
Evolutionary Algorithms for Automated Drug Design
Towards Target Molecule Properties

[Real-World Applications]

Johannes W. Kruisselbrink
LIACS, Leiden University
Niels Bohrweg 1, Leiden

The Netherlands
jkruisse@liacs.nl

Thomas Bäck
∗

LIACS, Leiden University
Niels Bohrweg 1, Leiden

The Netherlands
baeck@liacs.nl

Ad P. IJzerman
Leiden/Amsterdam Center for

Drug Research, Leiden University
Einsteinweg 55, Leiden

The Netherlands
ijzerman@lacdr.leidenuniv.nl

Eelke van der Horst
Leiden/Amsterdam Center for

Drug Research, Leiden University
Einsteinweg 55, Leiden

The Netherlands
e.van.der.horst@chem.leidenuniv.nl

ABSTRACT
This paper presents an evolutionary algorithm for the auto-
mated design of molecules that could be used as drugs. It
is designed to provide the medicinal chemist with a number
of candidate molecules that comply to pre-defined proper-
ties. These candidate molecules can be promising for further
evaluation.

The proposed algorithm is implemented as an extension
to the so-called Molecule Evoluator [3] which implements an
interactive evolutionary algorithm. The Molecule Evoluator
is extended with an automated evolutionary algorithm that
implements a variable sized population and bases its search
on target-bounds that are set for a number of molecule prop-
erties. Moreover, the algorithm uses a selection procedure
based on the notion of Pareto domination.

The results show that it is indeed possible to apply the
concept of evolutionary computation on automated molecule
design using target-bounds for molecule properties as opti-
mization goals. For practical usage, the presented algorithm
could serve as a starting point, but should be further im-
proved with respect to diversity within the generated set of
molecules.

Categories and Subject Descriptors
J.2 [Physical Sciences and Engineering]: Chemistry

∗Nutech Solutions, Inc., Charlotte, NC, USA

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’08, July 12–16, 2008, Atlanta, Georgia, USA.
Copyright 2008 ACM 978-1-60558-130-9/08/07…$5.00.

General Terms
Algorithms, Design, Experimentation

Keywords
Evolutionary algorithms, molecules, drug design

1. INTRODUCTION
De novo drug design and development is the process of

finding and creating molecules which have a specific activity
on a biological organism.

Generally, drugs are formed around small key molecules
that can bind to a target, which, in most cases, is a protein
such as a receptor, enzyme, transport protein, or antibody.
These proteins can be found on the cell surface, in the cell,
or in plasma (except for receptors). By exhibiting or in-
hibiting the activity of these critical components, the drug
molecules can change the behavior of the entire cell. Target
cells can be either cells of the disease causing organisms or
of the diseased patients themselves.

To aid the development of new drugs, computational meth-
ods can be used to generate molecules that could be used as
lead compounds for possible new drugs. By automatically
generating libraries of molecules that comply to certain pre-
defined physicochemical properties, the medicinal chemist
can be provided with sets of promising molecules that are
good candidates for further investigation. The particular use
of automated methods is that they can speed up the search
and cover a larger part of the search space because they are
fast and unbiased.

The so-called Molecule Evoluator [3] is such a method.
However, until now working in a semi-automated fashion.
It implements an interactive evolutionary algorithm which
can be used by the medicinal chemist to ’evolve’ populations
of molecules. By letting the user guide the evolution process,
the Molecule Evoluator aims to provide inspiration for possi-
bly new molecules. The Molecule Evoluator can be used for
both lead generation (generating new molecules with certain

1555

desired properties from scratch) and lead optimization (start
from one or more lead molecules and optimize the molecule
properties or generate derivatives).

The major strength of the Molecule Evoluator is the use
of the expert knowledge of the chemist in the selection pro-
cedure of the evolutionary algorithm. The expert user is
responsible for selecting the molecules that will be used as
parents for the creation of each next generation in the evo-
lutionary process.

In this paper we will propose an evolutionary algorithm that
will be an extension to the Molecule Evoluator. In addi-
tion to the interactive evolutionary algorithm used by the
Molecule Evoluator, we have developed an automated evo-
lutionary algorithm intended to be used for the generation of
a diverse set of molecules with very specific physicochemical
properties.

Based on a set of strict targets that can be specified by the
medicinal chemist, the algorithm will search for molecules
that comply to these targets and therefore could be promis-
ing candidates for further investigation. We will focus on
a method that can incorporate multiple objectives and that
can generate a diverse set of molecules as output to offer the
medicinal chemist a broad set of promising molecules.

We will start in section 2 with a brief outline of the scope
of this paper and the motivation of extending the Molecule
Evoluator with an automated evolutionary algorithm. Sec-
tion 3 will give an overview of the interactive evolutionary
algorithm that is currently implemented by the Molecule
Evoluator. In section 4 we will describe the automated ex-
tension that we have developed for fully automated molecule
generation. Section 5 shows the setup and outcomes of the
experimental runs. Section 6 will close with conclusions and
future recommendations.

2. AUTOMATED EA FOR DRUG DESIGN
The size of the search space together with its complexity

make it very hard, if not impossible, to find a classical com-
putational approach to search for molecules. Evolutionary
algorithms are specially suited for such large search spaces,
and can also deal with the complexity of the problem, as they
do not (strictly) require any knowledge about the search
space. Hence, evolutionary algorithms are a good choice to
use for searching for molecules.

A major problem is finding a good fitness function. Usu-
ally there is a clear view on the desired behavior which the
molecules should exhibit, but actually capturing this desired
behavior in a mathematical scoring function is very difficult.
Also, the fitness functions that are used in automated meth-
ods are usually poor approximations of the real structure-
activity relationships.

The power of the Molecule Evoluator lies in the fact that
it uses the expert user as a fitness function. Experts are very
well capable of determining whether molecules are ”good” in
the scope of what they need and can make decisions much
faster than is possible with doing real-life experiments. By
letting the expert guide the search process, his/her knowl-
edge and intuition can be used to get quickly to ”good”parts
of the search space.

However, the use of expert knowledge also has its down-
sides. First, using expert knowledge to guide the search pro-

cess brings along the danger of neglecting parts of the search
space that might prove to be very promising. Especially such
parts of the search space would be very interesting, but are
now missed. Also, interactive methods are limited when it
comes to the number of molecules that can be considered in
the search.

With the downsides of interactive evolutionary search in
mind, we present another attempt to come up with an au-
tomated method for molecular design.

2.1 Multi-objective search
We focus our method on the cases where it is possible

for the medicinal chemist to determine a number of proper-
ties (which can be obtained by calculation, simulation or in
other computational ways) to which the desired molecule(s)
need to comply. In this case, we use these desired proper-
ties as targets for an automated search process by trying to
minimize the difference between the property values of the
candidate solutions and the desired targets. With this, we
get a multi-objective optimization problem.

Taking the multiple objective point of view [1], we op-
timize over a number of numerically expressable molecule
properties with target intervals set for each property. Each
property i can be expressed numerically by a function gi(x)
and x being any instance from the set of all possible molecules.
With that, for each molecule property i with a target inter-
val [ai, bi], we define the objective function fi as:

fi(x) =

��
�

|gi(x) − ai| if gi(x) < ai

|gi(x) − bi| if gi(x) > bi

0 otherwise
(1)

Of course, for future research, we could try to find more
complex functions that could improve the algorithm. In any
case, minimizing over all objective functions fi is then the
goal of the optimization process.

2.2 Diverse set of molecules
When making use of calculation or simulation based fit-

ness functions, one should have to be very aware of the fact
that, as mentioned, these are often very noisy and the appli-
cation of these scoring functions often results in molecules
that are difficult to synthesize. Also, molecular structures
are very complex, and in the end, the process of drug de-
sign and development will probably always stay a job for the
medicinal chemist. The best that automated methods can
do is to provide the medicinal chemist with possible candi-
dates.

The awereness of the limitations of automated methods
changes the aim of the search algorithm to a great extent.
Instead of trying to offer only one solution, the search al-
gorithm should try to provide the medicinal chemist with a
broad set (preferably as diverse as possible) of molecules.

Hence, the focus lies on the generation of a diverse set
of good candidate molecules. Especially incorporating this
into an interactive tool such as the Molecule Evoluator is
very useful, because this allows the medicinal chemist to use
both methods interchangeably in a combined interactive and
automated approach.

2.3 Motivation
The intent of this automated method is to be an exten-

sion of the Molecule Evoluator. We do not propose to re-
place the interactive evolutionary algorithm of the Molecule

1556

Evoluator, but rather to offer it as another option. The brief
comparison shown in table 1 shows that both methods have
their advantages, so why not use both?

By extending the Molecule Evoluator also with an auto-
mated search algorithm, the user is provided with two dis-
tinct ways of searching for new lead compounds. As both
methods have their advantages, the user is now allowed to
choose which of the two methods is most suitable for the
problem at hand.

Expert interaction Automated
Expert is able to filter
out obviously bad solu-
tions.

Automated selection have
difficulties with this.

Expert is able to use
heuristics to guide the
search.

Automated selection is un-
biased. Less obvious parts
of the search space will also
be considered.

Expert is limited when it
comes to the number of
evaluations that can be
performed.

Automated procedures can
do many evaluations and
thus consider much more
solutions.

Expert is able to the
compare different solu-
tions and assigning a fit-
ness order.

Constructing a good fit-
ness measure for auto-
mated purposes is very dif-
ficult.

Table 1: Expert interaction versus automated meth-
ods

3. MOLECULE EVOLUATOR DETAILS
In section we will give a brief overview of the evolutionary

algorithm implemented by the Molecule Evoluator.
The Molecule Evoluator uses the knowledge of the expert

in a direct way by letting the user guide the evolution pro-
cess towards desired molecules. Moreover, the involvement
of the user also allows the user to test every inspiration per-
ceived during the evolution process directly which makes
the Molecule Evoluator especially powerful as an interactive
design tool.

3.1 Molecule representation
The representation used by the evolutionary algorithm of

the Molecule Evoluator is the so-called TreeSmiles represen-
tation [3]. The TreeSmiles notation is an extended version
of the SMILES notation [7] commonly used by chemists.

With SMILES and TreeSmiles, the molecules are repre-
sented by a string (similar to the Lisp-notation used by ge-
netic programming [2]) which is human-readable and can
easily be transformed to a 2D-structure by a chemist. The
TreeSmiles extension to SMILES pertains to being more
strict and more suited for easy implementation of automated
operations (i.e. the genetic operators).

3.2 Population initialization
The Molecule Evoluator also allows the user to provide

the initial population of molecules from which the evolution
can start. If no initial population is provided by the user,
an initial population is generated at random from scratch.

For the creation of an initial population from scratch,
two different molecule generation methods are implemented.

The first method to generate molecules takes for each gener-
ation a simple Methyl molecule and applies a number of mu-
tations on it. The second method is a bit more sophisticated
and implements a fragment-based generation of molecular.
The balance between the number of molecules generated by
both methods can be controlled by the user.

3.3 Genetic operators
The Molecule Evoluator provides one crossover operator

and eleven mutation operators for the evolutionary algo-
rithm. To allow for a certain measure of control to the
structures of the mutated molecules, the user is allowed to
decide which of the eleven mutation operators are actually
used (i.e. each mutation operator can be turned on and
off). Also, the user is allowed to decide which genetic op-
erator is the primary operator as the Molecule Evoluator
provides the option to adapt the balance between crossover
and mutation.

Table 2 shows the eleven mutation operators together with
their effect. As can be seen, except for the ”mutate atom”
mutation, for every mutation there is an inverse mutation
operator.

The implementation of the crossover operator is inspired
by the subtree crossover as used in genetic programming.
However, as molecules are graphs and not trees, the recom-
bination operator is restricted to be only applied to sub-
trees which are connected at exactly one point to the base
molecule.

Mutation name Effect

Add atom

Remove atom

Insert atom

Uninsert atom

Mutate atom

Add group

Remove group

Increase bond order

Decrease bond order

Make ring

Break ring

Table 2: Mutation operators of the Molecule Evolu-
ator

3.4 Evaluation and selection
The Molecule Evoluator uses the expert user as a fitness

function. The user decides at each iteration which molecules

1557

can be used as parents for the next generation. Hence, the
user is at the same time the fitness function and the selection
function, and the performance of the evolutionary algorithm
depends very much on the intuition, knowledge and luck of
the user.

To assist the users in their choice, the Molecule Evoluator
also supplies several chemical descriptors for each molecule.
These descriptors are especially useful for the user to esti-
mate drug-likeness (Lipinski’s rule of five makes use of these
properties to estimate drug-likeness [4]) or the way that the
drug molecule is to be taken in and can be used in addi-
tion to the visual representation to estimate how good each
molecule is. The descriptors are:

• The number of hydrogen donors (HD)

• The number of hydrogen acceptors (HA)

• The molecular weight (MW)

• The Logarithmic value of the octanol/water partition
coefficient (logP)

• The Logarithmic value of the aqueous solubility in
mol/l at 25◦C (logS)

• The polar surface area (PSA)

• The number of rotatable bonds (RB)

• The number of aromatic systems (AR)

• The number of aromatic substituents (AS)

In order to allow the user to force the evolution towards
molecules with certain descriptor values, the Molecule Evolu-
ator provides a filter mechanism (chemical filters). When
one ore more filters are set, the Molecule Evoluator only re-
turns offspring that have their property values within these
filter bounds.

In addition to the chemical filters, the Molecule Evolua-
tor also allows the user to set constraints and enforce the
molecules to have certain structures (called physical filters).
If these filters are set, then the Molecule Evoluator will reject
molecules that do not comply to these constraints. These
constraints are listed below:

• Bredtś rule: no double bond with one end at a bridge-
head of a bridged ring system.

• Acetals: allow molecules to contain a functional group
of a Carbon bonded to two ı̈£¡OR groups.

• CH2-Imines: allow molecules to contain Imine groups
(R-N=CR2) or CH2-Imine groups (R-N=CH2).

• Ortho-, meta-, or paracyclophane: ortho / meta /
paracyclophanes are benzene rings that have a short
bridge forming a second ring over, for example, the
meta-atoms.

• Common Ring System: Filters out all ring systems
that do not occur in the NCI. By checking the ”Also
Consider Atoms” option, the comparison will also con-
sider the atoms in the ring besides comparing the bonds.

4. AUTOMATED EVOLUTION
The procedure evoluate(P ′(t), filters, constraints,

λ), which is outlined in algorithm 1, shows the main evo-
lution loop of the automated evolutionary algorithm. This
automated evolution loop is motivated by the base algorithm
VV of Rudolph and Agapie [6].

The evolution loop starts with an initial population P se-
lected by the user or generated randomly if the user did not
select any initial population. Also, the user is expected to
set the filter bounds, the constraints and the number of de-
sired offspring (λ). Then, the evolution loops a number of
times until there are λ offspring that comply to the user-set
filter-bounds and constraints.

For each iteration, k offspring are generated and added
to the population. Note that the algorithm distinguishes
between constraints and filters. Constraints are hard con-
straints which every offspring needs to satisfy at all times.
The filters will be used for the determination of the fitness of
each molecule. A new offspring o is accepted if it passes the
Accept(o) test. The function Accept(o) accepts molecules
that comply to the constraints.

After the generation of the offspring, the property values
of the offspring are evaluated and compared with the user-
set filter values. Based on this evaluation, the parents for the
next generation are selected by the multi-objective selection
procedure select(P (t+1)) that will be described in section
4.2.

Algorithm 1 Automated evolution cycle

1: procedure evoluate(P , filters, constraints, λ)
2: t := 0;
3: P (0) := P ;
4: while not terminate do
5: n := 0;
6: while n < k do
7: o := generate offspring from P (t);
8: if Accept(o) AND o /∈ P (t + 1) then
9: P (t + 1) := P (t + 1)

�{o};
10: n := n + 1
11: end if
12: end while
13: evaluate(P (t + 1));
14: P (t + 1) := select(P (t + 1));
15: t := t + 1;
16: end while
17: return P (t)
18: end procedure

4.1 Genetic operators
For the creation of the offspring, the same genetic opera-

tors were chosen as for the Molecule Evoluator. As this set
of genetic operators allows the algorithm to cover the whole
search space, this set of genetic operators seems to be very
fit for our purpose. Especially the broad set of mutation
operators is very helpful in this case, as we want to preserve
diversity in the population.

4.2 Evaluation and selection
The selection procedure select(P (t + 1)) outlined in al-

gorithm 2 bases its determination of the fitness on the differ-
ence between the molecules and the filter bounds. For each

1558

Algorithm 2 Automated multi-objective selection

1: procedure select(P , filters, constraints, μ)
2: Q := ∅;
3: l := 0;
4: while k < μ do
5: for each p ∈ P do
6: dp := number of solutions that dominate p;
7: if dp == l then
8: Q := Q

�{p};
9: k := k + 1;

10: end if
11: end for
12: l := l + 1
13: end while
14: return(Q);
15: end procedure

property, we use the objective of minimizing the function as
given by equation 1, and use the notion of Pareto domina-
tion to assign an ordering.

For completeness; a solution x1 is said to dominate x2 iff :

∀i ∈ 1, . . . , n : fi(x1) ≤ fi(x2)

∧ ∃i ∈ 1, . . . , n : fi(x1) < fi(x2)

The procedure select(P (t+1)) selects at least μ individuals
from the population P based on the number of individuals
that dominate it (i.e. good individuals are dominated by
few/zero others, so the less individuals dominate it, the bet-
ter an individual is). By keeping at least a population size
of μ, the selection procedure should prevent the population
from collapsing to one or a few individuals (which would
disrupt diversity).

Besides that using the notion of Pareto dominance is prob-
ably fairer when it comes to the determination of a per-
formance order, it also is in this case a way to maintain a
certain level of diversity. Note that with Pareto domina-
tion, two distinct solutions have a higher chance of being
incomparable than similar solutions have. With this, it is
therefore more likely for similar solutions that they will be
dominated (by other similar solutions) than distinct solu-
tions. And thus we hope that this selection method will
select a more diverse set than using a weighted sum as fit-
ness function. For further research, it would be insightful to
test if this effect indeed occurs.

4.3 Variable sized populations
What makes this implementation different from other evo-

lutionary algorithms is the fact that this allows the popu-
lation to grow without any limits. No matter how many
non-dominated solutions there are, the algorithm used here
will not choose between any non-dominated solutions, but
keep them all.

As it is up to the user to select the filters that should
be taken into account for the fitness, the search can be an
optimization of only one objective function, but it could also
be more. With such a varying number of objectives, it is
impossible to determine a good population size yourself. By
letting the algorithm grow the population size, it can grow
to the number of solutions needed for covering the Pareto

front. The advantage is therefore that the algorithm can
keep a nice broad Pareto front and thus there is a big chance
that the algorithm ends up with a diverse set of molecules
with the desired properties.

One might argue that this method will eventually result
in huge populations, but we know from experience that this
is not the case. In the first few iterations, the population
will indeed grow rapidly, but after a while, offspring will be
created that are fit on a multiple of the objectives. It is the
creation of this kind of offspring that reduces the number of
solutions in the population, as they are likely to dominate
multiple solutions of the population.

5. EXPERIMENTAL RESULTS
For the experiments, the property values of already exist-

ing and well known drugs were used to construct the targets
for the test-runs. The goal of the test-runs was of course
not only to find the original molecules, but also to find al-
ternative molecules having about the same property values
as the drug molecules. Table 3 shows the molecules used for
testing.

1. Aspirin 2. Prozac 3. Prevacid
(Acetosal) (Fluoxetine) (Lansoprazole)

4. Zoloft 5. Paxil 6. Viagra
(Sertraline) (Paroxetine) (Sildenafil)

Table 3: Set of test molecules

5.1 Setup
The experiments were run on a Pentium 1.73GHz com-

puter. For each of the test molecules, the algorithm was
tested with 10 runs. Each of these runs, the targeted number
of molecules was set to 5, the minimal population size was
set to 40, and in each generation 10 offspring were produced.
The evolution process stopped when the desired number of
molecules was found, or at generation 1000.

The relatively small number of molecules in the output set
was chosen to save time. For the creation of larger output
sets, the algorithm would need a larger minimal population
size and more generations which would take longer. With
the capacity at hand, taking 5 would give a good view of the
performance in relatively little time.

For the experimental runs, tables 4 to 9 show the filter
bounds that were used. The filter bounds were set up not
to be too strict to allow also for molecules other than the
target molecules to be found. Also, not all filter bounds
were set in a similar way for the different molecules, e.g. the
bounds of the MW-filter for the Aspirin test runs were set
much stricter than for the test runs of the other molecules.

1559

Aspirin Lower bound Upper Bound
HD 1 1 1
HA 4 4 4
MW 180.16 175.16 185.16
logP 1.31 0.81 1.81
logS -2.14 -2.64 -1.64
PSA 63.60 58.60 68.60
RB 3 3 3
AR 1 1 1
AS 2 2 2

Table 4: Filter settings for Aspirin-like molecules

Prozac Lower bound Upper Bound
HD 1 1 1
HA 2 2 2
MW 309.33 304.33 314.33
logP 4.44 3.94 4.94
logS -4.43 -4.93 -3.93
PSA 21.26 16.26 26.26
RB 6 6 6
AR 2 2 2
AS 2 2 2

Table 5: Filter settings for Prozac-like molecules

Prevacid Lower bound Upper Bound
HD 1 1 1
HA 5 5 5
MW 383.39 378.39 388.39
logP 3.61 3.11 4.11
logS -4.03 -4.53 -3.53
PSA 76.25 71.25 81.25
RB 6 6 6
AR 2 2 2
AS 4 4 4

Table 6: Filter settings for Prevacid-like molecules

Zoloft Lower bound Upper Bound
HD 1 1 1
HA 1 1 1
MW 306.23 301.23 311.23
logP 5.18 4.68 5.68
logS -5.83 -6.33 -5.33
PSA 12.03 11.03 13.03
RB 2 2 2
AR 2 2 2
AS 5 5 5

Table 7: Filter settings for Zoloft-like molecules

5.2 Results
Table 10 shows a summary of the outcomes of the test

runs. From this table it can be seen that only one test run
managed to find the target molecule (Aspirin). Although
this is somewhat disappointing, on a positive note we can
say that of the in total 60 test runs in total, only 7 runs failed
to find 5 molecules complying to the target filter bounds.
Moreover, of those failed runs, most did find at least one
solution. Thus, the algorithm is indeed capable of finding

Paxil Lower bound Upper Bound
HD 1 1 1
HA 4 4 4
MW 329.37 324.37 334.37
logP 3.33 2.83 4.83
logS -3.34 -3.83 -4.84
PSA 39.72 34.72 44.72
RB 4 4 4
AR 2 2 2
AS 5 5 5

Table 8: Filter settings for Paxil-like molecules

Viagra Lower bound Upper Bound
HD 1 1 1
HA 10 10 10
MW 460.55 450.55 470.55
logP 1.98 1.48 2.48
logS -3.58 -4.08 -3.08
PSA 126.12 121.12 131.26
RB 6 6 6
AR 2 2 2
AS 7 7 7

Table 9: Filter settings for Viagra-like molecules

molecules that have property values similar to the target
molecules.

Also from the time-perspective, the algorithm does not
perform bad at all. Ranging from an average running time
of a little more than 7 minutes (Aspirin) to an hour (Viagra)
is not a bad point to start with. Especially when considering
the enormous size of the search space. Also from a practical
point of view, such a running time is acceptable. However,
one should keep in mind that these runs only returned 5
molecules. Further work to speed up the algorithm up some
more would still be advisable.

There is a clear relation between the complexity/size of the
targeted molecule and the running time, maximum popula-
tion size and the number of generations of the evolutionary
algorithm. This is not really very surprising, as the search
space (and with that the complexity) grows exponentially
with the molecule size. The results of Viagra give however
a nice indication of the upper bound of the running time of
the algorithm as this molecule has a molecular weight very
near to the maximum of 500.

Another interesting notion is that the dynamic population
size method works and that the population size stays rela-
tively small. Figure 1 and figure 2 show the population size
development of a successful run and of a failed run (both are
runs of the Aspirin test). In both cases, the population size
does not grow beyond control. The big drop of the graph of
figure 1 is the point where the desired number of solutions
is found and the evolution cycle is terminated.

Lastly there is the population diversity and the molecules
that were returned. Figure 3 to 8 show the outcomes of
three of the test runs. For simple molecules like Aspirin, the
algorithm is capable of finding good and diverse solutions.
When more complex molecules (like Viagra) are used, this

1560

becomes harder. The algorithm tends very much to converge
the population to a particular area in the search space, and
diversity is lost. Also with more complex structures, the
amount of unsynthesizable solutions increases.

Figure 1: Population size development of a success-
ful run.

Figure 2: Population size development of an unsuc-
cessful run.

Figure 3: Molecules found in run 1 of the Aspirin
tests.

6. CONCLUSIONS AND OUTLOOK
The results show that it is indeed possible to use evolu-

tionary algorithms to find molecules with specific properties.
Moreover, extending the Molecule Evoluator with this au-
tomated evolutionary algorithm makes the Molecule Evolu-
ator applicable for a broad range of purposes. The chemist
can exploit the advantages of both interactive evolution and
automated evolution, and choose the method that is most
suitable for the problem at hand.

Figure 4: Molecules found in run 1 of the Prozac
tests.

Figure 5: Molecules found in run 1 of the Prevacid
tests.

Figure 6: Molecules found in run 1 of the Zoloft
tests.

6.1 Multi-objective approach
By taking the multi-objective approach, the algorithm is

capable to also implement more or other fitness functions.
It is therefore very flexible and especially from a practical
point of view, this could prove to be very useful as it allows
the algorithm also to be used by pharmaceutical companies
that implement their own molecule property functions and
simulation programs.

Basing the fitness determination on the notion of Pareto
domination is also a first attempt to generate population
diversity. By focusing on population diversity, the hope is
that a broader part of the search space is covered, and it
provides the medicinal chemist with more possible solutions
in the ultimate output.

1561

Aspirin Prozac Prevacid Zoloft Paxil Viagra
Failed runs 1 2 1 0 2 1
Runs found target 1 0 0 0 0 0
Average number of generations 331 362 366 315 428 574
Average time of the run (h:mm:ss) 0:07:30 0:30:17 0:25:20 0:14:06 0:28:58 1:09:24
Average maximum population size 108 167 207 145 243 463

Table 10: Results

Figure 7: Molecules found in run 1 of the Paxil tests.

Figure 8: Molecules found in run 1 of the Viagra
tests.

6.2 Molecule diversity
Although the proposed algorithm is very well capable of

finding molecules that comply to pre-defined properties, the
population diversity is still problematic. The population di-
versity decreases especially in the cases where more complex
molecules are sought.

It seems inevitable to resort to niching techniques [5] to
improve the population diversity. This will probably also
have effects on the performance of the algorithm (both time
and quality). We are planning to investigate niching as a
further topic of research.

6.3 Variable sized populations
A matter that makes the proposed algorithm different

from the common evolutionary algorithms is the fact that
it implements a variable sized population. It is remarkable
to see that the population size does not grow beyond con-
trol which is very useful as no choices have to be made be-
tween (from the point of view of Pareto domination) equal
solutions in the selection procedure. The cause of this is
probably that the fitness landscape is very rugged.

6.4 Genetic operators and fine-tuning
For further research, it would also be very worthwhile to

further investigate the genetic operators, and their effect on
the fitness landscape of different property functions. The
algorithm presented here has simply adapted the mutation
operators of the Molecule Evoluator, but although the ge-
netic operators serve their purpose very well for the Molecule
Evoluator, there might be more suitable genetic operators
for an automated evolutionary algorithm. Testing various
combinations of genetic operators could be very interesting.

It would also be interesting to see the effect of different
minimal population sizes and different numbers of offspring
created every iteration (respectively μ and k in algorithm 2).
The numbers that were chosen here were picked with only a
few tests and heuristical knowledge. A deeper investigation
could prove very beneficial.

7. REFERENCES
[1] K. Deb. Multi-Objective Optimization Using

Evolutionary Algorithms. John Wiley & Sons, Inc., New
York, NY, USA, 2001.

[2] J. Koza. Genetic Programming: On the Programming
of Computers by Means of Natural Selection. MIT
Press, Cambridge, MA, USA, 1992.

[3] E.-W. Lameijer, J. Kok, T. Bäck, and A. IJzerman.
The molecule evoluator: An interactive evolutionary
algorithm for the design of drug-like molecules. Journal
of Chemical Information and Modeling, 46(2):545 – 552,
2006.

[4] C. Lipinski, F. Lombardo, B. Dominy, and P. Feeney.
Experimental and computational approaches to
estimate solubility and permeability in drug discovery
and developments settings. Advanced Drug Delivery
Reviews, 46(1-3):3–26, 2001.

[5] S. W. Mahfoud. Niching methods for genetic
algorithms. PhD thesis, University of Illinois at Urbana
Champaign, Urbana, IL, USA, 1995.

[6] G. Rudolph and A. Agapie. Convergence properties of
some multi-objective evolutionary algorithms. In
Proceedings of the 2000 Congress on Evolutionary
Computation CEC00, pages 1010–1016, California,
USA, 2000. IEEE Press.

[7] D. Weininger. Smiles, a chemical language and
information system. 1. introduction to methodology
and encoding rules. Journal of Chemical Information
and Computer Science, 28(1):31–36, 1988.

1562

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

