
Multi-Resistant Radar Jamming Using Genetic Algorithms 
 

Hans J. F. Moen 
Norwegian Defence Research Establishment  

P.O.Box 25, NO-2027 Kjeller, Norway  

jonas.moen@ffi.no 

Stein Kristoffersen 
Norwegian Defence Research Establishment  

P.O.Box 25, NO-2027 Kjeller, Norway  

stein.kristoffersen@ffi.no 
 

ABSTRACT 
The next generation of advanced self-protection jammers is 
expected to deliver effective and energy efficient jamming against 
modern air tracking radars. However, optimizing such experimental 
jammers is a challenging task. In this paper the novelty and 
applicability of using genetic algorithms (GA) for developing 
advanced digital radio frequency memory jammer techniques 
against radars employing the constant false alarm rate detection 
algorithm are demonstrated. It is shown how GA can handle the 
large and complex solution space of the problem, finding a Pareto 
front in the problem domain of jammer transmitting power versus 
detectability, producing new jamming techniques and fresh insight 
into the complex radar-jammer dynamics. As a main result, it is 
demonstrated how GA is capable of producing effective multi-
resistant jamming techniques. This is an important jamming 
property when operating against uncertain radar detection 
algorithms in real world scenarios. Furthermore, single- and multi-
resistant jamming techniques are shown to handle noisy 
environments, and the important issue of jamming robustness 
against varying target radar cross section is addressed. The energy 
efficiency of GA jamming techniques is investigated by comparing 
the efficiency of more conventional noise jamming techniques. 

Categories and Subject Descriptors 
G.1.6 [Numerical Analysis]: Optimization; I.2.8 [Artificial 
Intelligence]: Problem Solving, Control Methods, and Search;  
J.7 [Computer Applications]: Military 

General Terms: Design, Performance 

Keywords: Jamming technique design, Digital RF Memory, 
pulse-Doppler radar, constant false alarm rate, genetic algorithm, 
multi-objective optimization, multi-resistant optimization 

1. INTRODUCTION 
Advanced digital radio frequency memory (DRFM) self-protection 
jammers [4, 7, 10] against radars promise much lower energy output 
compared to conventional noise jammers [5] and are capable of 
producing far more complex jamming signals than standard DRFM 
jammers [11]. The radar-jammer dynamics of such a self-protection 
system are illustrated in Figure 1. In this setting the radar transmits a 
waveform and receives echoes from the target and a self-protection 

jammer on-board the target. In addition there are clutter reflections 
and thermal noise in the system, forcing some kind of noise filtering 
on the radar echo signal for target detection and tracking. One of the 
most commonly employed automatic detection methods is the 
constant false alarm rate (CFAR) detection algorithm [12]. The 
purpose of the on-board jammer is to manipulate the received radar 
signal in order to deny the radar detecting and tracking the target. 
The complexity of the problem makes it difficult to use 
conventional optimization methods for technique development as it 
is hard to obtain mathematical descriptions of the system as a whole. 
In addition, the solution space is vast, could be non-linear and may 
contain a multitude of local optima. This results in the need for 
alternative methods for realizing the full potential of this type of 
jammers. 
Genetic algorithms (GA) [2] offer efficient and robust global 
optimization inspired by the theory of evolution. Previous studies 
[3, 6, 9] demonstrate the feasibility of using GA in developing 
electronic countermeasures (ECM) techniques for range-gate pull-
off against tracking radars using standard DRFM jammers. The aim 
of this study, however, is to demonstrate the applicability of using 
GA for developing promising counter detection jamming techniques 
for the next generation of advanced DRFM jammers. 

We look primarily for new types or 'structures' of jamming 
techniques and are not that concerned about convergence speed, 
finding optimal parameters or performing complete analysis of all 
results.  

In this paper the MATLAB Genetic Algorithm Toolbox [8] has 
been used for all simulations. 

Section 2 explains the radar and jammer modeling and section 3 
introduces the important jammer objective list stating what we want 
to achieve. In section 4 the case of single-resistant jamming is 
investigated, i.e. radar CFAR algorithm is known, before multi-
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Figure 1: Radar-jammer dynamics. Radar transmits a 
waveform (brown) and receives echoes from target (blue), 
jammer (red) and clutter (green). In addition there is thermal 
noise in the system (grey). 
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resistant jamming is explored in section 5. Both cases are analysed 
for robustness against noise and variations in target radar cross 
section (RCS). Finally, findings are summarized and conclusions are 
drawn in section 6. 

2. RADAR AND JAMMER MODELING 
In this study advanced DRFM jamming for self-protection against 
modern coherent pulse-Doppler radars is investigated. 

2.1 Constant PRI Pulse-Doppler Radar 
Pulse-Doppler radars usually coherently process batches or bursts of 
pulses with constant pulse repetition interval (PRI), as illustrated in 
Figure 2a. The radar takes complex samples of the received signals 
at a rate consistent with one complex sample per range resolution 
cell. This signal vector is folded at the PRI rate to position all 
samples from the same range in the same column, Figure 2b. After 
folding, a fast Fourier transform (FFT) is applied to each range 
column to separate signal components with different Doppler 
frequency offset. A radar range-Doppler (RD) matrix of amplitudes 
then results from one coherent processing interval, Figure 2c. 
Thermal noise in the radar RD matrix can be modeled as white 
noise given by [12] 

( ), 0,i jA N σ=               (1) 

where Ai,j is amplitude for pixel i,j in radar RD matrix given by a 
normal noise statistics with mean 0 and standard deviation σ. The 
energy deposited in the radar RD matrix is the sum of all squared 
RD cells. 
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Figure 2: a) constant PRI puls-Doppler radar signal and echo b) 
folded at the PRI rate and a FFT is applied to the Doppler axis 
producing c) an amplitude radar RD matrix. 

2.2 Radar CFAR Processing 
Modern radars typically use CFAR processing [12] to declare 
detections in the radar RD matrix as illustrated in Figure 3a. CFAR 
calculates the ratio of the amplitude in a cell under test (CUT) 
relative to a local background, illustrated by the green CFAR frame 
in Figure 3b. There are also radars using one-dimensional CFAR, 
range only frame or Doppler only frame. The local background 
level can be calculated in a number of ways. Computing the mean 
amplitude in a number of neighboring RD cells is the most 
common. This version of CFAR is called cell averaging CFAR or 
CA-CFAR and is used throughout this paper. Typically there are 
guard gates adjacent to the CUT to avoid leakage from the CUT 

contributing to the local background, which might reduce sensitivity 
to targets straddling the resolution cells. This calculation is done for 
all RD cells and results in a new radar RD CFAR ratio matrix as 
seen in Figure 3c, which is usually thresholded to produce a CFAR 
detection matrix. 
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Figure 3: a) CFAR processing of a radar RD matrix b) using 
5×5 CFAR frame giving c) a radar RD CFAR ratio matrix. 

2.3 Advanced DRFM Jammer 
An advanced DRFM based radar jammer stores a copy of each radar 
pulse and uses it as the basis signal for the jamming signal [11]. The 
stored radar signal can be delayed, amplitude modulated and its 
frequency can be changed. These modifications are done to produce 
a false target with parameters different from the real target being 
protected by the jammer. A fundamental limitation in standard 
DRFMs is that at a given time instant only one set of modulation 
parameters can be applied, i.e. single delay, amplitude and Doppler. 
The advanced DRFM jammer can produce multiple simultaneous 
overlapping jamming pulses with individual modulation parameters 
through an additional modulator. This type of DRFM jammer has 
been described in the context of countermeasures to imaging radars 
in [4, 7, 10]. The modulator is illustrated in Figure 4a with a 
possible radar RD matrix in Figure 4b resulting from jamming, 
where jammer affected RD cells are in red. The effect of the 
advanced DRFM jammer on a pulse-Doppler radar can be modeled 
by generating a separate complex RD matrix resulting from the 
jamming and adding it to the radar RD matrix. This assumes the 
jammer can produce its RD matrix synchronized with the radar 
matrix, with the same resolution in both directions. 
The jammer matrix is coded as a chromosome of dimension 
32×m×n bits, where m is the number of range cells and n is the 
number of Doppler cells in the jammer signal. Each Ai,j  amplitude 
RD cell in the jammer matrix has fixed chromosome position when 
converting from genotype to phenotype. 
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Figure 4: a) advanced DRFM jammer and b) the radar RD 
matrix affected by jamming in red. 
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3. JAMMER OBJECTIVES 
The main objective of self-protection jamming is to deny radar 
detection of the target in a real environment without producing new 
detections on the jamming signal. In addition the jamming signal 
should not trigger warning functions in the radar. Moreover, this 
should be done robustly at 'minimum cost' to the jammer. Hence, 
the jamming should 

1. suppress target detection and not produce new detections in a 
realistic noisy environment with dynamic target RCS using 
lowest possible transmitting power, 

2. be robust against a broad range of radar CFAR detection 
algorithms, i.e. multi-resistant jamming, 

3. be robust against variations in radar and jammer parameters. 

4. SINGLE-RESISTANT JAMMING 
In this section the first and primary objective of the jammer 
objective list is addressed. Known radar CFAR detection algorithm 
is assumed. For every generation in the GA each individual, which 
represents a particular jamming technique, produces a 
corresponding radar RD CFAR ratio matrix, forming the basis for 
the fitness evaluation. In this case fitness is set to Rmax, which is the 
maximum value of the radar CFAR ratio matrix. MATLAB pseudo 
code for the simulation is shown below. 
for i=1:populationSize %loop over population 
 GetJammerRDMatrix(GetChromosome(population,i)) 
 GetRadarRDMatrix(JammerRDMatrix,TargetRDMatrix) 
 GetRadarCFARRatioMaxtrix(RadarRDMatrix,CFARtype) 
 F=max(RadarCFARRatioMaxtrix) %report fitness  
end 

The target is always in the centre of the radar RD matrix and the 
jamming matrix is centered on the target. The jamming matrix is 
smaller than the radar RD matrix leaving the outermost cells of the 
radar RD matrix unaffected by the jamming signal matrix. Target 
amplitude is 100 unless otherwise stated. In Table 1 MATLAB GA 
Toolbox parameter settings for single-objective simulations are 
presented. 

Table 1: MATLAB GA Toolbox parameters 

Creation: Uniform Interval [0,1] Population  
Size 100 

Selection: Stochastic 
Uniform 

Rank Fitness 
Scaling  Elite Count 2 

Crossover: Scattered Crossover 
Fraction 0.8  

Mutation: Gaussian Scale 1 Shrink 0 

4.1 The Pareto Front 
As a starting point for evaluating jammer matrices a large jammer 
matrix of size 95×127 is used. A CFAR frame of 5×5 for radar 
target detection is chosen as it offers the most general CFAR 
algorithm with low order and 2-dimensional properties and the 
intuitive Rmax is used as the fitness function. 

 
 
Figure 5: A jamming matrix of size 95×127 after 156 
generations giving J/S=34.8804 and Rmax=4.4053. Figure a) 
shows the entire jammer matrix and b) shows the target-
centered 11×11 sub-matrix. 
In Figure 5 it is shown how the GA generates a ‘structure’ in the 
jamming matrix positioned on the CFAR frame around the target 
and a noise-like signal elsewhere. Simulation was run for 156 
generations producing a total of 0.18×109 CFAR ratio calculations 
or 0.18 CRC. This structure suppresses target detection and its fine 
details along with the corresponding noise-like surroundings ensure 
that no additional detections occur above a CFAR threshold of 
4.4053. This is done at the relatively small energy expenditure for 
the jammer signal of J/S~35 times the target echo at the radar. 
Nevertheless, the jammer matrix is probably larger than necessary, 
producing noise-like signals or ‘genetic noise’ far from the central 
structure of the jammer signal, increasing J/S for a given 
detectability or Rmax. Hence, the effect of jammer matrix size on the 
jammer signal needs to be studied. 

Figure 6 shows J/S versus Rmax for seven different jamming matrix 
sizes. The plot shows the fundamental inverse relation between 
jamming signal power and detectability; higher jammer power 
results in lower detectability and vice versa, making the problem 
domain that of a multi-objective optimization problem with J/S and 
Rmax as objectives. Furthermore, no jamming matrix size is optimal 
over all values for J/S and Rmax since none of the jammer matrix 
lines represents a Pareto front alone. 

Small matrices are preferable when low J/S is required, while larger 
matrices can achieve better performance in terms of low Rmax. This 
might be due to small jamming matrices having limited available 
state space at high energies, resulting in higher energy density for a 
given Rmax. A jamming matrix size of 11×11 seems as a robust and 
flexible matrix size for further studies as it has good overall 
performance against the 5×5 CFAR frame.  

 

a) b) 
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Figure 6: Jammer matrix size analysis. a) shows the entire 
domain of J/S and Rmax, whereas b) shows the most interesting 
portion of the same domain. Both plots use logarithmic scales. 
The different plots of Figure 6 have all been produced by ‘growing’ 
solutions, using a uniform creation function of amplitude interval 
[0,1], see Table 1. This corresponds to starting the evolution with 
low energy jamming techniques and mutating more energy rich 
solutions, producing lower detectability, along the way, forming a 
rough and approximate Pareto front over the evolutionary time. 
However, this ‘growing’ method does not ensure that the best Pareto 
front is found, and multi-objective evolutionary algorithms (MOEA) 
methods are often used for finding the optimal Pareto front. Using 
the NSGA-II [1] MOEA we are able to compare MOEA final 
population to single-objective GA (SOGA) evolution. In Table 2 
NSGA-II GA Toolbox settings are presented.  
In Figure 7a NSGA-II results are compared to SOGA results for 
different creation intervals and different fitness functions. Figure 7a 
shows that no method comprises the Pareto front alone. The NSGA-
II optimization method forms the Pareto front on the central region 
of the problem domain, but has problems reaching the extremes on 
both axes. 25631 generations were used to produce NSGA-II result, 
equivalent to 5.62 CRC. 

Table 2: MATLAB GA Toolbox parameters for NSGA-II 

Creation: Uniform Interval 
[0,100] 

Population  
Size 15×121 

Selection: Binary 
Tournament  

Rank Fitness 
Scaling  

Elitism 
included 

Crossover: Scattered Crossover 
Fraction 0.8  

Mutation: Gaussian Scale 0.01 Shrink 0 
 
The SOGA using the ‘growing’ method forms the Pareto front for 
J/S above ~10. Furthermore, using the ‘growing’ method and 
including J/S in the SOGA fitness function, results comparable to 
the NSGA-II part of the Pareto front can be achieved. Using 
different creation function amplitude intervals do not improve 
SOGA results when compared to the ‘growing’ method. Lines 
marked with ‘C’ in Figure 7a have been created on the same initial 
amplitude interval as the NSGA-II optimizations. 

 
 
Figure 7: The Pareto front. a) shows the combined Pareto front 
for single- and multi-objective optimization methods using 
different creation functions and fitness functions. Two jamming 
techniques on the Pareto front having b) J/S=34.471 and 
Rmax=1.221 after 129118 generations and c) J/S=4.001 and 
Rmax=2.197 after 500 generations. 
Finally, the SOGA fitness function of Rmean produces the Pareto 
front for the not so interesting region of J/S below 0.01 and Rmax 
above 10. This fitness function is not capable of producing results 
extending from this region, making it unsuitable for further studies. 
Using Rmax+Rmean as fitness function does not significantly improve 
performance compared to Rmax for neither SOGA nor NSGA-II 
methods. 

Figure 7b and 7c show two different jamming techniques on the 
Pareto front. Jamming technique 7c exhibits the same jamming 
structure as the jamming matrix of Figure 5. However, the new 
jamming technique is Pareto preferred having a combined lower 
J/S~4, lower Rmax~2.2 and lower CRC~0.0061. In Figure 7b a 
jamming matrix with a performance of J/S~35 and Rmax~1.2 is 
produced after 1.56 CRC. This new type of jamming technique is 
the result of raising the surroundings of the low J/S jamming matrix 
structure over the course of evolutionary time into a ‘Gaussian’ like 
jamming signal structure. 

4.2 Noise Analysis 
Jamming technique optimization has been done on the radar RD 
matrix without noise. When including noise in the system the radar 
RD CFAR ratio matrix will be dominated by noise detections 
making it difficult to find jamming codes with high J/S and low 
detectability. Moreover, at least in the initial phase of the study the 
system should be as simple as possible in order to facilitate relevant 
jamming technique findings. However, any effective jamming 

a) b) 

  a) 

  b)   c) 
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technique used in a real environment must be noise-robust and able 
to handle thermal noise. Hence, the effect of including thermal noise 
in the system, as given by Equation 1, is analysed. Using a CFAR 
frame of 5×5 and evaluating noise only distributions, the resulting 
radar RD CFAR ratio matrix statistics can be described by 

( )( )5 5, 0, 1.04 0.83CFAR meanR N σ× = ±                             (2) 

This shows that the CFAR ratios are independent of thermal noise 
levels in the radar RD matrix. 

The detectability measure Rmax evaluated without noise in the 
system results in an abrupt transition of a CFAR threshold 
producing no detections above Rmax and certain detections below 
Rmax. Introducing noise in the system will widen this transition phase 
for the CFAR threshold, as illustrated in Figure 8a, where the 
jamming technique of Figure 7c produces Rmax=2.1972 when 
evaluated without noise. Figure 8b shows the radar RD CFAR ratio 
matrix including a noise distribution given by N(0,5). In Figure 8c 
the resulting radar RD CFAR ratio statistics of 1000 different noise 
distributions for the target pixel are histogrammed, showing a 
blurring of the detection probability region for the CFAR ratio 
threshold where Pdet=0.5 is given by Rmean=2.1974±0.251. 

 
 
Figure 8: Example of including thermal noise. a) is radar RD 
CFAR ratio matrix of jamming matrix in Figure 7c without 
noise. b) is the corresponding radar RD CFAR ratio matrix 
with noise given by N(0,5). c) is the histogram of 1000 noise 
evaluations producing Rmean=2.1974±0.251 for the target pixel. 
 
In Figure 9 the mean CFAR ratio and standard deviation for the 
jamming techniques of Figure 7 are evaluated for different noise 
statistics. This figure shows that the mean CFAR ratio when 
including noise in the system is lower than the maximum CFAR 
ratio evaluated without noise. This proves that the jamming 
techniques are noise-robust even though we optimized without 
noise. 

 
Figure 9: Noise analysis for the techniques of Figure 7 showing 
mean CFAR ratio (solid) and including standard deviation 
(dotted) for the radar RD CFAR ratio matrix target pixel. The 
GA techniques are compared to a noise jammer. 
Furthermore, Figure 9 shows the increasing CFAR ratio standard 
deviation when noise is included in the system, widening the 
transition phase between certain detection and no detection for the 
CFAR threshold. As noise levels increase, the CFAR ratio standard 
deviation reaches the same magnitude as the noise only CFAR ratio 
standard deviation, making the CFAR ratio matrix noise dominant.  
Comparing GA jamming techniques to more conventional jamming 
techniques result in a measure on GA technique performance. A 
conventional noise jammer [5] emits white noise as given by 
Equation 1 filling the entire RD matrix of the radar. In Figure 9 the 
GA jammer techniques are compared to a conventional noise 
jammer on a 21×21 radar RD matrix, finding that Rmean,noise-

jammer=Rmax,GA-jammer at N(0,60) equal to  
Jnoise-jammer/S~160, which is 40 times more transmitting power than 
the GA technique. This number would increase to ~1100 if the noise 
jammer was to be evaluated on a 95×127 matrix. 

4.3 Dynamic Target RCS Optimization 
Target RCS is highly sensitive to target orientation relative to the 
radar [12]. In a real world situation the jammer would probably not 
be able to have an accurate estimate of the true target RCS at all 
times. The RCS of the target is now 10 samples from a normally 
distributed cross section given by 
 

( ), 2dynamic staticRCS N RCSμ σ μ= = =                        (3)  

where µ=RCSstatic=100 and using mean Rmax from all the 10 RCS 
samples as the fitness function. Pseudo code of dynamic target RCS 
optimizations is given next. 
 

a)  b) 

   c) 
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Figure 10: Varying target RCS analysis. a) is jamming matrix 
optimized using dynamic RCS for high J/S=103.4091 and 
Rmax=1.2262 after 7188 generations and b) is low J/S=6.332 and 
Rmax=2.182 after 682 generations, both for RCS=100. In c) the 
techniques are analysed for varying RCS and compared to the 
techniques of static RCS in Figure 7. 
for i=1:populationSize %loop over population 
 for j=1:numberOfRCSevaluations %set to 10 samples 
  GetJammerRDMatrix(GetChromosome(population,i)) 
  TargetRDMatrix(tgtRange,tgtDoppler)=RCS(N(µ,σ)) 
  GetRadarRDMatrix(JammerRDMatrix,TargetRDMatrix) 
  GetRadarCFARRatioMaxtrix(RadarRDMatrix,CFARtype) 
  R(j)=max(RadarCFARRatioMaxtrix)%get Rmax for RCS 
 end 
 F=mean(R) %report mean fitness for RCS 
end 

Results of the dynamic target RCS optimization of jamming 
techniques for high J/S and low J/S are shown in Figure 10a and 
10b, requiring 0.87 and 0.083 CRC respectively. In Figure 10c the 
detection performance for the two techniques is plotted for different 
target RCS and compared to the static RCS optimization techniques 
of Figure 7. The low J/S jamming technique from dynamic target 
optimization shows much improved detection performance for 
target RCS below 100 when compared to the static case of same 
detectabilty. The dynamic technique exhibits almost flat detection 
performance in this region at an increased cost of ~1.5 times the 
static jamming technique J/S. For the high J/S jamming techniques, 
the two cases are quite similar below 100, but the dynamic 
technique extends its good performance into a RCS of almost 170 
producing J/S~35 at that RCS. This is comparable to the static 
jamming technique of high J/S. Overall, this shows that dynamic 
target RCS optimization improves robustness against variations in 
target RCS for low J/S techniques more than for high J/S jamming 
techniques. 

5. MULTI-RESISTANT JAMMING 
In this section the second objective in the jammer objective list in 
section 3 is addressed, allowing for the possibility of an unknown 
radar CFAR detection algorithm. In Figure 11 three different but 
general CFAR frames are shown, representing the different possible 
CFAR algorithms we want to optimize against. As a result, we study 

the possibility of developing one single jamming code which is able 
to counter all three CFAR algorithms simultaneously, making the 
jamming technique multi-resistant. Pseudo code of such multi-
resistant optimization is shown below. 
for i=1:populationSize %loop over population 
 GetJammerRDMatrix(GetChromosome(population,i)) 
 GetRadarRDMatrix(JammerRDMatrix,TargetRDMatrix) 
 GetRadarCFARRatioMaxtrix(RadarRDMatrix,CFARtype1) 
 GetRadarCFARRatioMaxtrix(RadarRDMatrix,CFARtype2) 
 GetRadarCFARRatioMaxtrix(RadarRDMatrix,CFARtype3) 
 Rmax1=max(Radar1CFARRatioMaxtrix)%get Rmax1 
 Rmax2=max(Radar2CFARRatioMaxtrix)%get Rmax2 
 Rmax3=max(Radar3CFARRatioMaxtrix)%get Rmax3 
 F=Rmax1+Rmax2+Rmax3 %report the combined fitness 
end 

Target signature is static 100 and the fitness function used is the 
linearly combined Rmax of the three different CFAR types. 

D
op

pl
er

Range

D
op

pl
er

RangeRange

 
 
Figure 11: Three CFAR frames of a) 5×5, b) 3×1 and c) 1×3, 
representing different types of CFAR algorithms. 

5.1 The Pareto Front 
In Figure 12a the Pareto front for the multi-resistant jamming 
technique is shown. Pre-analysis showed insignificant differences in 
performance for the 13×13 and 15×15 jamming matrices, leaving 
the 11×11 jammer matrix as the preferred matrix size for multi-
resistant technique development. Using both SOGA and NSGA-II 
optimization methods, see Table 1 and Table 2 for parameter 
settings, the single-resistant jamming technique against the 5×5 
CFAR frame is found to perform slightly better than that of the 
multi-resistant case. This is not surprising since the multi-resistant 
jamming technique also has to accommodate the 3×1 and 1×3 
CFAR frames. Nevertheless, the high J/S multi-resistant jamming 
technique of Figure 12b converges on the high J/S single-resistant 
Pareto front for the 5×5 case. The Pareto front for the CFAR frame 
of 3×1 in Figure 12a exhibits similar performance as that of the 5×5 
frame, demonstrating multi-resistant properties for the jamming 
techniques developed. The 1×3 case is not shown due to symmetry 
considerations. In Figure 12c a low J/S multi-resistant jamming 
technique, which is comparable to the single-resistant jammer 
matrix of Figure 7c, is shown. The ‘structure’ of this new technique 
shows how the energy is deposited on the combined CFAR frames 
in a complex manner and the slight raising of the surrounding 
energy floor. Energy expenditure of this new technique increases by 
a factor  of approximately 1.5 compared to the single-resistant case 
and raises the need for computing time to 3.44 and 0.032 CRC for 
high and low J/S techniques. NSGA-II results used 1.78 CRC. 

 a)  b) 

c) 

   a)   b)  c) 
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Figure 12: In a) the Pareto front for the multi-resistant 
technique optimization is compared to the single-resistant case 
of CFAR frame of 5×5. b) is the jamming matrix of J/S=35.36 
with Rmax,5×5=1.2373 and Rmax,3×1=1.4325  after 94862 
generations. c) is the technique of J/S=6.459 with Rmax,5×5=2.1976 
and Rmax,3×1=2.2649 after 891 generations. 

5.2 Noise Analysis 
In Figure 13 and 14 the jamming techniques of Figure 12b and 12c 
are evaluated for different thermal noise statistics. In Figure 13 the 
high J/S multi-resistant jamming technique is compared to the 
single-resistant jamming technique of Figure 7b for the 5×5 case. 

 
Figure 13: Noise analysis for high J/S techniques of Figure 7b 
and Figure 12b is compared. Mean CFAR ratio is solid lines and 
including standard deviation is dotted lines. 

 
Figure 14: Noise analysis for low J/S techniques of Figure 7c and 
Figure 12c is compared. Mean CFAR ratio is solid lines and 
including standard deviation is dotted lines. 
This comparison shows no significant changes in noise robustness. 
The 3×1 case shows good noise robustness when compared to the 
noise statistics of RCFAR3×1,mean= RCFAR1×3,mean =1.11±0.99, which is 
slightly higher than the 5×5 statistics from Equation 2. In Figure 14 
the low J/S multi-resistant jamming technique is compared to the 
single-resistant technique from Figure 7c, exhibiting similar good 
noise robustness as the high J/S technique. 

5.3 Dynamic Target RCS Optimization 
Allowing for dynamic target RCS using Equation 3 and the mean 
Rmax of 10 RCS samples, robustness against target RCS variations 
for the multi-resistant jamming techniques is investigated. 

 
 
Figure 15: Varying target RCS optimization for multi-resistant 
techniques of a) high J/S=85.4435 with Rmax,5×5=1.4163 and 
Rmax,3×1=1.4812 after 6562 generations and b) low J/S=8.6663 
with Rmax,5×5=2.1978 and Rmax,3×1=2.1557, after 999 generations, 
both at RCS=100. 

In Figure 15 the high and low J/S jamming techniques from 
dynamic target RCS optimizations are shown, requiring 2.38 and 
0.363 CRC respectively. In Figure 16a both techniques are 
compared to the static multi-resistant jamming techniques found 
previously for the 5×5 CFAR frame cases. As shown in section 4.3, 
the low J/S multi-resistant techniques benefit more from dynamic 
target RCS optimization than the high J/S jamming matrices. In 
Figure 16b the same matrices are compared for the 3×1 CFAR 
frame case, showing that the low J/S jamming techniques have a 
higher increase in performance than the high J/S jamming 
techniques as well. 

       a) 

b)        c) 

      a)         b) 
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Figure 16: Varying target RCS analysis for multi-resistant 
techniques of Figure 15a and b. a) and b) show the mean CFAR 
ratios for different target RCS for 5x5 and 3x1 CFAR frames 
respectively. Static techniques are from Figure 12. 

6. SUMMARY AND CONCLUSION 
In this paper the applicability of using GA for developing efficient 
jamming techniques for advanced DRFM jammers against radars 
employing CFAR detection algorithms has been successfully 
demonstrated. Using GA, new types of jamming techniques have 
been developed and fresh insight into the complex radar-jammer 
dynamics is gained, proving that GA is a highly efficient 
optimization method capable of handling the large and complex 
solution space of our problem. Furthermore, at the expense of a 
small increase in jamming transmitting power, effective multi-
resistant GA jamming techniques have been developed. In real life 
operations, when confronted with uncertain type of radar CFAR 
detection algorithms, multi-resistant jamming techniques are of high 
importance.  This ability to produce multi-resistant GA jamming 
techniques demonstrates the unique potential and exceptional 
strength of evolutionary algorithms for optimizing advanced DRFM 
jammers for future radar jamming applications.  
Even though optimization is done without noise in the radar-jammer 
system the jamming techniques developed are shown to be effective 
in noisy environments. This proves that GA jamming techniques, 
both single- and multi-resistant, are noise robust. Comparing GA 
jamming to more conventional noise jamming, advanced DRFM 
jammers are found to produce highly energy efficient jamming 
techniques. 

In real scenarios a jammer is probably not able to assess the true 
target RCS at all times. Although increasing J/S about 1.5 times, 
dynamic target RCS optimization of jamming codes is found to 
compensate for this target property. Whereas high J/S techniques 
seem to have some intrinsic robustness against dynamic target RCS, 
the low J/S jamming techniques benefit more from such dynamic 
optimization. 

The ability to find a Pareto front in the problem domain of jammer 
transmitting power versus detectability is an important one as seen 
from an ECM decision-maker’s point of view. Having found a 

Pareto front one can easily apply standard operational analysis 
methods for finding the appropriate jammer settings for a particular 
scenario. For the time being, we are satisfied with a well performing 
Pareto front, finding two new types of jamming techniques of high 
and low J/S within the reasonable CPU expenditure of 6.1×106 to 
5.69×109 CFAR ratio calculations. However, finding the optimal 
Pareto front using one single efficient method could be a challenge. 
In order to explore this issue further, experimentation with NSGA-II 
settings or implementing other multi-objective evolutionary 
algorithms, possibly including hybrid schemes, is needed.  

Finally, the third objective in the jammer objective list, included for 
completeness, is not addressed in this paper. This is due to the fact 
that radar and jammer parameter variations and their interactions are 
a highly complicated matter. Instead of complex and detailed 
simulations this suggests experimenting with real radars and 
jammers, an analysis pending a soon available lab based radar asset. 
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