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ABSTRACT
This paper discusses a way to optimize the speed settings for
a multi-pump system such that it can operate with highest
efficiency. A short description of an actual multi-pump sys-
tem is given and the mathematical formulas for single pump
and multi-pump systems are presented. Then a set of objec-
tives are formulated which, when used in a Matlab toolbox
implementation of NSGA-II, describe the most efficient dis-
tribution of speeds amongst the pumps in the system. The
system is tested for a number of pressure references with
good results.

Categories and Subject Descriptors
J.2 [Computer Applications]: Physical Sciences and En-
gineering; J.6 [Computer Applications]: Computer-aided
engineering—Computer-aided design

General Terms
Performance, Design

Keywords
Pump optimization, Parallel pumps, Multi-objective opti-
mization, NSGA-II

1. INTRODUCTION
Pumps are some of the most used electrical components

worldwide [2]. Whenever a liquid needs to be moved from
one place to another, and it is not possible to just let gravity
handle the transfer, a pump is used. Since the use of pumps
is so widespread it is important to keep the efficiency in
mind when choosing a pump for a specific application. If
not, then a lot of energy will quickly go to waste.

The first step in optimizing efficiency of pumps can be
made by varying the speeds at which they run. A pump
that runs at a constant speed without regard to the load
of the system connected to it has to be chosen such that it
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can handle the worst case pressure/flow scenario. That also
means that for non-worst case running scenarios it will be
running too fast and will be wasting energy since the excess
energy only will raise the pressure of the system.

Just varying the speed of a pump is not sufficient to op-
timize the operation of a pump since the efficiency of these
variable speed pumps varies with speed. Depending on the
type of pump, a variable speed pump is most efficient at a
specific speed and certain pressure/flow conditions. In fact,
the type name of pumps usually include specifications of the
optimal flow conditions.

When pumping liquids it is commonplace to control the
increase in pressure of the liquid. Depending on the load
of the system, the speed of the pump is varied to achieve
the desired pressure. However, for some applications there
can occur large variations in the flow of the liquid, including
water supply for high-rise buildings and water supply for
fire extinguishing. In such cases a pump will often operate
in ranges where the efficiency of the pump is significantly
lower than the optimally rated conditions. It might be more
efficient to use several smaller pumps instead of using a sin-
gle large pump. The problem then is to determine the best
combination of speeds for the small pumps such that the
overall efficiency of the pumping unit is as high as possible.

This paper investigates how the most efficient combina-
tion of speeds for a multi-pump booster system can be found
using a Multi-Objective Evolutionary Algorithm (MOEA).
Before reaching that goal it is necessary to first take a look
at such a multi-pump booster system. In Section 2 a de-
scription of the system is given, both physically as well as
a mathematical model. The mathematical model in Section
2.2 also explains how the equations for a single pump can
be combined to describe a system with several pumps in
parallel. In that section, the coefficients relating the math-
ematical model to the physical system are also given.

In Section 2.3, the objective functions describing the ef-
ficiency of the system is given and in Section 3 the MOEA
used to solve the problem (NSGA-II)[1] is described along
with implementation details. The obtained results are shown
in Section 4 followed by a conclusion in Section 5.

2. MULTI-PUMP BOOSTER SYSTEM
This section will give an introduction to the physical multi-

pump booster system which is used as case study in this pa-
per. Following that a mathematical description of a single
and multiple pumps in parallel are presented along with the
corresponding coefficients for the system under considera-
tion.
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2.1 Physical System
The physical system consists of 3 CRE5-8 pumps mounted

in parallel between an inlet pipe and an outlet pipe. The
speed of each pump can be controlled independently of the
others and the power consumed by each pump can be mon-
itored. Further, measurements of the total flow in the sys-
tem, Qtot, as well as the pressure difference from intake pipe
to outlet pipe, ∆p, are available. It is thus possible to per-
form measurements on each individual pump as well as the
entire system such that the coefficients of the mathematical
model, which is described next, can be calculated.

2.2 Mathematical Model
The mathematical model of the system is going to be used

as the basic element in the optimization process since it will
be performed offline and should result in a set of optimal
speeds for the multi-pump system under different circum-
stances. First, a mathematical model of one of the pumps
will be given and then extended to the case for multiple
pumps in parallel.

Before starting with the mathematical model of the pump
it is important that the technical terms used in connection
with pumps are clear to the reader. The main difference
is how to express the pressure generated by the pumps. In-
stead of using pressure difference ∆p to indicate the increase
in pressure from inlet to outlet it is common to use the term
head given by

H =
∆p

gρ
, (1)

where g is the gravity constant and ρ is the density of the
liquid being pumped. The reason for this change is that the
head represents the height to which a non-specified liquid
can be pumped. The equations thus become independent
on the liquid in the system and the thermal properties of
said liquid as well.

2.2.1 Single Pump
The mathematical model for a pump is a static model

showing the relationship between the head and flow for dif-
ferent system loads. Due to various losses the relationship
between head and flow are normally given by a second-,
third-, or fourth-order polynomial with regard to the flow,
Q. In this particular case a second order polynomial will
be used resulting in the following pump curve that varies
according to different pump speeds, ω.

H(ω) = a(ω)Q(ω)2 + b(ω)Q(ω) + c(ω) . (2)

The coefficients a(ω), b(ω), and c(ω) vary according to the
speed ω but can be approximated using the affinity laws [2]

Q(ωB) =
ωB

ωA

Q(ωA) (3)

H(ωB) =

„

ωB

ωA

«2

H(ωA) . (4)

These are good approximations to the actual change in pump
curve when the speed changes, provided the system curve
remains unchanged. The approximated pump curve then
becomes

H(ω) = a0Q(ω)2 + b0

ω

ω0

Q(ω) + c0

„

ω

ω0

«

2

, (5)

where a0, b0, and c0 are the coefficients for the pump curve
at the base speed ω0. Thus, if a0, b0, c0, and ω0 are known
then an approximate pump curve can be calculated for any
speed ω.

The amount of power delivered from the pump to the
liquid is called the hydraulic power and is given by

Phyd(ω) = H(ω)gρQ(ω) . (6)

For hydraulic power the affinity law yields

Phyd(ωB) =

„

ωB

ωA

«

3

Phyd(ωA) , (7)

which indicates that the power consumption of the pump
depends on the speed to the third power. So, when mea-
suring the electrical power consumption of the pump, which
includes losses in the pump and motor as well as the hy-
draulic power, it should be expected that the power depends
on the speed to the third power. The mathematical model
of the pump should thus include a third order polynomial
representing the power consumption of the pump which can
be based on measurements of the actual pump under con-
sideration. The expression for the power consumption can
thus be expressed as

Pel(ω) = aelω
3 + belω

2 + celω + del . (8)

The efficiency of a pump is given by the relationship be-
tween the amount of power delivered to the liquid and the
total power consumed,

η =
Phyd(ω)

Pel(ω)
. (9)

With the mathematical model of a single pump defined it
is now time to look at the mathematical model for multiple
pumps in parallel.

2.2.2 Multiple Parallel Pumps
When several pump are connected in parallel the total

head is identical to the head generated by each individual
pump, whereas the total flow in the system is the sum of the
flows for each pump. So, if a system consists of n pumps
the total flow of the system will be

Qtot(~ω) =
n
X

i=1

Qi(ωi) , (10)

where ~ω is a vector containing the speeds ωi of each pump
i, and the head will be

Htot(~ω) = H1(ω1) = . . . = Hn(ωn) . (11)

A graphical representation of the pump curve resulting from
putting several pumps in parallel is given in Figure 1. Note
that the pump-curves are based on actual pumps in the
multi-pump system and have not been illustrated with head
but with pressure when pumping water.

The effect of adding additional pumps to a system in par-
allel does not mean that only the flow will increase. If the
system load is unchanged an addition of a pump will result
in an increase of both flow and pressure. This is because the
flow of liquid contributed from the extra pump will take up
some of the space in the pipes of the system. The original
pump(s) will thus see the addition of the extra pump as a
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Figure 1: Pump curve for individual pumps and
multiple pumps in parallel.

narrowing of the pipes, which corresponds to a higher sys-
tem load. The contribution from the original pump(s) will
then have a higher pressure and less flow. The extra pump
will, however, also be operating at this increased head and
still yield additional flow. This is illustrated in Figure 2.
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Figure 2: Operating points for pumps in a multi-
pump system.

The Figure shows the system curve (dashed black). Where
the system curve intersects the pump-curve for the multi-
pump system (dash-dotted red), the system operating point
is located. The operating points for the individual pumps
(dotted blue and solid green) are then located at that head
on their individual pump curves. This is shown in the figure
as the intersection between the horizontal and vertical dash-
dotted lines and the individual pump curves (dotted blue
and solid green).

If it was desired for the pumps to remain at a given ref-
erence pressure, which is the normal situation for booster
systems, then the addition of a pump should result in the
speeds of the pumps to be decreased accordingly until the
desired pressure was reached. The obtained flow for such a

given pressure reference Href would then be

Qtot(~ω, Href ) =

n
X

i=1

Qi(ωi, Href ) , (12)

and the hydraulic power generated by the parallel pumps
would be given by

Phydtot
(~ω) = HrefQtot(~ω, Href ) . (13)

Note that Href is a pressure reference. If Href had been
a head reference the formula in equation (13) should have
been multiplied with g · ρ.

The electrical power consumption is given by

Peltot
(~ω) =

n
X

i=1

Peli(ωi) . (14)

The most efficient way of obtaining a given pressure refer-
ence Href for a multi-pump booster system would be to find
the optimal combination of speeds for the available pumps.
This optimal combination of speeds includes the situations
where some of the pumps are switched off, since running one
pump at a high speed could be more efficient than running
two pumps at a lower speed. The overall efficiency of the
system is given by

ηtot =
Phydtot

(~ω)

Peltot
(~ω)

. (15)

It should now be clear what the goal of this paper is.
Based on a given reference pressure Href it is desired to
find the combination of speeds for the parallel pumps that
can generate this pressure while minimizing the energy cost.
Before the minimization procedure can begin, it is first nec-
essary to obtain the operating parameters for the pumps in
the multi-pump booster system.

2.2.3 Estimation of Polynomial Coefficients
The polynomial coefficients are estimated using a simple

genetic algorithm [3]. Since the three pumps used for the
booster system are identical, the estimation is performed for
only one of the pumps and then assumed to be valid for the
remaining pumps as well. In short, the genetic algorithm
uses a set of measurements from one of the pumps in order
to estimate the four parameters a0, b0, c0, and ω0 from equa-
tion (5). The measurements are then used along with the
affinity laws to minimize the estimation error of the pump
speed ω using an implementation of a simple genetic algo-
rithm toolbox for Matlab made by Kumara Sastry [4]. The
best set of pump curves are obtained using the parameters:
a0 = −0.04, b0 = −0.00, c0 = 6.37, and ω0 = 10.00, in
the ranges a0 ∈ [−10, 0], b0 ∈ [−10, 0], c0 ∈ [0, 10], and
ω0 ∈ [6, 10].

The ranges were chosen based on various experiments in
[3]. Especially the range for ω0 should be noticed, as it
was chosen based on the expectation that the pumps in the
multi-pump system would operate primarily in this range.
The approximation of the pump-curves using the affinity
laws are only approximations, and in order to minimize the
approximation error in the expected operating range the se-
lected range was chosen. Further, it should be noticed that
the speed ω is expressed using the reference voltage to the
pump, which is in the range [0, 10], because no measure-
ments of the pump speeds were available.
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The estimation of the pump-curves along with the mea-
surements are shown in Figure 3.
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Figure 3: Best estimated pump-curves (base curve:
solid red, estimated curves: dashed green, measure-
ments: blue points).

Along with the measurements used for the estimation of
the pump-curve parameters, a set of measurements of the
power consumption was made. This is shown in Figure 4 as
well as a plot of the best estimated power curve (solid red).
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Figure 4: Measured power curves for different sys-
tem loads (measurements: blue points, interpola-
tions between measurements for constant system
loads: dashed green) as well as best estimated power
curve (solid red).

It can be seen from the figure that the power consump-
tion is not fully independent of the system load. When the
pressure in the pipes is high, the load on the pump motor is
quite high. In that case it is assumed that the motor con-
troller keeps the speed lower than the reference signal to the
pump indicates resulting in a lower power consumption. In
order to obtain precise results for situations of high pressure
it is necessary to take this effect into account. However,
in this paper it is decided to neglect this effect. It is thus
assumed that the power consumption for a given reference
speed is independent of the system load. It is then possible
to estimate the power consumption purely as a function of
the speed reference.

The values for the best estimated power curve are:
ael = 0.7, bel = 5.4, cel = 3.8, and del = 82.6, where the
power curve is of the form given in equation (8).

The estimated power curve is a little imprecise at high
speeds due to the inclusion of all measurement points when
performing the estimate. All points have been included be-
cause the perceived system load of a single pump in the
system can be quite high. It is then not unlikely that the
actual speed, and thus also the power consumption, is lower
than the reference would otherwise produce. So even though
the effect of the motor controller is not accommodated for, it
is still partly included in the estimate. The obtained results
will thus become a little more imprecise when the reference
pressure is set to low values.

Before the estimation of the optimal speed settings can
begin it is necessary to take a look at the objective functions
that can produce the desired results.

2.3 Objective Functions
It is desired to obtain the optimal speed settings of the

multi-pump system for different loads and different reference
pressures. In order to keep the estimation as simple as possi-
ble it is decided to fix the reference pressure at a given value
before optimization and the optimization algorithm should
then find the best possible combination of pump speeds for
different system loads.

Instead of using the system load directly in the optimiza-
tion process, it is possible to use the relationship given by
the pump-curve. For a constant pressure, a change in sys-
tem load will result in a change of flow. Thus, the flow Qtot

can be used in the optimization algorithm as an indicator
for different system loads.

Since it is desired to minimize the power consumption it
is straightforward to use the power consumption Peltot

as an
optimization criterion. The objectives can thus be listed as

f1 = maxQtot(~ω, Href ) (16)

f2 = minPeltot
(~ω) . (17)

It is quite easy to find f2. Since the total power con-
sumption is given by the sum listed in equation (14) it is
just a matter of estimating the power consumption for the
individual pumps given specific speed references.

An expression estimating the power consumption for a sin-
gle pump given a specific reference speed has already been
given in equation (8). The corresponding optimal parame-
ters were given in Section 2.2.3. It is thus just a matter of
implementing the mentioned equations in the optimization
algorithm in order to obtain f2. A special case occurs for
a pump speed of 0 where the algorithm should consider the
pump as turned off and the power should thus be set to 0.

Finding f1 is a different matter. As indicated in equation
(10), the objective function needs to estimate the flow con-
tribution Qi from each pump i. The pump-curve in equation
(5) gives the relationship between the pressure and flow of
a pump, and the corresponding parameters for the specific
pumps used are given in Section 2.2.3. However, there are
some constraints on the expression given by equation (5)
before it can yield a corresponding flow to a given reference
pressure.

The first constraint is when the reference pressure is higher
than the amount of pressure the pump can deliver at a given
speed. The constraint can be expressed in terms of the deter-
minant of the second order polynomial for the pump-curve
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(5), and can be written as

c1 =

„

b0

ωi

ω0

«2

− 4a0

 

c0

„

ωi

ω0

«2

− Href

!

. (18)

If c1 ≤ 0 then the referenced pressure is too high and the
flow Qi for pump i must be set to 0.

The second constraint is used to determine whether an
intersection between the pump-curve and the reference pres-
sure occurs for positive values of Qi. Since the pump-curve
is expressed as a second order polynomial with the top point
located in the left half plane it is possible that a given refer-
ence pressure will intersect the pump-curve in the left half
plane only. This constraint can be written as

c2 = b0

ωi

ω0

+

v

u

u

t

„

b0

ωi

ω0

«

2

− 4a0

 

c0

„

ωi

ω0

«

2

− Href

!

(19)

= b0

ω

ω0

+
√

c1 . (20)

The first thing that should be noticed about c2 is that it
will only be non-complex if c1 ≥ 0. However, if that is not
the case, then c1 has already determined that the flow Qi

should be 0. Now, if c2 > 0 then the intersection between
the reference pressure and the pump-curve will occur for
positive values of Qi and the flow can be determined by

Qi =

−b0
ωi

ω0
−

s

“

b0
ωi

ω0

”

2

− 4a0

„

c0

“

ωi

ω0

”

2

− Href

«

2a0

(21)

=
−c2

2a0

. (22)

If c2 ≤ 0 then the intersection occurs only for negative
values of Qi and it should be set to 0.

In order to find f1 it is thus necessary to implement equa-
tions (18), (20), (22), and (10).

For the cases when a pump has insufficient speed to con-
tribute to the flow of the system the power consumption for
that pump would be excessive. The optimization algorithm
should then be able to accommodate for this and either turn
the speed of the pump up, such that it can contribute to the
flow, or by turning the pump off, which is done by setting
the pump speed to 0.

In order to avoid problems when calculating the efficiency,
a minimum value for the power consumption of 2.2 · 10−16

will be used if all three pumps are set to speed 0
With these fitness functions in place it is just a matter

of setting the different run-time parameters for the MOEA
and running it to obtain the results.

3. NSGA-II
The non-dominated sorting genetic algorithm (NSGA-II)

[1] was chosen for this multi-objective optimization prob-
lem as it is a widely used and capable algorithm. However,
in order to make use of Matlab for performing the objec-
tive function calculations and for plotting the results, an
implementation of that algorithm as a toolbox for Matlab

made by Kumara Sastry [4] was used. A list of the run-time
parameters used for the optimization algorithm is given in
Table 1.

The population size and the maximum number of genera-
tions are chosen significantly higher than the default values

Table 1: Parameters used for running NSGA-II.
Parameter Setting

Population size 200
Maximum no. of generations 100

Representation type Real values
Selection strategy Tournament
Tournament size 2
Crossover type SBX

Crossover probability 0.9
SBX parameter 10
Mutation type Polynomial

Mutation probability 0.1
Polynomial parameter 20

of 106 and 26 respectively. The reason for this is that some
preliminary runs with the default values resulted in a signif-
icant amount of noise on the speed settings of the pumps.
It was suspected that the non-dominated solutions were not
Pareto optimal and that an increase of both population size
and maximum number of generations would allow more so-
lutions on or very close to the Pareto front to be found.

Real valued representation was chosen arbitrarily, as it
was not expected that a binary representation would pro-
duce better results. Further, it meant that it was not nec-
essary to worry about the size of the genome.

For selection, crossover, and mutation the default param-
eters of the Matlab toolbox were used.

Before using the algorithm to find the optimal speed set-
tings for the individual pumps in the multi-pump system,
there were a few more issues that needed to be decided upon.

3.1 Implementation
The first thing that needed to be decided was how many

different reference pressures the algorithm should be tested
with, and also what particular reference pressures should be
chosen. After some investigations it was decided to run the
optimization algorithm with three different reference pres-
sures, Href = 2, 3, 4.

Further, it was considered whether the algorithm should
be tested with different pump-curve approximations than
the one given in Section 2.2.3. In order to keep the presented
results at an acceptable number it was decided to only use
the pump-curve approximation presented previously. It is
expected that a variety of results could be obtained for other
pump-curve approximations and even other pumps.

Finally, it was decided to further reduce the noise in the
obtained results by performing a non-dominated check of all
the individuals encountered during the optimization process.
As such, the number of non-dominated solutions that will
be presented can be quite numerous.

So, with the various issues decided upon it is time to look
at the results obtained for the conditions described.

4. RESULTS
The optimization algorithm was first run for a reference

pressure of 2 bar.

4.1 Reference Pressure of 2 bar
The results of the optimization can be seen in Figure 5,

where the horizontal axis represents the flow f1 and the
vertical axis represents the electrical power consumption f2

1615



0 5 10 15 20 25 30 35
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Flow (m3/h)

P
ow

er
 (W

)

Figure 5: Power consumption for the multi-pump
system for a reference pressure, Href , of 2 bar.

The Utopian point in the figure is located in the lower
right hand corner, where flow is maximized and power con-
sumption minimized. It can be seen that the non-dominated
solutions generate a nice continuous curve with a couple of
sharp bends near Qtot = 8 and Qtot = 14. In order to better
see the effect of the optimization it is worth taking a look
at a plot of the efficiency shown in Figure 6.

0 5 10 15 20 25 30 35
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Flow (m3/h)

η

Figure 6: Efficiency of the multi-pump system for a
reference pressure, Href , of 2 bar.

Once the total flow Qtot, the total electrical power con-
sumption Ptotel

, and the reference pressure Href are known,
the efficiency can easily be calculated using equation (15).
The plot of efficiency also shows a nice continuous curve with
two sharp bends near the values Qtot = 8 and Qtot = 14. It
seems like the obtained curve is made up as the maximum
of three separate curves that intersect. This is further il-
lustrated since it can be seen that the curve has three local
maxima.

The figure also shows that at no point does the efficiency
of the multi-pump system reach 0.5 which indicates that
over 50% of the energy contributed to the system will be
lost and not used to pump the liquid.

The most interesting thing about the optimization per-
formed is how the distribution of speeds for the individual
pumps turns out. This is shown in Figure 7.
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Figure 7: Speed settings for the individual pumps
at a reference pressure, Href , of 2 bar.

One thing should be emphasized when looking at the fig-
ure. Since the three pumps are identical, the allocation of
speeds are arbitrary and at any given point of the graph
the pump allocated could just as easily have been one of the
others. In order to get a better overview of the results it was
decided to sort the results in such a way that pump 1 would
always contribute with the highest speed, pump 2 with the
second highest speed, and pump 3 with the lowest speed.
Had the pumps not been identical this sorting would not be
appropriate, but then the resulting speeds would not have
been arbitrarily distributed amongst the pumps.

The figure shows a clear tendency. When the flow is lower
than Qtot = 8, only one pump is used and the remaining two
pumps are off. The figure does show some minor speeds for
the other two pumps, but these are considered to be noise as
the speed distribution of those pumps are quite noisy. Also,
those speeds were reduced significantly from the preliminary
runs where the non-dominated solutions were farther from
the Pareto optimal front. So, if enough computation was
used to discover the entire Pareto optimal set it is expected
that these speeds would continue towards 0.

Around Qtot = 8 it is seen that the second pump is
started and the speed of the first pump is reduced such
that there now are two pumps running at approximately
the same speed. This agrees well with the previous results
plotted in Figures 5 and 6. This tendency continues until
around Qtot = 14 where the third pump is turned on and
the speeds of the other pumps are reduced such that they all
run at approximately the same speed. This continues until
the maximally obtainable flow can be achieved.

It is thus evident that the most efficient distribution of
speeds is to have the pumps running at the same speed once
they are turned on and that distinct flow rates indicate when
it is time to either turn the pumps on or off.

With the results of the 2 bar reference pressure presented
the results for a reference pressure of 3 bar will now be given.

4.2 Reference Pressure of 3 bar
The results for running the optimization algorithm with

a reference pressure of Href = 3 differs somewhat from the
results for the lower reference pressure of 2 bar.

The total flow and electrical power consumption for the
optimal allocation of pump speeds is shown in Figure 8.
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Figure 8: Power consumption for the multi-pump
system for a reference pressure, Href , of 3 bar.

This time the non-dominated solutions do not form a con-
tinuous curve. At around Qtot = 9 it is seen that the
power consumption jumps a little thus creating a discon-
tinuity. Further it is seen that the curve also has a sharp
bend around Qtot = 17 which would indicate that a change
in the number of active pumps takes place here.

Before looking at the speeds, it is interesting to take a
look at the efficiency shown in Figure 9.
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Figure 9: Efficiency of the multi-pump system for a
reference pressure, Href , of 3 bar.

The efficiency curve confirms the observations from the
plot of the power consumption. At around Qtot = 9 there is
a significant drop in efficiency. However, at around Qtot =
17 it seems like an intersection between two different curves
takes place, which is similar to what was seen for the lower
reference pressure of 2 bar. Contrary for the previous case,
it is seen that the efficiency for this reference pressure is sig-
nificantly better. For high flow rates the efficiency exceeds
η = 0.55.

The speed settings for this reference pressure is given in
Figure 10.

Once again it can be seen that the speed changes hap-
pen where the efficiency and power consumption plots have
sharp bends or discontinuities. Also, when the pumps are
running they are running at approximately the same speeds,
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Figure 10: Speed settings for the individual pumps
at a reference pressure, Href , of 3 bar.

indicating that the most efficient speed setting is to run the
active pumps equally. The reason for the discontinuity of
the previous plots can also be seen. At around Qtot = 9, the
running pump reaches the maximum speed, and in order for
the multi-pump system to generate a flow just above that
setting, it is necessary to turn on an additional pump. This
results in the jump of power consumption since two pumps
require more power than a single pump would have required,
if such a single pump could have delivered enough flow.

It is now time to take a look at the final setting for the
reference pressure.

4.3 Reference Pressure of 4 bar
The last reference pressure setting that is investigated is

for Href = 4. The obtained non-dominated front that shows
the power consumption can be seen in Figure 11.
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Figure 11: Power consumption for the multi-pump
system for a reference pressure, Href , of 4 bar.

This time it can be seen that the power consumption curve
clearly consists of three separate segments since there are
two distinct discontinuities at Qtot = 7.5 and Qtot = 15.
It is expected that this is because the speeds of the pumps
reach the maximal values before it would be more efficient
to add an additional pump.

The plot of the efficiency can be seen in Figure 12.
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Figure 12: Efficiency of the multi-pump system for
a reference pressure, Href , of 4 bar.

The efficiency plot also shows the discontinuities that the
power consumption plot showed. However, it also shows that
the efficiency curves are still rising when the discontinuity
occurs. Even for the maximal flow rate it can be seen that
the curve is rising. This would indicate that the pumps are
too weak to satisfactorily deliver the most efficient perfor-
mance for a system requiring this pressure reference. This
can be concluded since the best efficiency point on any of
the curve segments is never reached. However, the efficiency
does reach past η = 0.6 in several places.

Finally, a plot of the speed settings is shown in Figure 13.
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Figure 13: Speed settings for the individual pumps
at a reference pressure, Href , of 4 bar.

The figure again shows that when more than one pump is
active the pumps should run at the same speed. It is also
confirmed that the speeds of the pumps reach the maximum
value before a new pump is turned on. It can further be
seen that the pumps are constantly given reference speeds
around 8 or more leaving very little room for adjustments.
So it is quite clear that the system will be somewhat stressed
with a reference pressure at 4 bar.

With the results presented it is time to make a few con-
clusions.

5. CONCLUSION
This paper presented a way to find the near-optimal speed

settings for a multi-pump booster system given a specific
reference pressure. Two objectives were presented, one to
be minimized and one to be maximized, which produced a
set of non-dominated solutions.

The optimization of the speed settings was performed for
three different reference pressures which produced some in-
teresting results.

The most characteristic result obtained is that the most
efficient way of running the multi-pump booster system is
to have the active pumps running at the same speed. If the
multi-pump booster system was modified to include several
different pump types this might of course not be the case,
but the optimization algorithm should still be able to find a
set of near-optimal speed settings.

It was also seen that as the reference pressure was in-
creased the system had a harder time with reaching the most
efficient operating points. However, at higher pressure con-
ditions the overall efficiency did reach higher values than for
low pressure reference conditions. Also, based on the effi-
ciency plot it could be determined whether the multi-pump
booster system was adequately suited to run with a given
pressure reference.

Several improvements can be made to the current opti-
mization algorithm. First of all it could include measures
that will take the load conditions of the pumps under con-
sideration. This would improve the accuracy of the algo-
rithm for high pressure conditions. Further, it would be
advantageous to test the results obtained on the physical
multi-pump booster system to ensure that the obtained re-
sults are accurate and valid.

It is the belief of the authors that this optimization algo-
rithm has great potential for optimizing the speed settings
of any multi-pump system such that it can reach the most
efficient working conditions.
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