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ABSTRACT
A novel particle swarm optimization algorithm based on magnifi-
cation transformation, called magnifier particle swarm optimization
(MPSO), is proposed for the first time in this paper. In the MPSO,
we enlarge the range around the best individual of each generation
like using a magnifier, while the velocity of particles unchanged.
In such a way, MPSO achieves much faster convergence perfor-
mance and better optimization solving capability than the conven-
tional standard particle swarm optimization and latest clonal PSO
by a number of simulations. A detailed description and explana-
tion of the MPSO algorithm are given in the paper. Experiments on
fourteen benchmark test functions are conducted and shows the in-
spiring success that the proposed MPSO speeds up the convergence
tremendously, while keeping a good search capability of global so-
lution with much more accuracy. Experiments on fourteen bench-
mark test functions are conducted to demonstrate that the proposed
MPSO algorithm is able to speedup the evolution process distinctly
and improve the performance of global optimizer greatly.
Categories and Subject Descriptors: I.2.8 [Artificial Intelligence]:
Problem Solving, Control Methods, and Search
General Terms: Algorithms, Performance.
Keywords: Particle Swarm Optimization(PSO), Swarm Intelligence,
Global Numerical Optimization.

1. INTRODUCTION
The particle swarm optimization (PSO) is a stochastic global op-

timization technique inspired by social behavior of bird flocking
or fish schooling [1]. In conventional PSO algorithm, the update
formula for each particle’s velocity and position in conventional
standard PSO is written as

Vid(t + 1) = wVid(t) + c1r1(PiBd(t) − Xid(t))

+c2r2(PgBd(t) − Xid(t)), (1)
Xid(t + 1) = Xid(t) + Vid(t + 1) (2)

where i = 1, 2, · · · , n, n is the number of particles in the swarm,
d = 1, 2, · · · , D, and D is the dimension of solution space. The
learning factors c1 and c2 are nonnegative constants, r1 and r2

are random numbers uniformly distributed in the interval [0,1],
Vid ∈ [−Vmax, Vmax], where Vmax is a designated maximum ve-
locity which is a constant preset by users according to the objec-
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tive optimization function. The parameter w ∈ [0, 1] is the inertia
weight [2]. The position and the velocity of each particle are up-
dated according to its own previous best position (PiBd(t)) and
the current best position of all particles (PgBd(t)) in each iteration.
For convenience, we call the PSO expressed in Eqs. (1) and (2) as
standard PSO (abbreviated as SPSO) in this paper.

Magnification transformation is a very simple but very useful
strategy, which is inspired by using a convex lens to see things
much clearer. The essence of this transformation is to set a magni-
fier around a point we are interested in, so that we could inspect the
range around the point more carefully and precisely. For example,
this transformation is well used in building screen magnifiers to en-
large the information presented on a visual display in a computer
system [3]. In this paper, a simple magnification transformation is
introduced into PSO, resulting in a novel magnifier PSO (MPSO,
for short). In stretching method, attention was paid to the top part
of the fitness function to eliminate undesired local minima by a
two-stage transformation. We will focus on the bottom of the fit-
ness landscape since the range around the best individual deserves
a better check, and the probability that the actual global best par-
ticle lying in that range is probably greater than others in search
space. In our algorithm, the original function is not changed, just
the range mentioned above is enlarged via magnification transfor-
mation, while keeping the velocity of particles unchanged. In this
speed, it will speed up the local search while maintain their global
search capability.

x̃(t + 1) = x(t + 1) − (2 ∗ r/s − 2 ∗ r)

if x(t) < L and x(t + 1) > R, (3)
x̃(t + 1) = x(t + 1) + (2 ∗ r/s − 2 ∗ r)

if x(t) > R and x(t + 1) < L, (4)
x̃(t + 1) = x(t + 1) − [(R − x(t))/s − (R − x(t))]

if L < x(t) < R and x(t + 1) > R, (5)
x̃(t + 1) = x(t + 1) + [(x(t) − L)/s − (x(t) − L)]

if L < x(t) < R and x(t + 1) < L. (6)

2. MPSO METHOD
In each generation, a range around the best individual is set up in

each dimension. If the particles in the swarm would pass through
the range in the next generation, we use a magnifier operator to
enlarge the range without changing the velocity of particles. Thus
the particles would get a better chance to land into the range, which
is able to check the area around the current best individual more
precisely. For those particles who were already going to land into
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Table 1: Statistical means and standard deviations of the solutions of fourteen benchmark test functions, listed in Table 1, given by
the MPSO, CPSO and the SPSO over 50 independent runs.

Functions FEs MPSO’s M ± S CPSO’s M ± S SPSO’s M ± S
Shaffer f6 26,600 1.000 ± 0 0.995993 ± 0.004688 0.992647 ± 0.003122

Sphere 48,480 0 ± 0 2080.392090 ± 1376.428640 40378.2 ± 4138.8
Rosenbrock 1,200,000 12.192243 ± 21.495943 1.012707 ± 1.727705 45.646805 ± 54.516615
Griewangk 1,200,000 53.230202 ± 15.117090 7.312949 ± 3.521576 18.804737 ± 4.953855
Rastrigrin 1,200,000 0.012906 ± 0.012880 0.037030 ± 0.027916 0.015851 ± 0.015683

Ellipse 56,320 0 ± 0 403974.18 ± 292686.82 2296746.5 ± 498215.4
Cigar 62,080 0 ± 0 18274214 ± 8592084.6 93314232 ± 11030717
Tablet 48,720 0 ± 0 2586.096191 ± 1943.306358 16214.034180 ± 2760.936218

SumCan 1,200,000 0.000005 ± 0 0.000004 ± 0.000000 0.0000030 ± 0
Schwefel 72960 0 ± 0 289262.9 ± 286777.1 6190796.5 ± 818203.97
Ackley 1,200,000 0.124778 ± 0.375480 0 ± 0 0.999836 ± 4.358183

Griewangk RT 1,200,000 0.000006 ± 0.000012 0.025361 ± 0.034384 0.034504 ± 0.02725
Schwefel RT 1,200,000 1.898376 ± 0.000001 1.898377 ± 0.000001 1.898395 ± 0.000029
Ackley RT 1,200,000 0.057799 ± 0.251938 0.494281 ± 0.733514 0.475809 ± 0.633685

the range, we do not use the magnifier operator to them, because
they already shew interests to the range. On the other hand, we
keep the velocity of the particles unchanged so that they are able
to fly out of the range in a certain generations for maintaining the
global search ability in SPSO. In each situation, the position after
using the magnifier operator in the MPSO will be calculated by
Eqs. (3) - (6), respectively. r is the radius of the interval whose left
and right boundary are indicated by L and R. s is the scale which
decides the magnification to enlarge the range.

3. EXPERIMENTS
To test and verify the performance of our proposed MPSO, and

make a comparison with SPSO and clonal PSO (CPSO), fourteen
benchmark functions and the corresponding parameters listed in
our lab site http : //www.cil.pku.edu.cn/resources/benchma
rk_pso/. We fixed the number of particles in a swarm to be 40
for convenient comparisons later on. We used an tentative method
to determine the set of parameters [4]. The performances of the
MPSO on four functions with different scales of the magnifier op-
erator show that s should not be too small, because we must make
sure that the particles will not fall into the range too easily and
hard to fly out, which lead to a prematurity, and s = 0.5 will be a
suitable decision. On the other hand, r should reduce along with
the growth of generations, because we want the best individual to
converge inside the range. So, we should fix an initial value for r,
from which r reduces linearly to zero. The iterative equation of r
is expressed by Equ. (7).

r = r ∗ (1 − k/M), (7)

where k is the current iteration number and M is the maximum
iteration number we set. The performances of the MPSO with dif-
ferent initial value of r show that the initial value of r should be
0.3.

In order to verify the validation and efficiency of our MPSO, in
Table 1, we give the statistical means and standard deviations of
our obtained solutions of the fourteen benchmark test functions, by
using MPSO, CPSO and SPSO, over 50 independent runs, respec-
tively. Thereinto, FEs denotes the number of fitness value evalu-
ations of swarm. It has been seen from the averaged solutions that
our proposed MPSO outperforms CPSO and SPSO dramatically on
most of the functions.

4. DISCUSSION
The essence of MPSO is to adjust the particles to search the so-

lution space more pertinently. We increase the probability of parti-
cles landing into the range around xgB , maintain the probability of
particles flying far from xgB , and decrease the probability of par-
ticles wandering around the range containing xgB . In such a way,
we give all the particles only two choices, either landing very near
xgB to enhance the local search ability or landing far from xgB to
keep the global search capability. So, MPSO simply makes the par-
ticles search the space more pertinently and efficiently to improve
both the convergent speed and global search performance without
adding much computational cost.
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