
Branch Predictor On-line Evolutionary System

Karel Slaný
Faculty of Information Technology, Brno University of Technology

Božetěchova 2, 612 66 Brno, Czech Republic
slany@fit.vutbr.cz

ABSTRACT

In this work a branch prediction system which utilizes evo-
lutionary techniques is introduced. It allows the predictor
to adapt to the executed code and thus to improve its per-
formance on the fly. Experiments with the predictor sys-
tem were performed and the results display how various pa-
rameters can impact its performance on various executed
code. It is evident that a one-level predictor can be evolved
whose performance is better than comparable predictors of
the same class. The dynamic prediction system predicts
with a relative high accuracy and outperforms any static
predictor of the same class.

Categories and Subject Descriptors

I.5 [Pattern Recognition]: Miscellaneous

General Terms

Experimentation

Keywords

branch prediction, finite automata predictors

1. INTRODUCTION
Conditional code branching is an important part of algo-

rithms. Whenever a branch command has to be executed
the instruction parameters must be evaluated. The branch
outcome depends on the evaluation of the branch parameter.

Modern scalar and super-scalar processor architectures ex-
ecute multiple instructions simultaneously so code branching
is a problem because of its nature. These architectures use
long pipelines [9] to speed up instruction execution. Each
time a conditional jump instruction enters the pipeline, the
pipeline has to wait until this conditional jump instruction
is evaluated and the correct branch is known. Therefore,
branch prediction techniques were developed in order to re-
duce this pipeline stalls. A branch direction is predicted

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’08, July 12–16, 2008, Atlanta, Georgia, USA.
Copyright 2008 ACM 978-1-60558-130-9/08/07…$5.00.

in advance in order to keep the pipeline filled. The predic-
tor has to have a high prediction accuracy because whenever
there is an incorrect prediction the pipeline has to be flushed
and re-filled again.

Earlier processor designs of the Intel’s Pentium family
used a predictor based on Moore’s automata. It has the
form of a 4-state saturated counter [8]. It is a simple one-
level predictor design, which means that there is no addi-
tional mechanism used and the system predicts directly the
branch direction. This plain predictor design allows a good
prediction at simple loops. It predicts the action which has
happened more often several times in the past.

Latter designs used a bank of automata [10]. They con-
sists of a history buffer which holds the last 4 branch out-
comes. This buffer is then used for addressing a bank of 24

4-state predictors. One can see a two-level predictor design
where the history buffer represents a decision logic. This
logic determines which of the state automata will be used
for prediction.

In the past, on-line evolutionary systems were proposed
for using in evolvable hardware (EHW) in various applica-
tions including hash functions [1] and data classification [3].
An on-line evolutionary system, which is solving the task of
noise removal in corrupted images was proposed [6].

The aim of this paper is to demonstrate that an adaptive
system based on state automata evolution can perform well
in the task of branch prediction.

2. STATICALLY EVOLVED PREDICTORS
In [7] an idea of creating a state predictor that would per-

form better on a specific type of code which it has been
trained for was presented. The simple 4-state counter pre-
dictor does not perform well on all executed code. The spe-
cial predictors have been evolved on sampled branch data
obtained by running various programmes. The sampled data
were stored in a file containing only the traces of the con-
ditional jumps executed in the programme. The file con-
tains information whether the branch instruction was taken
or not, i.e. whether the conditional jump was or was not
made.

2.1 Predictor Description
The predictor is represented as a deterministic finite state

Moore’s machine. Its states hold the information whether
the next conditional jump will be taken or not. The predic-
tor automata M can be described by a 6-tuple

M = {Q, qi, Σi, Σo, T, G} (1)

1643

where Q is a finite set of states, qi is the initial state, qi ∈
Q. Σi is the input alphabet and Σo stands for the output
alphabet. T is the transition function T : Q×Σi → Q and G

is the output function G : Q → Σo. The Σi and Σo consists
only of two symbols Σi = {−, +} and Σo = {0, 1}. The
symbol ’−’ stands for a not-taken conditional jump the ’+’
symbol represents a taken conditional jump. In the output
alphabet Σo the symbol ’0’ represents the prediction of a
not taken jump and ’1’ again stands for the prediction of a
taken jump.

The data which the predictor is trained on can be repre-
sented by a string Si ∈ Σi.

Si = a0a1a2 . . . an−1, ai ∈ Σi, 0 ≤ i < n (2)

This string (2) represents a sequence of n sampled branch
outcomes.

The prediction mechanism can be seen as a transduction
from the input string Si to an output string So.

So = b0b1b2 . . . bn−1, bi ∈ Σo, 0 ≤ i < n (3)

Let’s assume that the transitive closure T+ : Q×S → Q on
the string S of the transition function T defined as

T
+(qi, a0a1 . . . an−1) = T (T (. . . T (T (qi, a0), a1) . . .), an−1)

(4)
returns the state of the automata which is determined by
accepting the string S from the defined state. Starting from
the initial state qi, the first symbol b0 in the output string
(3) can be determined by using the output function G on
the initial state qi, b0 = G(qi). Then, for all symbols in the
input string aj the symbol bj+1 can be determined as

bj+1 = G(T+(qi, a0a1 . . . aj−1aj)). (5)

The output string constructed from the input string by using
(5) holds the predicted data.

The relationship between these two strings becomes vis-
ible. The symbols ’−’, ’0’ and again ’+’, ’1’ stand for the
same situation in the code execution. The only difference is
in the time these strings represent. The first stands for past
data and the second represents the future data.

The quality of a predictor can be measured by comparing
these two strings. Whenever a ’−’ occurs in the j-th place
in Si, the symbol ’0’ has to occur in the same j-th place in
So in order to be a correct prediction. This goes vice-versa
for symbols ’+’ and ’1’. The relation can be described by a
function

fc(a, b) =

8

>

>

<

>

>

:

0, a = −, b = 1
0, a = +, b = 0
1, a = −, b = 0
1, a = +, b = 1

(6)

which returns the number 1 when the symbols a and b cor-
respond. The number of correct predictions for an input
string of the length n can be computed by generating the
output string and computing the sum

C =

n−1
X

j=0

fc(aj , bj) (7)

of corresponding letters in the strings. The ratio

H =
C

n
(8)

represents the success rate of the predictor in predicting fu-
ture branch outcomes.

2.2 The Representation of the Predictor
The genome representation of the predictor can be much

simpler than (1). The whole predictor can be described in
terms of the transition function and the output function.
As a matter of fact, these two functions can be described
by only one table. And this table can be transformed into a
single string of integers.

0

(-)

0
(+)

(-)
1

(+)

(-)
1

(+)

(-)

(+)

Figure 1: The graphical representation of a finite
state predictor.

Table 1: The tabular representation of a state ma-
chine in the fig. (1).

State G T (+) T (−)
0 0 1 0
1 0 2 0
2 1 3 1
3 1 3 2

Let’s have a simple 4-state predictor shown in fig. (1)
which can be described by a table shown in tab. (1). This
tabular representation can be transformed into a string of
integers which represents the predictor genome. The struc-
ture of the genome of a m-state predictor is described by
the sequence

i, g0, t+0, t−0, g1, t+1, t−1, . . . , gm−1, t+m−1, t−m−1 (9)

where i, 0 ≤ i < m, is the index of the initial state. The
triplet gx, t+x, t−x describes the x-th state gx = G(x), t−x =
T (x,−) and t+x = T (x,+).

An evolutionary algorithm was used in order to find a
suitable predictor, using training code. Experiments with
the number of states were performed. These evolved pre-
dictors showed higher or at least equal performance than a
standard one-level 4-state predictor. In particular cases the
experiments proved that although the total number of states
a single predictor contains could not vary during the evolu-
tionary process, the evolved predictors were able to reduce
the effective number of states. This came out by making
some states inaccessible from other states which were nor-
mally used.

The predictors were trained on data obtained from run-
ning a gcc C code compilation, data compression with bzip2,
gzip and java virtual machine execution. The success rate
results are compared with a 4-state saturated counter pre-
dictor in table (2).

3. DYNAMIC BRANCH PREDICTION SYS-

TEM
This section describes a prediction system that, by using

evolutionary algorithm, can dynamically adapt to the cur-
rently executed code to achieve a better prediction even in
the case of switching the executed code.

1644

Table 2: Success rates comparison of a standard
4-state counter predictor with the performance of
4-state predictors specially trained for predicting
branches in special programmes.

Programme evolved predictor 4-state counter
gcc 0.55 0.54

bzip2 0.71 0.62
gzip 0.70 0.59
java 0.58 0.58

3.1 System Description
The prediction system was similarly designed as a two-

level prediction system. An evolutionary core is implemented
in order to change the behavior of the predictor. The best
predictor is used in a separate unit. It can be replaced by a
new one whenever the evolutionary unit finds a better solu-
tion.

The history of branch outcomes has to be recorded. This
data are stored in a history buffer. This buffer represents
a training environment for the predictor population. The
buffer can be used for both the input, as well as the output
string. Using the data stored in the buffer, the fitness value
fv of the evolved predictors is determined. Assume that the
length of the history buffer is set to m branch outcomes.
Then the fitness value fv = m stands for a 100% predictor
success rate. On the other hand fv = 0 means that the
predictor is useless without a single success in predicting
data stored in the buffer.

In order to keep the predictor system as fast as possible the
evolutionary algorithm is relatively simple. The evolution
runs in an infinite loop and can be described by using the
following pseudo-code.

while (1) {

copy_elite_to_new_population;

while (new_population_not_full) {

p1, p2 = select_two_parents;

o1, o2 = cross_over(p1, p2);

mutate(o1, o2);

put_into_new_population(o1, o2);

}

move_new_population_to_old;

evaluate_old_population;

send_best_to_prediction_unit;

}

Each time the prediction unit receives a new predictor,
the previous one is replaced. The prediction unit stores the
state of the used predictor. When a new predictor is being
installed into the prediction unit, the state counter of the
predictor is also updated to the initial state of the newly sent
predictor. This is because of the cases when the predictor
contains unreachable states and the state counter points to
such a state.

The genome (9) is represented by using a string of inte-
gers. The mutation operator can change all the information
related to the genomes transition function as well as the ini-
tial state. The ratio between the number of states predicting
’0’ and ’1’ in a single predictor is kept as close as possible to
1. This is due to the fact that the branch outcomes in the ex-

ecuted code can be changed by altering the conditional jump
instruction by using just the negation of this condition. The
crossover operator performs a single-point crossover, which
can be performed at any place in the genome.

EVOLUTIONARY

CORE

PREDICTION

UNIT

PREDICTOR

POPULATION

BRANCH HISTORY BUFFER

PROCESSING

UNIT

BEST

PREDICTOR

BRANCH OUTCOMES

PREDICTED BRANCH

DIRECTION

BEST EVOLVED

PREDICTOR

Figure 2: The structure of the prediction system.
The branch outcomes are stored in the history buffer
which is used for training predictors in the popula-
tion. A processing unit executes the evolutionary
algorithm. The best evolved predictor is sent to the
prediction unit where it is used for predicting the
branch outcomes.

3.2 Behaviour of the Dynamic System
The system executes the evolution in an infinite loop. In

each generation cycle, the system has to adapt the individu-
als in the older generation to the modified environment in
the branch history buffer. The progress of the best evolved
fitness is shown in figure (3).

 60

 80

 100

 120

 140

 160

 180

 200

 0 20 40 60 80 100 120 140 160 180 200

fi
tn

e
s
s
 v

a
lu

e

generation

fit
hits*max_fit

Figure 3: The progress of the best fitness value
and the total predictor success rate during the first
200 generations after the system has been started.
This data were recorded on the prediction of bzip2
code. The experimental setting were: automata
states 4, population size 6, history buffer size 200,
burst length 200. fit is the best fitness value in cur-
rent generation, hits*max fit is the hit rate of the
prediction system so far multiplied by the maximal
possible fitness value, which is equal to the history
buffer size. This multiplication was performed in
order to achieve the correct ratio between the dis-
played values.

1645

4. EXPERIMENTAL RESULTS
The experiments are performed by simulating the run of

a programme by issuing the branch outcome data in regu-
lar bursts each generation cycle. For testing, three data-sets
are utilized: C code compilation using gcc, data compression
using bzip2 and a java virtual machine execution. Each ex-
periment is repeated 100-times and the experimental results
are recorded. The mutation probability is set to a fixed value
of 0.03. Elitism is used. One population member with the
best fitness value is maintained in the population. Tourna-
ment selection is used for selecting parents. The tournament
size is set to 3.

The experiments are performed with various parameter
settings and its combination. The main parameters are:

population size - the number of predictors in the popula-
tion

number of states - the number of states in the evolved
predictors

history buffer length - number of past branch outcomes
used for predictor training

branch burst length - this is the number of new branch
outcomes added into the history buffer

In each generation cycle the new branch data are shifted
into the history buffer and the same number of older branch
outcome data are shifted out from the buffer. The num-
ber of newly added branch data is defined by the branch
burst length parameter. This parameter defines the mini-
mum number of branch outcomes to be predicted by a pre-
dictor in the prediction unit until it may be replaced by a
newly evolved predictor.

4.1 Size of the Automata
The first set of experiments was dedicated to the determi-

nation of the optimal states number in a predictor in order
to maximize the prediction success rate. Other parameters
were fixed for all types of experiments. Experimental results
are shown in the table (3).

Table 3: Predictor system success rate and its stan-
dard deviation in dependency on the automata size.
Population size is set to 6 members. History buffer
length is set to 200, while burst length is equal to 20.

program number of states success rate std. dev.

gcc 4 0.57 0.00041
gcc 6 0.55 0.00027
gcc 8 0.53 0.00048
gcc 10 0.62 0.00038

bzip2 4 0.72 0.00023
bzip2 6 0.69 0.00047
bzip2 8 0.70 0.00038
bzip2 10 0.64 0.00041

java 4 0.71 0.00059
java 6 0.70 0.00043
java 8 0.69 0.00056
java 10 0.68 0.00031

The experimental results point out that less states display
better performance in bzip2 and java code prediction. How-

Table 4: Predictor system success rate and its stan-
dard deviation in dependency on the population
size. The number of states of evolved predictors
is set to 4. History buffer length is set to 200, while
burst length is equal to 20.

program pop. size success rate std. dev.

gcc 4 0.55 0.00034
gcc 6 0.57 0.00055
gcc 8 0.58 0.00043
gcc 10 0.58 0.00029

bzip2 4 0.68 0.00020
bzip2 6 0.72 0.00051
bzip2 8 0.72 0.00025
bzip2 10 0.74 0.00047

java 4 0.68 0.00050
java 6 0.71 0.00043
java 8 0.73 0.00027
java 10 0.73 0.00013

ever, the run of the gcc shows a more complex pattern where
more states in the predictor are of advance.

4.2 Size of the Population
In this set of experiments the size of population was mod-

ified in order to determine how it influences the predictor
performance. The results are summed up in the table (4).

This experiment set shows that a bigger population size
is of advance in all measured cases.

4.3 History Buffer Size
This set of experiments was the most complex one. It was

dedicated to determine the best combination of the history
buffer size and the branch outcomes burst length. Results
are shown in tables (5, 6, 7). The population size was set to
6, the number of states to 4.

In predicting the gcc and java code the experimental re-
sults show that the prediction system reaches the best per-
formance when the evolution runs at a very high speed, i.e.
when new predictors are issued at high speed and when the
predictors are trained on few past branch outcomes. In case
of predicting the bzip2 code, the history buffer length does
not have to be short. Perhaps it is because of the branch
outcome patterns of the code.

5. DISCUSSION
The speed of the evolution is fundamental in cases, when

the problem represented by the branch prediction changes
dramatically. This can be illustrated by the C code compila-
tion with gcc. The compiler has to behave according to the
input file and while being dependent on the state of the com-
pilation process, it has to change its behavior. The executed
code shows different branch patterns while parsing the input
file and different patterns while it is assembling the output
object file. On the other hand the data compression using
bzip2 executes code with the same branch patterns which
are relatively simple to learn and which are not changing
very often. In such cases the speed of the evolution does not
have to be very fast.

In this dynamic prediction architecture the finite state
predictor in the prediction unit is replaced during every gen-

1646

Table 5: Success rate experimental results for various combination of history buffer length and burst lengths.
Experiments performed with prediction of gcc code.

buffer size burst length
10 20 40 80 120 160 200 240 280 350 400 450 500

10 0.70
20 0.59 0.66
40 0.57 0.60 0.62
80 0.56 0.57 0.59 0.61
120 0.55 0.57 0.57 0.59 0.60
160 0.55 0.57 0.58 0.59 0.58 0.59
200 0.55 0.57 0.57 0.58 0.58 0.58 0.59
240 0.55 0.56 0.57 0.58 0.58 0.58 0.58 0.59
280 0.55 0.57 0.57 0.58 0.58 0.58 0.58 0.58 0.59
350 0.55 0.56 0.57 0.58 0.57 0.58 0.58 0.58 0.58 0.58
400 0.55 0.56 0.57 0.57 0.57 0.57 0.58 0.58 0.58 0.57 0.58
450 0.55 0.56 0.57 0.57 0.57 0.57 0.58 0.57 0.58 0.57 0.58 0.58
500 0.55 0.56 0.57 0.57 0.57 0.57 0.58 0.57 0.58 0.57 0.58 0.58 0.58

Table 6: Success rate experimental results for various combination of history buffer length and burst lengths.
Experiments performed with prediction of bzip2 code.

buffer size burst length
10 20 40 80 120 160 200 240 280 350 400 450 500

10 0.78
20 0.69 0.75
40 0.69 0.72 0.75
80 0.68 0.71 0.73 0.75
120 0.69 0.71 0.72 0.73 0.80
160 0.68 0.71 0.72 0.73 0.74 0.75
200 0.68 0.72 0.72 0.73 0.73 0.74 0.76
240 0.69 0.74 0.73 0.73 0.73 0.73 0.74 0.76
280 0.68 0.71 0.73 0.73 0.73 0.74 0.73 0.74 0.75
350 0.70 0.74 0.73 0.73 0.73 0.74 0.74 0.76 0.74 0.79
400 0.68 0.71 0.72 0.73 0.73 0.74 0.74 0.74 0.74 0.74 0.76
450 0.71 0.71 0.72 0.73 0.75 0.74 0.73 0.74 0.74 0.74 0.74 0.76
500 0.68 0.71 0.73 0.74 0.73 0.74 0.73 0.74 0.75 0.74 0.74 0.74 0.76

eration cycle. Another approach to this problem can be via
creating a more complex prediction unit. This unit can con-
tain a bank of different state predictors. The prediction unit
can choose the predictor with the best success rate in the
past to be the predictor whose prediction might be used.
Other possibility is to implement a majority function. The
output from the prediction unit is the value which has ap-
peared on most of the simultaneously working state predic-
tors. In the last two described cases the evolutionary core
can be used for evolving state automata which can replace
the worst state predictor in the prediction unit.

6. CONCLUSIONS
While evolving one-level finite-state predictors, we have

achieved at least the same performance as the 4-state sat-
urated counter in predicting code the predictor was trained
on. In cases the code matched the code class, which the
predictor was trained on, the results were good. But when
switching the code to other class, the predictor decreased its
performance.

The dynamic predictor system which uses evolution for
adaptive prediction of branch direction performs better in
comparison with evolved one-level 4-state predictor. How-

ever, the dynamic system cannot compete in its performance
and complexity with a much simpler design of a 4-state satu-
rated counters bank. The evolutionary system is much more
complicated to implement.

In comparison with the artificial neural network branch
prediction systems [5, 4, 2] the evolutionary system cannot
compete with its accuracy. The neural network prediction
systems achieve 75% - 90% accuacy. This high accuracy
was not reached with the system desribed in this paper.
But there exists a possibility to improve the evolutionary
dynamic prediction system performance. In future work a
more complex prediction unit can be implemented. This
unit will use a collection of predictors and choose the cur-
rently best predictor to be active. The evolutionary algo-
rithm will be used to improve the performance of the worst
predictor in the collection.

Acknowledgements

This work was supported by the Grant Agency of the Czech
Republic under No. 102/07/0850 Design and hardware im-
plementation of a patent-invention machine and the Re-
search intention No. MSM 0021630528 – Security-Oriented
Research in Information Technology.

1647

Table 7: Success rate experimental results for various combination of history buffer length and burst lengths.
Experiments performed with prediction of java code.

buffer size burst length
10 20 40 80 120 160 200 240 280 350 400 450 500

10 0.78
20 0.70 0.77
40 0.70 0.72 0.76
80 0.69 0.71 0.73 0.75
120 0.68 0.71 0.73 0.73 0.74
160 0.68 0.71 0.72 0.73 0.73 0.74
200 0.68 0.71 0.72 0.73 0.73 0.73 0.74
240 0.67 0.70 0.72 0.73 0.73 0.73 0.74 0.74
280 0.67 0.70 0.72 0.73 0.71 0.73 0.74 0.73 0.74
350 0.67 0.70 0.71 0.72 0.73 0.73 0.73 0.73 0.73 0.74
400 0.67 0.70 0.71 0.72 0.72 0.73 0.73 0.73 0.74 0.73 0.74
450 0.67 0.70 0.71 0.72 0.73 0.73 0.73 0.73 0.73 0.73 0.74 0.74
500 0.66 0.69 0.70 0.72 0.72 0.72 0.72 0.73 0.73 0.73 0.73 0.73 0.74

7. REFERENCES
[1] E. Damiani, A. Tettamanzi, and V. Liberali. On-line

evolution of fpga-based circuits: A case study on hash
functions. The First NASA/DoD Workshop on
Evolvable Hardware, 1999.

[2] C. Egan, G. Steven, P. Quick, R. Anguera, F. Steven,
and L. Vintan. Two-level branch prediction using
neural networks. Journal of Systems Architecture,
49(12):557–570, December 2003.

[3] K. Glette, J. Torresen, and M. Yasunaga. An online
ehw pattern recognition system applied to sonar
spectrum classification.

[4] D. A. Jiménez and C. Lin. Neural methods for
dynamic branch prediction. ACM Transactions on
Computer Systems, 20:369–397, 2002.

[5] A. A. Rustan. Using artificial neural networks to
improve hardware branchpredictors. International
Joint Conference on Neural Networks, 5:3419–3424,
1999.

[6] L. Sekanina. Evolvable Components: From Theory to
Hardware. Springer-Verlag, Berlin Heidelberg, 2004.

[7] K. Slaný and V. Dvořák. Evolutionary designed
branch predictors. 13th International Conference on
Soft Computing, pages 18–23, 2007.

[8] J. E. Smith. A study of branch prediction strategies.
Proceedings of the 8th annual symposium on Computer
Architecture, pages 135–148, 1981.

[9] E. Sprangle and D. Carmean. Increasing processor
performance by implementing deeper pipelines.
Proceedings of the 29th annual international
symposium on Computer architecture, pages 25–34,
2002.

[10] T.-Y. Yeh and Y. N. Patt. Two-level adaptive training
branch prediction. International Symposium on
Microarchitecture, pages 51–61, 1991.

1648

