
genetic algorithm for bayesian network structure
learning. In GECCO ’07: Proceedings of the 9th
annual conference on Genetic and evolutionary
computation, pages 1264-1271, New York, NY, USA,
2007. ACM.

R. S. Kirby, M. K. Brawer, and L. J. Denis. Fast Facts:
Prostate Cancer. Health Press, third edition, 2001.
M. Koivisto and K. Sood. Exact Bayesian structure
discovery in Bayesian networks. J. Mach. Learn. Res.,
5:549-573, 2004.

P. Larranaga, C. Kuijpers, and R. Murga. Learning
Bayesian network structures by searching for the best
ordering with genetic algorithms. IFEE Transactions
on System, Man and Cybernetics, 26:487-493, 1996.
Netica. Netica Bayesian network software from Norsys
http://www.norsys.com.

A. W. Partin, M. Kattan, E. Subong, P. Walsh,

K. Wojno, J. Oesterling, P. Scardino, and J. Pearson.
Combination of prostate-specific antigen, clinical
stage, and gleason score to predict pathological stage
of localized prostate cancer. A multi-institutional
update. Jama, (277):1445-51, 1997.

A. W. Partin, J. Yoo, H. B. Carter, J. D. Pearson,
D. W. Chan, J. I. Epstein, and P. C. Walsh. The use
of prostate specific antigen, clinical stage and gleason
score to predict pathological stage in men with
localized prostate cancer. Journal of Urology,
(150):110-4, 1993.

J. Pearl and T. Verma. Equivalence and synthesis of
causal models. In Proceedings of the 6th Conference on
Uncertainty in Al pages 220-227, 1990.

R. Robinson. Counting labeled acyclic digraphs. New
Directions in the Theory of Graphs, pages 239273,
1973.

L. H. Sobin and C. Wittekind. TNM classification of
malignant tumours. Wiley-Liss, 6th edition edition,
2002.

P. Spirtes, C. Glymour, and R. Scheines. Causation,
Prediction and Search. Lecture Notes in Statistics,
New York: Springer Verlag, 81, 1993.

S. van Dijk, D. Thierens, and L. C. van der Gaag.
Building a GA from design principles for learning
Bayesian networks. In GECCO’03, pages 886—897,
2003.

M. L. Wong, S. Y. Lee, and K. S. Leung. A hybrid
data mining approach to discover Bayesian networks
using evolutionary programming. In GECCO ’02:
Proceedings of the Genetic and Evolutionary
Computation Conference, pages 214-222, San
Francisco, CA, USA, 2002. Morgan Kaufmann
Publishers Inc.

H. Zhang, Z. Zhang, and A. Partin. Neural network
based systems for prostate cancer stage prediction. In
Proceedings of the IEEE-INNS-ENNS Conference,
2000.



