
Optimizing Hierarchical Menus by Genetic Algorithm and
Simulated Annealing

Shouichi Matsui
SERL, CRIEPI

2-11-1 Iwado-kita, Komae
Tokyo 201-8511, Japan

matsui@criepi.denken.or.jp

Seiji Yamada
National Institute of Informatics

2-1-2 Hitotsubashi, Chiyoda
Tokyo 101-8430, Japan

seiji@nii.ac.jp

ABSTRACT
Hierarchical menus are now ubiquitous. The performance of the
menu depends on many factors: structure, layout, colors and so
on. There has been extensive research on novel menus, but there
has been little work on improving performance by optimizing the
menu’s structure. This paper proposes algorithms based on the ge-
netic algorithm (GA) and the simulated annealing (SA) for opti-
mizing the performance of menus. The algorithms aim to minimize
the average selection time of menu items by considering the user’s
pointer movement and search/decision time. We will show the ex-
perimental results on a static hierarchical menu of a cellular phone
as an example where a small screen and limited input device are
assumed. We will also show performance comparison of the GA-
based algorithm and the SA-based one by using wide varieties of
usage patterns.

Categories and Subject Descriptors
H.5.2 [Information Interfaces and Presentation]: User Interfaces
— Interaction styles, Screen design.

General Terms
Human Factors, Design, Algorithms

Keywords
Hierarchical menu, optimization, genetic algorithm, simulated an-
nealing.

1. INTRODUCTION
Hierarchical menus are one of the primary controls for issuing

commands in GUIs. These menus have submenus as menu items
and display submenus off to the side when they are selected as
shown in Figure 1. The performance of the menu, i.e., the aver-
age selection time of menu items, depends on many factors, in-
cluding its structure, layout, and colors. There have been many
studies on novel menus (e.g., [2, 3, 7]), but there has been little

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’08, July 12–16, 2008, Atlanta, Georgia, USA.
Copyright 2008 ACM 978-1-60558-130-9/08/07…$5.00.

Figure 1: Example of hierarchical menu for a web browser.

work on improving the performance of a menu by changing its
structure [1, 6, 11, 12]. Since a very simple search method gave
a fairly good improvement [1], we proposed an algorithm based on
the genetic algorithm (GA) for minimizing the average selection
time [12].

There have been many studies on menu-design and menu-layout
from the standpoint of the user interface. Francis et al. were the
first to optimize a multi-function display that is very similar to a
hierarchical menu using the simulated annealing (SA) [6]. Quiroz
et al. proposed an interactive evolution of a non-hierarchical menu
using an interactive evolutionary computation (IEC) approach [14].

Liu et al. applied a visual search model to menu design [11].
They used the Guided Search (GS) model to develop menu designs.
They defined a GS simulation model for a menu search task, and
estimated the model parameters that would provide the best fit be-
tween model predictions and experimental data. Then they used an
optimization algorithm to identify the menu design that minimized
the predicted search times according to predefined search frequen-
cies of different menu items, and they tested the design. Their re-
sults indicate that the GS model has the potential to be part of a
system for predicting or automating the design of menus.

Amant et al. showed the concepts to support the analysis of cel-
lular phone menu hierarchies [1]. They proposed a model-based
evaluation of cellular phone menu interaction, gathered data and
evaluated three models: Fitts’ law model, GOMS, and ACT-R.
They concluded that the prediction by GOMS was the best among
the three models. They also tried to improve menu selection time
by using a simple best-first search algorithm and got over 30% sav-
ings in selection time.

1587

This paper proposes algorithms based on the genetic algorithm
(GA) and the simulated annealing (SA) for optimizing the perfor-
mance of menus. The algorithms aim to minimize the average se-
lection time of menu items by considering the user’s pointer move-
ments and search/decision time.

We will show the experimental results on a static hierarchical
menu of a cellular phone as an example where a small screen and
limited input device are assumed. We will also show performance
comparison of GA-based algorithm and the SA-based one by using
wide variety of the usage patterns.

2. FORMULATION OF THE PROBLEM

2.1 Overview
The optimization problem of hierarchical menus can be consid-

ered as one dealing with placing menu items on the nodes of a tree.
Let us assume a tree where the maximum depth is D, the maximum
number of children that a node has is W , the root is the initial state,
and menu items are on nodes. An example of a hierarchical menu
is shown in Figure 2. As shown in the figure, some menu items
have children; i.e. some menu items have submenus. The time to
select the target item is the time to traverse from the root to the
target node. The problem is to minimize the average traversal time
with respect to the given search frequencies of menu items.

We cannot arbitrarily arrange the menu purely for efficiency. We
must respect the semantic relationships between the items. That is,
“Ringer Volume” is under the “Settings” category rather than vice
versa for good reason. To cope with the difficulties of representing
and reasoning about menu item semantics we introduce two met-
rics: functional similarity and menu granularity.

Functional similarity is a metric that represents the similarity of
two menu items in terms of their functions. We assume that the
functional similarity takes a value between 0 and 1; 0 means that
the two items have no similarity and 1 means that the two items
have very high similarity. For example it is very natural to assume
that “Create New Mail” and “Favorite Web Site” have low simi-
larity and that “Create New Mail” and “Inbox of Mail” have high
similarity. We use this metric to avoid placing items with low sim-
ilarity on the same submenu of a node. If items with low similarity
are put on the same submenu, then it becomes difficult for a user
to recognize and memorize the menu layout. The formal definition
will be given later.

Menu granularity is a metric that reflects the number of sub-
menus a node has as its descendants. We introduce this metric to
avoid placing an item that has many children and an item that has
no child as children of the same node. The formal definition will
be given later.

The problem of minimizing the average traversal time is a very
difficult one because of the following constraints;

• The traversal time from a node to its children is not constant;
it varies depending on the starting and ending nodes.

• Menu items usually belong to groups, and they have hierar-
chical constraints.

• We should consider the functional similarity and the menu
granularity of each item from the standpoint of usability.

2.2 Formulation
Let l be the level number, i is the ordering number in siblings,

and vl
i be a node of a tree (Figure 2). Moreover, let M = (V, E)

be a tree where V = {vl
i} denotes the nodes, and E = {eij}

level 0

level 1

levelm

V0
0

V0
1 V1

1 V1 V1

V0
m V1 V V

W -1

W -1

W -2

W -2
m m m

....

....

Search/
Decison
time

Up to
children

Pointing
time

W

t sd
0

t p
0

t p
1

t p
W-1

....

Figure 2: Tree structure of a hierarchical menu.

denotes the edges. We call the leaf nodes that correspond to generic
functions “terminal nodes.”

There are two kinds of menu item or node in M . One type is
terminal nodes that correspond to generic functions, and the other
is intermediate nodes. The terminal nodes cannot have children.

Let Ii represent a menu item and the total number of items be N ;
i.e., there are Ii(i = 1, · · · , N) menu items. Items that correspond
to generic functions are less than N , and some items/nodes are in-
termediate items/nodes that have submenu(s) as a child or children.
We assume that a menu item Ii is assigned to a node vl

i , therefore
we use Ii and vl

i interchangeably.
We also assume that the selection probability of the terminal

node/generic function is represented by Pri.

2.2.1 Selection Time
The selection time tl

i of a menu item/node vl
i on the hierarchical

level l can be expressed using the search/decision time tsd
i and the

pointing time tp
i as tl

i = tsd
i + tp

i [5]. We also consider the time to
reach level l; therefore, the whole selection time Ti of a node vl

i on
level l can be expressed as Ti =

Pl−1
j=0 tj

ij
+ tl

i. Thus the average
selection time Tavg is as follows:

Tavg =
NX

i=1

PriTi. (1)

2.2.2 Pointing Time
As Silfverberg et al. [15] and Cockburn [5] reported, the point-

ing time tp
i can be expressed by using Fitts’ law as tp

i = ap +
bp log2(Ai/Wi + 1), where the coefficients ap and bp are deter-
mined empirically by regressing the observed pointing time, Ai is
the distance moved, and Wi is the width of the target.

Fitts’ law describes the time taken to acquire, or point to, a vi-
sual target. It is based on the amount of information that a person
must transmit through his/her motor system to move to an item
– small, distant targets demand more information than large close
ones, and consequently they take longer to acquire. Therefore, the
term log2(Ai/Wi + 1) is called the index of difficulty (ID).

2.2.3 Search/Decision Time
We assume that the search/ decision time tsd

i can be expressed
as follows [5].

• For an unexperienced user, the time required for a linear
search is tsd

i = bsdnl + asd, where nl is the number of
items that a level l node has, and the coefficients asd and bsd

are determined empirically by regressing the observed search
time.

1588

• For an expert, we can assume that the time tsd
i obeys Hick-

Hyman’s law and can be expressed as. tsd
i = bsdHi +

asd, Hi = log2(1/Prl
i), where the coefficients asd and bsd

are determined empirically by regressing the observed search
time. If we can assume that all items are equally probable,
H = log2(n

l) iff ∀Prl
i = 1/nl .

2.2.4 Functional Similarity
Toms et al. reported the result of generating a menu hierarchy

from functional descriptions using cluster analysis [17]. However,
this approach is time consuming therefore, we chose to use another
one. We represent the functional similarity of item Ix and Iy by
using a function s(Ix, Iy) which takes a value between 0 and 1. Let
us assume that a generic function of each item Ii can be specified
by some words wli = {w0, w1, · · · }, and let WL =

S
iwli be the

whole words. Let us also assume that an intermediate node can be
characterized by the words by which the children are specified. Let
x be a vector in which element xi represents the frequency of the
i-th word in its specification, and let y be a vector of node y. Then,

the functional similarity s(Ix, Iy) is defined as s(Ix, Iy) =
x · y
|x||y| .

This similarity is widely utilized in information retrieval field [4].
Let us consider a node vl

i that has m children. The penalty of
functional similarity P s

vl
i

of node vl
i is defined as P s

vl
i

=
Pm−1

x=0

Pm−1
y=i+1

(1 − s(Ix, Iy)). And the total penalty P s is defined as follows:

P s =
X

vl
i∈{V \v0

0}
P s

vl
i
. (2)

2.2.5 Menu Granularity
The menu granularity gvl

i
of a node vl

i is defined as the total

number of descendants. If node vl
i is a terminal node, then gvl

i
= 0.

Moreover, if node vl
i has m children (vl+1

j , j = 0, · · · , m − 1)
whose menu granularities are g

vl+1
j

, (j = 0, · · · , m− 1), then gvl
i

is defined as gvl
i
=

Pm−1
j=0 g

vl+1
j

. The penalty of menu granularity

P g

vl
i

of node vl
i is defined as P g

vl
i

=
Pm−1

i=0

Pm−1
j=i+1

˛̨
˛gvl

i
− gvl

j

˛̨
˛.

And the total penalty P g is defined as follows:

P g =
X

vl
i∈{V \v0

0}
P g

vl
i

. (3)

2.2.6 Objective Function
The problem is to minimize the following objective function:

f = Tavg + αP s + βP g, (4)

where α and β are constants that control the preference of func-
tional similarity and menu granularity.

2.3 Local/Partial Optimization

2.3.1 Placing Items as Children of a Node
Let us consider a node vl

i on level l that has n ≤ W children
vl+1

j (j = 0, · · · , n − 1), and represent the traversal time from vl
i

to vl+1
j , i.e., the pointing time for vl+1

j by tl
j . When we want to

place Ij , (j = 0, · · · , n − 1) menu items whose selection proba-
bilities are represented by Prj as the children of the vl

i, the average
pointing time Tvl

i
,

Tvl
i

=
n−1X

j=0

Prjt
l
j , (5)

is minimized as follows:

1. Sort Ii using Pri as the sort key in descending order, and let
the result be I ′

i(i = 0, · · · , n − 1),

2. Sort vl+1
i using tl

i as the sort key in ascending order, and let

the results be v
′(l+1)
i (i = 0, · · · , n − 1)

3. Placing I ′
i on the node v

′(l+1)
i gives the minimum average

pointing time from node vl
i.

2.3.2 Optimization Problem
When menu items that are placed as the children of a node V

are given, the placement that minimizes the average pointing time
is straightforward. Therefore, the problem is to find the best as-
signment of menu items to nodes of a tree that minimizes Equa-
tion (4), where nodes have a fixed capacity of W items. There
should be at least L = �N/W � nodes in the tree and N items
placed on some node. The first node has W items chosen from
N items, and the second node has W items chosen from N − W
items, and so on, so the search space of the problem is roughly
NCW × N−W CW × · · · × N−LW CW = N !/(W !)L, therefore
the problem is a difficult combinatorial optimization problem. For
instance, consider the case of N = 200, W = 10. The search
space is roughly 200!/((10!)20) ∼ 10243 .

3. ALGORITHMS BASED ON GA AND SA

3.1 Basic Strategy
Previous studies showed that breadth was preferable to depth

[9, 10, 16, 18, 19]. Schultz and Curran reported that menu breadth
was preferable to depth [16]. Larson and Czerwinski reported the
results of depth and breadth tradeoff issues in the design of GUIs
[10]. Their results showed that, while increased depth did harm
search performance on the web, a medium condition of depth and
breadth outperformed the broadest shallow web structure overall.

Zaphiris studied the effect of depth and breadth in the arrange-
ment of web link hierarchies on user preference, response time,
and errors [18]. He showed that previous menu depth/breath trade-
off procedures were applicable to the web link domain. He also
showed that task completion time increased as the depth of the
web site structure increased. Zaphiris et al. also showed the results
of the study investigating age related differences as they relate to
the depth versus breadth tradeoff in hierarchical online information
systems [19]. They showed that shallow hierarchies were preferred
to deep hierarchies, and seniors were slower but did not make more
errors than their younger counterparts when browsing web pages.

Because the previous studies showed that breadth was preferable
to depth, we use a kind of breadth-first search algorithm (shown
later) as the core of the proposed GA.

3.2 GA-based Algorithm

3.2.1 Chromosome and Mapping from Genotype to
Phenotype

A simple way to represent a solution of the problem is a tree.
But there is a problem that genetic operators such as crossover or
mutation may generate an infeasible solution; i.e., the tree does not
contain all the generic functions. There are two ways to cope with
this problem. The first way is to convert an infeasible solution into a
feasible one, and also modify the chromosome. The other way is to
use a chromosome representation that does not generate infeasible
solutions. We based the proposed algorithm on the latter approach.

1589

Figure 3: Mapping from permutation to a tree structure.

Since breadth is preferable to depth, an algorithm that places
menu items Ii one by one on a usable node that has the smallest
node number can find a good solution. We number each node from
root to bottom, and from left to right. We use an algorithm that
assigns Ii to a node as follows:

1. A chromosome of the GA is a sequence of Ii, i.e., a chromo-
some can be represented as a permutation of numbers.

2. According to the permutation, assign menu items Ii one by
one to vacant positions of the node that has the smallest node
number.

3. If a generic function is assigned to a node, then the number
of children that the node can have is decreased by 1.

If we have a sufficient number of intermediate nodes, we can
search enough space to find the optimal solution.

Two examples of assignment according to permutation are de-
picted in Figure 3, where W is 4. In the figure, numbers in bold (1,
2, 3) represent the intermediate node. Let us consider “Permutation
1”. In this case, we can assign “10”, “5”, and “11” to the root node.
But we cannot assign “7” to the root node, because the root node
cannot have any children if we did. Therefore, we should assign
“7” to the next level node, and the remaining position of the root
node should be an intermediate node. Because there is an interme-
diate node in the root node, we can assign “1” to the root node.

In the case of “Permutation 2”, the mapping is straightforward.
The first number “1” is an intermediate node, so we assign it to
the root node, and the number of vacant positions in the tree is
incremented by 4. The next number “10” can be assigned to the
root node, and “3” and “5” can be assigned to the root node. The
remaining numbers are assigned to the children of the root nodes.

3.2.2 Crossover and Mutation
We used a crossover operator that does not generate an invalid

chromosome. As described above, a chromosome is a permutation
of numbers; therefore, we used crossover operators that are devel-
oped for the representation. We used the CX (Cycle Crossover)
[13], OX (Order Crossover) [13], PMX (Partially-Mapped Crossover)
[13] for the crossover operators and compared the performance.

We use the swap mutation as the mutation operator. Randomly
chosen genes at position p and q are swapped.

The crossover and mutation operators do not generate invalid
chromosomes; i.e., offspring are always valid permutations.

3.2.3 Other GA Parameters
The selection of the GA is tournament selection of size 2. The

initial population is generated by random initialization; i.e., a chro-
mosome is a random permutation of numbers. We used a steady

STEP1: T ← Tmax

select a permutation Vc at random

STEP2: pick a point Vn from the neighborhood of Vc

if eval(Vn) is better than eval(Vc)
then select it (Vc ← Vn)

else select it with probability e−
Δeval

T

repeat this step kT times

STEP3: set T ← γT
if T ≥ Tmin then goto STEP2 else goto STEP1

Figure 4: Outline of SA-based algorithm.

root

func1

func2

int1

int2

func3

func4

func5

func6

root

func1

func2

func3

int1

func4

func5

func6

left: before local search right: after local search

Figure 5: Local search.

state GA, for which the population size is 100, and the mutation
rate was one swap per chromosome.

3.3 SA-based Algorithm
We also developed an algorithm based on the simulated anneal-

ing (SA). The outline of the algorithm that is adopted from the book
by Michalewicz and Fogel [13] is shown in Figure 4. We used the
same representation and mapping of the GA; therefore, Vc and Vn

in Figure 4 represent permutations of numbers that correspond to
Ii. We also used the same local search in the SA-based algorithm.
The neighborhood is generated by using the swap mutation opera-
tor described above.

We used the following settings based on the preliminary experi-
ments:

Initial temperature: Tmax = 10
Minimum temperature: Tmin = 0.001
Cooling ratio: γ = 0.9
Cooling interval: kT = 100

3.4 Local Search
We used a local search method to improve the performance of

GA and SA. The method finds an unused node vl
i; i.e., finds an in-

termediate node that has no child, and swaps vl
i with a node that is

the sibling’s child vl+1
j when swapping the two decreases the aver-

age selection time. Figure 5 shows an example of this procedure.
In the left tree, the intermediate node “int2” has no child, so it is
swapped with “func3”, and the result is the right part.

4. EXPERIMENTS
We conducted experiments to confirm the effectiveness of the

proposed algorithm, to compare the performance of GA-based and
SA-based algorithms, to compare the performance of different cross-
over operators CX, OX, and PMX.

The target was a cellular phone that is used by one of the au-
thors. The phone [8] has 24 keys as shown in Figure 6. The target
phone has hardware keys for “E-mail”, “EZweb”, “Phone book”,

1590

Figure 6: Key layout of the target cellular phone.

and “Application”. Also there is a “Shortcut”key (cursor down).
The root menu thus has the four submenus corresponding to the
hardware keys.

4.1 Experimental Data

4.1.1 Pointing Time and Search/Decision Time
The index of difficulty for 24 × 24 key pairs were calculated as

follows. We measured the relative coordinates of the center (x, y)
of each key and measured width and height of each key. We cal-
culated the index of difficulty to an accuracy of one digit after the
decimal point. This gave us 28 groups of indices of difficulty.

We measured the pointing time of one-handed thumb users for
the above 28 groups by recording the tone produced by each key
press [1]. Unpaid volunteers participated in the experiment. We
prepared 28 tasks corresponding to the 28 groups. We got tp

i =
192 + 63 log2(Ai/Wi + 1) (ms) for predicting the pointing time,
and the equation is very similar to the one reported by Silfvergerg et
al. [15]1 Although the target phone has the ability to select a menu
item by pressing a key that is prefixed to item title, we assumed that
all selections were done by cursor movements.

The target of this experiments was an expert; therefore, we used
tsd
i = 80 log2(n

l) + 240 (ms) [5]2;

4.1.2 Usage Frequency Data and Similarity
We gathered the usage frequency data as follows. The first author

recorded the daily usage of each function for two months, and we
generated the usage frequency data from the record. There are 129
terminal nodes in the data. We call the data “Original.”

We also generated the following dataset from the “Original.” We
assumed a user who frequently used e-mail application (Mail2,
Mail3) and a user who frequently used Web application (Web2,
Web3).

Mail2 The frequencies of E-mail related items are multiplied by 2.

Mail3 The frequencies of E-mail related items are multiplied by 3.

Web2 The frequencies of Web related items are multiplied by 2.

Web3 The frequencies of Web related items are multiplied by 3.

We assigned three to five words to each generic function accord-
ing to the users’ manual of the target phone [8].

1tp
i = 176 + 64 log2(Ai/Wi + 1) (ms).

2The equation is derived from experiments conducted for a com-
puter display, and is not for a cellular phone.

4.2 Results for Original Frequency Data
We conducted the following experiments.

case 1 Typical Usage: This experiment was conducted to assess
the typical improvement by the GA and SA. The maximum
width W was 16.

case 2 Limited Breadth: Although breadth is preferable to depth,
pressing “Down” key many times is sometimes tedious. This
experiment was conducted to see the effect of limiting the
breadth. In this case, we set W to 12, 9, and 6.

Because GA and SA are stochastic algorithms, we conducted 50
runs for every test case, and the results shown in Table 1 are av-
erages over 50 runs. The two parameters for weights were set to
α = 10.0 and β = 1.0. The maximum number of fitness evalua-
tions was 100,000.

4.2.1 Performance Comparison
Table 1 shows the results (Tave) of 4 algorithms, GA-based ones

with CX, OX, PMX, and SA-based one. Figures 7 and 8 show
the results of average selection time and the values of objective
function in box-plot format.

In Table 1, “Local Move” shows the results of a local modifica-
tion that places menu items according to their frequency, i.e., the
most frequently used item is placed as the top item, and so on.
“Imp(%)” means the improvement from the original menus that is
defined as Imp = (Torig −Topt)/Torig × 100, where Torig is the
average traversal time of the original menu and Topt is the average
traversal time of optimized menu. The bold faces mean the best
among the algorithms. The “ave” means the average over 50 runs,
“max” means the maximum and “min” means the minimum among
50 runs. As the table shows, the proposed algorithms can generate
menu with shorter average selection times. Moreover, limiting the
number of usable keys gave us better menus. This is partly be-
cause the search/decision time is proportional to log2(n), where
n is the number of items. As the number of items increases, the
search/decision time increase; therefore, the average selection time
increase. Limiting the number of keys to 6 gave longer selection
times.

From Table 1, Figure 7, and Figure 8 we can conclude as follows:

• The SA-based algorithm performed best from the stand point
of average performance for W = 12, 9, 6. The GA-based
one using PMX performed best for W = 16. The SA-based
algorithm found menus with smaller average value of objec-
tive function in all cases. It also found the minimum in all
cases.

• The variance of objective function is large in GA-based algo-
rithms when compared with the SA-based one. There is no
significant difference among the GA-based algorithms.

• The GA-based algorithm using CX found a menu structure
with the minimum average selection time for W = 12, 6.
The SA-based one found the best for W = 16 and the the
GA-based one using OX found the best for W = 9.

The original menu (Tave=3331 (ms)) and the best menu of Case
2 (W = 9), with the minimum objective function, (Tave=1953
(ms)) that was found by the GA-based algorithm with OX are shown
in Figure 11. In the figure, items and intermediate nodes are shown
in boxes and the vertical ordering shows the placement in a sin-
gle level menu. The box is omitted for low usage frequency items/
intermediate nodes for the sake of saving space.

1591

Table 1: Improvements in Average Selection Time.

CX OX PMX SA
Tave(ms) Imp.(%) Tave(ms) Imp.(%) Tave(ms) Imp.(%) Tave(ms) Imp.(%)

Case ave min ave max ave min ave max ave min ave max ave min ave max
Original 3331 0.0 3331 0.0 3331 0.0 3331 0.0
Local Move 2812 15.0 2812 15.0 2812 15.0 2812 15.0
Case 1 (W =16) 2036 1949 38.9 41.5 2032 1972 39.0 40.8 2029 1979 39.1 40.6 2032 1917 39.0 42.4
Case 2 (W =12) 1980 1886 40.6 43.4 1985 1918 40.4 42.4 1970 1930 40.9 42.1 1967 1931 41.0 42.0
Case 2 (W =9) 1949 1915 41.5 42.5 1948 1887 41.5 43.4 1956 1924 41.3 42.2 1947 1893 41.5 43.2
Case 2 (W =6) 2233 2004 33.0 39.9 2245 2015 32.6 39.5 2223 2015 33.3 39.5 2217 2014 33.4 39.5

Table 2: Effect of Weights.
CX OX PMX SA

weight Tave(ms) Imp.(%) Tave(ms) Imp.(%) Tave(ms) Imp.(%) Tave(ms) Imp.(%)
α β ave min ave max ave min ave max ave min ave max ave min ave max
0 0 1823 1793 45.3 46.2 1819 1749 45.4 47.5 1820 1788 45.4 46.3 1797 1784 46.1 46.4
5 1 1919 1871 42.4 43.8 1918 1873 42.4 43.8 1917 1876 42.4 43.7 1925 1885 42.2 43.4

20 1 2013 1925 39.6 42.2 2017 1921 39.4 42.3 1998 1935 40.0 41.9 1997 1922 40.1 42.3
40 1 2072 1916 37.8 42.5 2053 1939 38.4 41.8 1949 1920 41.5 42.3 2041 1922 38.7 42.3
20 5 2020 1940 39.4 41.8 2013 1927 39.6 42.1 2015 1927 39.5 42.1 2011 1901 39.6 42.9
20 10 2005 1902 39.8 42.9 2002 1910 39.9 42.7 1995 1917 40.1 42.5 2011 1923 39.6 42.3

CX OX PMX SA

19
00

21
00

23
00

W=6

A
ve

ra
ge

 S
el

ec
tio

n
T

im
e

(m
s)

CX OX PMX SA

19
00

21
00

23
00

W=9

A
ve

ra
ge

 S
el

ec
tio

n
T

im
e

(m
s)

CX OX PMX SA

19
00

21
00

23
00

W=12

A
ve

ra
ge

 S
el

ec
tio

n
T

im
e

(m
s)

CX OX PMX SA

19
00

21
00

23
00

W=16

A
ve

ra
ge

 S
el

ec
tio

n
T

im
e

(m
s)

Figure 7: Comparison of average selection time (Original).

In Figure 11, items with high usage frequency are placed on a
smaller level and on an upper position. For example, the most fre-
quently used “Inbox folder 2”, which is placed under the “Inbox”
menu in the original menu, is placed as a child of “E-Mail” in the
optimized menu. Note also that “Shortcut” is not used in the origi-
nal menu, but it is fully utilized in the optimized menu; frequently
used URLs are placed in “Shortcut”.

CX OX PMX SA

45
00

47
00

W=6

O
bj

ec
tiv

e

CX OX PMX SA

57
00

59
00

W=9

O
bj

ec
tiv

e

CX OX PMX SA

75
00

77
00

79
00

81
00

W=12

O
bj

ec
tiv

e

CX OX PMX SA

98
00

10
20

0

W=16

O
bj

ec
tiv

e

Figure 8: Comparison of objective function (Original).

4.2.2 Effects of Weights
We introduced two weights for the penalties of functional simi-

larity and of menu granularity. Table 2 shows the results of different
weight settings for the case W = 9. Table 2 shows that the aver-
age selection time increased as we increased α. The effect of β is
not the same, the average selection time did not always increased
as we increased β. This is partly because there is the constraint of
maximum width W .

The SA-based algorithm performed well for wide varieties of

1592

CX OX PMX SA

54
00

58
00

62
00

Mail2

O
bj

ec
tiv

e

CX OX PMX SA

54
00

58
00

62
00

Mail3

O
bj

ec
tiv

e

CX OX PMX SA

18
00

20
00

22
00

Mail2

A
ve

ra
ge

 S
el

ec
tio

n
T

im
e

(m
s)

CX OX PMX SA

18
00

20
00

22
00

Mail3

A
ve

ra
ge

 S
el

ec
tio

n
T

im
e

(m
s)

Figure 9: Performance comparison (Mail2, Mail3).

weight settings from the stand point of average performance. How-
ever, from the stand point of minimum average selection time, the
GA-based one with CX or OX performed better.

4.3 Results for Other Dataset
Figures 9 and 10 depict the results of the average selection time

and the values of objective function in box-plot format for the “Mail2”,
“Mail3”, “Web2”, and “Web3” datasets. We can conclude as fol-
lows:

• The SA-based algorithm performed well for the four datasets
from the stand point of average performance. It found menus
with smaller objective function.

• The GA-based algorithm found a menu with the minimum
average selection time for “Mail2” and “Mail3” datasets.

5. DISCUSSION AND FUTURE WORK
The experiments show that the proposed algorithms can gener-

ate better menu hierarchies for the target phone. The proposed 4
algorithms found menus with nearly 40% reduction in the average
selection time. The SA-based algorithm performed best from the
standpoint of average performance.

Our model has four parameters (ap, bp,asd, bsd) that are deter-
mined empirically by regressing the observed data, and the average
selection time depends these parameters. However, we confirmed
that we could get nearly same improvements for wide ranges of the
parameters’ settings.

Because the target of the proposed algorithm is not limited to
cellular phones, and the preliminary results are promising, we will
apply the algorithm to wider varieties of targets including other hi-
erarchical menus in office application and tree-structured data base
like bookmark of Web browser. In this paper we only focused on
the static menu as the target; adaptive/dynamic menu (e.g., [2,3,7])
that changes menu contents in adapting to varying usage is a future
target.

The data that were used in the experiments, especially selection
frequency data, are limited, therefore it is also a future work to

CX OX PMX SA

54
00

58
00

62
00

Web2

O
bj

ec
tiv

e

CX OX PMX SA

54
00

58
00

62
00

Web3

O
bj

ec
tiv

e

CX OX PMX SA

18
00

20
00

22
00

Web2

A
ve

ra
ge

 S
el

ec
tio

n
T

im
e

(m
s)

CX OX PMX SA

18
00

20
00

22
00

Web3

A
ve

ra
ge

 S
el

ec
tio

n
T

im
e

(m
s)

Figure 10: Performance comparison (Web2, Web3).

gather wider variety of usage data, and confirm the effectiveness of
the proposed method.

We used CX, OX, and PMX as the crossover operators and there
were no significant performance difference among them and we
might have to develop a new crossover operator to improve the per-
formance of GA-based algorithm.

6. CONCLUSION
We proposed GA-based and SA-based algorithms for minimiz-

ing the average selection time of menu items that consider the user’s
pointer movement time and the decision time. The results showed
that the algorithms can generate a better menu structure. They
found over 40% reduction in the average selection time for wide
variety of usage patterns. The target of the proposed algorithms is
not limited to cellular phones, and the algorithms can be applied to
other hierarchical menus.

7. REFERENCES
[1] St. Amant, T.E. Horton, and F.E. Ritter. Model-based

evaluation of cell phone menu interaction. In Proc. CHI
2004, pages 343–350 2004.

[2] D. Ahlström. Modeling and improving selection in cascading
pull-down menus using Fitts’ law, the steering law and force
fields. In Proc. CHI 2005, pages 61–70, 2005.

[3] J. Beck, S.H. Han, and J. Park. Presenting a submenu
window for menu search on a cellular phone. Int. J. of
Human-Computer Interaction, 20(3):233–245, 2006.

[4] R. Baeza-Yates and B. Ribeiro-Neto. Modern Information
Retrieval, Addison-Wesley,1999.

[5] A. Cockburn, G. Gutwin, and S. Greenberg A predictive
model of menu performance. In Proc. CHI 2007, pages
627–636, 2007.

[6] G. Francis. Designing multifunction displays: an
optimization approach. Int. J. of Cognitive Ergonomics,
4(2):107–124, 2000.

[7] L. Findlater and J. McGrenere. A comparison of static,
adaptive, and adaptable menus. In Proc. CHI 2004, pages
89–96, 2004.

1593

root

E-Mail

EZweb

Application

Shortcut

Inbox

Check,Mail,New

Folder1

Folder2

Folder3

Folder4

Folder5

Folder0

Favorite Site

Folder1

Folder2

Folder3

URL1-2

URL1-3

URL1-4

URL1-5

URL1-6

URL1-7

URL1-8

URL1-9

URL1-10

URL1-11

URL1-12

URL1-13

root

E-Mail

EZWeb

Application

Shortcut

Folder2

Inbox

Folder3

Folder5

FUNC

Folder0

Folder4

Folder1

Check,E-Mail,Mail,New,

Folder1

INT1

INT2

URL1-11

URL1-5

URL1-2

URL1-8

URL1-6

URL1-3

URL1-4

URL1-13

URL1-9

URL1-7

URL1-10

URL1-12

Original Optimized (W = 9)

Figure 11: Comparison of menus.

[8] KDDI: Manual for CASIO W43CA,
http://www.au.kddi.com/torisetsu/pdf/w43ca/w43ca_torisetsu.pdf,
2006.

[9] J. I. Kiger. The depth/breadth trade-off in the design of
menu-driven user interfaces. Int. J. Man-Mach. Stud.,
20(2):201–213, 1984.

[10] K. Larson and M. Czerwinski. Web page design: implication
of memory, structure and scent for information retrieval. In
Proc. CHI 1998, pages 25–32, 1998.

[11] B. Liu, G. Francis, and G. Salvendy. Applying models of
visual search to menu design. Int. J. Human-Computer
Studies, 56:307–330, 2002.

[12] S. Matsui and S. Yamada. Genetic algorithm can optimize
hierarchical menus, In Proc. of CHI 2008, 2008 (to appear).

[13] Z. Michalewicz and D.B. Fogel. How to solve it: modern
heuristics, Springer-Verlag, 2000.

[14] J.C. Quiroz, S.J. Louis, and S. M. Dascalu. Interactive
evolution of XUL user interfaces. In Proc. of GECCO 2007,
pages 2151–2158, 2007.

[15] M. Silfverberg, I.S. MacKenzie, and T. Kauppinen.

Predicting text entry speed on mobile phones. In Proc. CHI
2000, pages 9–16, 2000.

[16] E.E. Schultz Jr. and P.S. Curran. Menu structure and ordering
of menu selection: independent or interactive effects?
SIGCHI Bull., 18(2):69–71, 1986.

[17] M.L. Toms, M.A. Cummings-Hill, D.G. Curry, and
S.M. Cone. Using cluster analysis for deriving menu
structures for automotive mobile multimedia applications.
SAE Technical Paper Series 2001-01-0359, SAE, 2001.

[18] P. Zaphiris. Depth vs breadth in the arrangement of web
links. In Proc. 44th Annual Meeting of the Human Factors
and Ergonomics Society, pages 139–144, 2000.

[19] P. Zaphiris, S.H. Kurniawan, and R.D. Ellis. Age related
difference and the depth vs. breadth tradeoffs in hierarchical
online information systems. In Proc. User Interfaces for All,
LNCS 2615, pages 23–42, 2003.

[20] M. Ziefle and S. Bay. Mental models of a cellular phone
menu. Comparing older and younger novice users. In Proc.
MobileHCI 2004, LNCS 3160, pages 25–37, 2004.

1594

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

