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ABSTRACT
The collective foraging behavior of ants is an example of self-
organization and adaptation arising from the superposition
of simple individual behavior. With the objective of under-
standing and modeling such interactions, experiments with
the Argentine ants Linepithema humile were conducted into
a relatively complex, artificial network. This consisted of in-
terconnected branches and bifurcations, where the ants have
to choose among fourteen different paths in order to reach a
food source, and the branches can be blocked or unblocked
at any time. Due mainly to stagnation problems, previous
models did not accurately reproduce the behavior of ants in
a changing environment. In this paper, a new model (ACF-
DCM) is proposed, based on ACO principles and biological
studies of insects. ACF-DCM succeeded in reproducing the
behavior of ants in a confined and dynamic environment.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent
systems; I.6.5 [Model Development]: Miscellaneous

General Terms
Algorithms

Keywords
Artificial Life, Ant Foraging Model

1. INTRODUCTION
Social insects are capable of processing complex patterns

and tasks from the interaction of relatively simple individual
behavior [1, 2]. The understanding of such mechanisms co-
operates with the development of new computational strate-
gies for complex problem solving and also greatly enriches
discussions on evolutionary systems, insect psychology, phys-
iology, and ecology.
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Foraging behavior in ants is a very important example of
an optimized strategy arising from relatively simple behav-
ioral individual rules. By laying pheromone, following such
chemical trails, and possibly making use of other simple sen-
sorial capabilities, such as vision, tactile sense, or even mem-
ory, the ants can choose the best way to feed individuals and
their nest.

In the experiments developed at CRCA1 and reported on
[3, 4, 5] by Vittori et al., Argentine ants Linepithema humile
moved inside a confined and complex environment, where a
network composed of interconnected branches and bifurca-
tions were placed between the colony’s nest and the food
source, allowing up to fourteen different paths of different
lengths. The ants were observed according to both individ-
ual and collective components, in order to construct a model
of their dynamics.

The ants tended to choose the shortest paths when they
had free access to all the branches (experimental situation 1)
and also showed intelligence by adapting themselves so that
they discovered other good paths in cases where their previ-
ously chosen branches were interrupted (experimental situ-
ation 2). Furthermore, they were able to discover new bet-
ter paths if any branches that had been previously blocked
were released (experimental situation 3). These three main
experimental situations are explored in this study.

Our challenge is to construct a model, based on simple
behavioral rules observed in social insects and on principles
of ACO (Ant Colony Optimization) [6, 2], in order to re-
produce the behavior of natural ants in a laboratory. With
this purpose in mind, the first model was proposed by Vit-
tori, et al. [3, 5]. This model replicates accurately the first
experimental situation. However it was not efficacious in re-
producing dynamic environments (situations 2 and 3). We
then modified the previous model [3], until behavior of the
colonies was successfully reproduced in the simulations of
the so-called Ant Colony Foraging into Dynamic and Con-
fined Model – ACF-DCM.

Section 2 briefly discusses the experiments and the ob-
servations of the behavior of real ants. Section 3 presents
the modeling process and is sub-divided into three subsec-
tions, the first two deal with previous ant behavior models,
their results and difficulties; and sub-section 3.3 introduces
ACF-DCM. In section 4 the results are shown and compari-
son with previous results are described. The conclusion and
suggestions for future studies are set out in section 5.

1Centre de Recherches sur la Cognition Animale – CRCA,
linked to Paul Sabatier University, Toulouse, France.
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2. EXPERIMENTAL STUDY
The experiments conducted by Vittori et al. [3], at the

CRCA laboratory on the Argentine ant Linepithema humile
(previously known as Iridomyrmex humilis) had the objec-
tive of monitoring foraging ants within a complex, confined
and dynamic environment, so that results would support the
model of the insects’ behavior.

They consisted of observations of the foraging activities
of ants, when a network, comprising branches and bifurca-
tions, is placed between the food source and the ants nest.
The network apparatus, Figure 1, consists of four hexagons
connected, at angles of 60◦ between two divergent branches.
For instance, branches 1 and 4, or 7 and 10. The food source
was placed in one of the circular areas A or B, but, due to the
symmetry, no differences in the results were observed when
either circle was used. There were no experiments with food
sources placed simultaneously in both areas.

An ant could reach a food source by choosing one among
fourteen different paths. Table 1 shows the lengths of the
nest-food paths when the food is placed in A. The paths are
classified by length: short, medium, long or very long. If an
ant passes two or more times along the same branch or does
not reach the food source, then this invalid path is classified
as a “loop”.

The ants behavior was observed and analyzed at two dif-
ferent levels: (i) the collective level, where it was observed
if the which path the colonies chose to reach the food and
then bring it to the nest, taking into account the lengths of
the chosen paths, and; (ii) the individual level, where char-
acteristics such as velocity, number of contacts among the
insects, duration of contacts, U-turns2 and time spent at the
food source were measured.

Figure 1: Experimental Device.

Three situations were analyzed during the experiments
(details in [3, 4, 5]):

1) Ants are allowed to access all branches in the network
for 60min;

2) Ants are allowed to access all branches in the network
for 30min then, access to the branch which conducts the ants
to the food source (3a or 6a), as seen in Figure 1, is blocked
and observation lasted for more 30min.

2Direction change (180◦) of an ant within a branch, turning
back to their previous location.

Table 1: Paths Lengths in Experiments.
Number Path (Food source A) length

1 1-2-3a-13 short - 21.5cm
2 1-10-8-9-6a-16
3 4-7-8-11-3a-13
4 4-5-9-11-3a-13 medium - 30.5cm
5 4-7-10-2-3a-13
6 4-5-6a-6b-3b-13
7 4-7-8-9-6a-6b-3b-13
8 1-10-8-9-6a-6b-3b-13
9 1-2-11-9-6a-6b-3b-13 long - 39.5cm
10 1-10-7-5-6a-6b-3b-13
11 1-10-7-5-9-11-3a-13
12 4-5-9-8-10-2-3a-13 very long - 43.5cm
13 4-7-10-2-11-9-6a-6b-3b-13 very long - 48.5cm
14 1-2-11-8-7-5-6a-6b-3b-13 very long - 52.5cm

3) The access to the food source was allowed only through
a long path for 30min, being 1-10-7-5-9-11-3a-13 in case of
food source A and 4-7-10-2-11-9-6a-16, in case of food source
B. After 30min, the access was allowed to all branches and
observation lasts for another 30min.

2.1 Experimental Results

2.1.1 Individual Behavior
The individual behavior of the ants was observed with re-

gard to: (i) velocity on the network; (ii) number of contacts
with fellow ants; (iii) duration of these contacts; (iv) time
spent at the food source, and; (v) number of U-turns on
the branches. These data were collected during the first ex-
perimental situation, with the static environment [4]. The
values observed supported the model.

2.1.2 Collective Behavior
Collective behavior deals with ants individual decisions

made under the influence of other ants previous attitudes.
This is the origin of self-organized patterns in social insects
colonies and plays a very important role in the modeling
process. How ants recruit and select path are the major
collective features analyzed for the three experimental situ-
ations.

Situation 1 – Static Environment with free access
When the ants are allowed to freely choose any branch at
any bifurcation, 8 in a group of 10 colonies departing from
the nest towards the food source direction opted for a short
route. From the food to the nest, all the colonies chose one
of the shortest paths.

Another important component of the ants behavior con-
sidered during the experiments, was their recruitment dy-
namics which consists of the number of ants entering the en-
vironment computed at each 3min, in both directions (Nest-
Food and Food-Nest).

Situation 2 – Blocking a Branch
In the second situation, an access to branch 3a or 6a, de-
pending on the position of the food source, was blocked 30
minutes after experiments began and kept inaccessible for
the remaining 30 minutes. In this case, there were no short
paths, and the medium ones became the shortest routes.
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In the last half, three colonies did not find another route
to the food source, these being characterized as loops. Four
colonies selected a medium path (the shortest option avail-
able) and three chose a long route to reach the food.

Situation 3 – Releasing Blocked Branch
In the first 30 minutes of the third situation, colonies had
access only to a long path. Depending on the colony the
path was 4-7-10-2-11-9-6a-16 or 1-10-7-5-9-11-3a-13, (Figure
1). After that, the blocks were released and the movement
along the paths was allowed.

Observations for a further 30 minutes showed that, despite
some colonies having kept to the branches previously cho-
sen, most of them succeeded in choosing one of the shortest
routes.

3. MODELING ANT BEHAVIOR
A first model for the ants behavior, based on the experi-

ments discussed above was proposed by Vittori et al. [3, 4,
5]. The main features are presented in the following subsec-
tions.

3.1 Previous Ant Behavior Model
The first model considered by Vittori, et al. [3, 5] , showed

the following properties:

3.1.1 Recruitment Model
The probability of an ant o entering the environment each

time at step k (each second) is:

P o
ent[k] =

1

φmax
(1)

where φmax is the maximum number of ants allowed in the
experiments (measured as 100 ants on average).

3.1.2 Movement of Ants
The distance traversed by an ant o at each step k was

estimated as a velocity component Vo added to a random
error ε:

Do[k] = (Vo + ε) (2)

where ε ∼ N(0, Vo/10). N represents a normal distribution
and Vo is calculated as follows:

Vo = η + ζ (3)

being η a constant measured in the experiments and ζ ∼
U [0; ι], where ι is estimated from laboratory measurements.

3.1.3 Pheromone Laying and Evaporation
As to the laying and evaporation of pheromone, the model

considered the ants laying a quantity fl in the extremities
of each traversed branch l. The quantity of pheromone Ql

gradually decreases through the parameter δ, 0 ≤ δ < 1:

Ql[k] = δQl[k − 1] (4)

3.1.4 Path Choosing
Two factors were considered in the ants decision to choose

a branch in a bifurcation. The probability Pi(i, j, k) of choos-
ing the branch i when the ant is at bifurcation i− j at time
step k has two components: (i) P pher

i (i, j, k), a term re-
lated with the pheromone concentration, and; (ii) P dir

i (i, j),

a term related to the inclination of the of the branches i and
j with the x horizontal axis:

Pi(i, j, k) =
ρP pher

i (i, j, k) + τP dir
i (i, j)

ρ + τ
(5)

where:

P pher
i (i, j, k) =

(σ + Qi)
β

(σ + Qi)β(σ + Qj)β
(6)

P dir
i (i, j) =

(cosθ)α

(cosθ)α + (cosω)α
(7)

where θ is the angle formed by the branch i with the axis x;
ω is the angle formed by the branch j with the axis x; ρ, τ ,
σ, α and β are constants empirically obtained.

This model also considered a probability that ants could
make a U-turn, and come back, inverting their direction
along a chosen branch l. This function was represented as
a probability depending on the concentration of pheromone
deposited in l, the length of l and other empirical constants.
In this paper we did not explore such a function. For details
see [5].

3.1.5 Food Source Delay
The time Tso [k] spent by an ant o at a food source was

modeled as

Tso [k] = (κ + χ) (8)

where: χ ∼ N(0, κ/µ) is a random error and κ, µ are con-
stants empirically obtained. The values of the constants and
further details can be obtained in Vittori, et al. [3, 4, 5].

This model obtained encouraging results for the first ex-
perimental situation, with the static environment. However,
the second and especially third situations gave poor results
[5].

3.2 Ant Behavior Model - Version 2
As mentioned in the previous subsection, the first model

proposed did not reproduce the ants behavior satisfactorily
in the three situations. It showed a large number of loops
and choices for long and very long paths, but this was not
observed in the experiments.

The second version of the model [4] was also based on the
individual and has the following characteristics: (i) genera-
tion of ants at each second (time step); (ii) the ants displace-
ment through the environment; (iii) the ants’ choice at each
bifurcation; (iv) the pheromone deposit over the branch tra-
versed; (v) the time spent by each ant at period spent by
each ant at the food source, and; (vi)the time the ants kept
at a standstill when a branch was blocked.

Two characteristics were suppressed in the model: i) U-
turns, which were considered negligible, and; (ii) Pheromone
evaporation, considered irrelevant due to the relatively short
duration of the experiments (60min) compared with the per-
manence (about 30min) of pheromone after the time it is
deposited [7].

3.2.1 Ants Recruitment
The model proposed for the dynamics of the flow of ants

F [k] entering the foraging area is:

dF [k]

dk
= υF [k] +

(
1− F [k]

K

)
(9)
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where υ stands for the recruitment rate and K represents the
value of the flow at saturation, which is related to the num-
ber of foragers available for recruitment within the colony.
Integrating the Eq. 9, the ants flow F [k] entering the envi-
ronment is obtained.

F [k] =
Fmax

1 +

(
Fmax

F0
− 1

)
e

−k

τ

(10)

where: Fmax is the maximum flux at the entrance of the net-
work (Fmax = K); F0 is the initial flux at the entrance of the
network (F0 = K/(1+p)); p is a constant; k is the time step
related with the recruitment of ants. The values of Fmax, F0

and t were estimated through logistic regression. The value
F0 represents the number of ants that initially entered the
environment. At each time step k in the simulation, an ant
i is recruited with probability Pger[k]:

Pger[k] = F [k] (11)

where: F [k] is the flux of ants entering the environment at
instant k (Eq. 10). In Eq. 11, the generation of an ant i over
the environment at k depends on the generation of a random
value with uniform probability distribution function. If the
number generated is between 0 and the value of F [k], a new
ant enters the environment at k.

3.2.2 The Movement of Ants
The velocity of an ant is defined at the instant k it chooses

a new branch to move across it. That is, an ant may have
variable velocity along its displacement. The velocity is
based on the average velocity of the insects in the exper-
iments (Vaver) and its average standard deviation (Θ):

V [k] = Vaver + Θξ (12)

where: V [k] represents the velocity of the ant at the instant
k and ξ ∼ N(0; 1). Consequently the distance traversed
between times k − 1 and k is (Eq. 13):

D[k] = V [k]∆[k] (13)

where: ∆[k] = is the sampling time (1s).

3.2.3 Time Spent on Food Source
The time Ts[k] spent at a food source was modeled by

a logarithmic distribution, with a characteristic time (Ξ),
obtained in the experiments. The instant k is the time step
when the ant reaches the food source.

Ts[k] = Ξlog(Z) (14)

Where: Z ∼ U [0; 1], and U represents a uniform probability
function with limits 0 and 1.

3.2.4 Pheromone Deposit
The pheromone concentration in a branch l is initially set

to Finl = 0. When the ants cross the branches, the incre-
mental value q is deposited in each branch in the direction
nest-food source, and Q in the opposite direction. In this
model, the best results were obtained when the ratio Q/q is
set to the unit value 1, Q/q = 1.

It was considered that the pheromone amount over an
specific branch should be proportional to the number of ants
that have traversed it, as proposed by Deneubourg (1990)[7],
when modeling the ants behavior.

3.2.5 Blocked Branch Delay
The delay of the ants in the blocked branches (experimen-

tal situation 2), was also modeled in the Eq. 15:

B = Baver + ∂Υ (15)

where: B is the delay of the ant; Baver is the average delay,
and; ∂ represents the standard-deviation, both empirically
obtained, and; Υ ∼ U [0; 1].

3.2.6 Path Choosing
In the first model, the orientation of the branches was

represented by the angle between the branch and the x axis.
However, the angle between the branch of precedence and
the candidates for subsequent branches was considered more
appropriate. Then two types of bifurcation were distin-
guished: (i) symmetrical bifurcations, where both branches
have a 30◦ angle with the previous trajectory, or; (ii) asym-
metrical, where one has a 30◦ angle with the preceding path
and the other having a 120◦ angle.

In asymmetrical bifurcation, the ants’ choices of the ants
in a pheromone free platform (the passage of the first 10 ants
in each experiment) were considered in order to estimate
the influence of the geometry. From 350 ants observed, 270
opted for the branch with the 30◦ angle, which means 77%
of the total choices.

We represent the intrinsic attraction degree of the candi-
date branch i in the absence of pheromone as κi; if i has a
30◦ angle with the previous branch l, κi = κ30◦ = κ, and
if i has a 120◦ angle with l, then κi = κ120◦ = κrpref , i.e.,
rpref is the decaying of κ for the branch with bigger angle.

rpref = κ120◦/κ30◦ (16)

For a symmetric bifurcation the intrinsic attraction degree
of the branches are equal, κi = κj = κ. For asymmetric
bifurcations κ120◦ = κ30◦rpref .

The most common equation used to represent the proba-
bilistic choice of a branch was considered [7, 1]. When an
ant reaches the bifurcation i−j, the probability that governs
the choice of the next branches is:

Pi =
(κi + Ci)

n

(κi + Ci)n + (κj + Cj)n
= 1− Pj (17)

where Pi and Pj represent the probabilities of the ants choos-
ing the branch i or j, respectively; Ci is the concentration
of pheromone of the branch i; Cj is the concentration of
pheromone of the branch j, and; n is a given constant;

Substituting κ120◦ for rprefκ30◦ in Eq.17, and using the
best values obtained empirically in the simulations κ = 20
and n = 4, we have:

rpref = 4

√
1

p
− 1 (18)

where p = 0.77 is the proportion of ants choosing the 30◦

angle in experiments, resulting rpref = 0.74.
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The results of this model improved with the modifications
above, although several difficulties remained for a chang-
ing environment[3]. Such difficulties were associated mostly
with pheromone stagnation, i.e., in the second half of the
simulations, ants tend to follow the same branches as in the
first, due to the bias from pheromone high concentrations.

Afterwards, an improvement was tried by incorporating
the Metropolis Criterion [8] into the model[5]. Thus, the
ants’ choice at bifurcations could be modified. On reaching
the bifurcation i−j, coming from the branch l, the ant selects
the branch i or j (Eq.17). Then the probability of taking a
random decision, different from the first choice, is calculated.
Suppose that branch i was chosen, the probability Prand[k]
of the ant choosing the opposite branch, j is:

Prand[k] = exp (
Ωi[k]− Ωmax

Γ[k]
) (19)

where: Ωi[k] represents the flux of ants in the branch i until
the instant k; Ωmax represents the maximum flux of ants
over the branches, and; Γ[k] is the factor responsible for the
exploration level of the choices at the time step k.

The value of Ωmax was obtained calculating the average of
a ten-colony flux of ants at all the branches after one hour of
experiments. The variable Γ[k] received the value Ωmax at
the beginning of the simulations, empirically obtained. The
variable Γ[k] decreases when an ant reaches the food source
or the nest:

Γ[k + 1] = ΛΓ[k] (20)

where: k = instant when the ant reaches the food source or
the nest; Λ = decaying factor of Γ[k] , empirically (0.5 < Λ <
1). It is important to note that Γ[k] was defined as a global
variable and thus violates the principles of ACO and self-
organization [5]. Anyway, Metropolis Criterion as shown
above did not improve the results enough and stagnation
remained a problem for dynamic situations.

3.3 Ant Colony Foraging into Dynamic and
Confined Model – ACF-DCM

Once the pheromone stagnation was diagnosed as the main
problem in former models, the research was directed to in-
vestigate the major factors that contributed to that. The
Metropolis criterion, previously implemented, was not suffi-
cient to reproduce the random behavior of natural ants and
their capacity to adapt. The ACF-DCM results from several
modifications in the previous models, with the objective of
minimizing the stagnation problems and accurately repro-
ducing the experiments.

3.3.1 Limiting and Smoothing the Pheromone Con-
centration

Previous models consider that ants deposit pheromone
at constant rates when they traverse the branches. They
did not consider either limitations in ants’ perception of
pheromone concentrations or the influences of this percep-
tion on ants decisions. On this subject, Keshet et al.[9] intro-
duced the concept of an ants’ fidelity to a specific trail: the
probability that an ant continues to follow the same branch,
and that this varies linearly with the pheromone concentra-
tion, until a saturation level is reached. Myerscough et al.
[10] formulated a non-linear model for ants’ detection of and

response to pheromone concentration. Due to the many dif-
ficulties involved in separating these two components, these
models include the limitations of ants’ pheromone sensors as
well as the influences of pheromone concentrations on ants’
decisions, undistinguished, in the same function. Within the
scope of decisions affected by the perceiving pheromone is
the deposit of pheromone and following the.

Ants’ sensorial system needs a minimal pheromone con-
centration to influence their decisions [12]. Similarly, a satu-
ration level seems to be biologically plausible. Based on such
premises, the constant rate for the pheromone deposit and
linear perception were substituted by a sigmoidal model.
As we preserved the model for choosing a path based on
pheromone concentrations, the deposit rates now depend
on the existing amount of pheromone. Such improvement
is already well known in the literature [12]. This allows
the representation of the saturation effect in the perception
by means of limiting the pheromone deposit and simultane-
ously including the influence of the intensity of pheromone
perceived on the trail following decision. Thus, the differ-
ence in the degree of preference between the most chosen
path and any other path is reduced. This avoids an ex-
tremely dominant path situation that leads to stagnation.
The pheromone concentration is:

Φi[k + 1] = Φi[k] + ε(∆Φ[k]) (21)

where: Φi[k] represents the deposited pheromone amount in
a branch i at instant k, 0 ≤ ε ≤ 1, and a maximum limit
amount of pheromone Φmax in each branch is defined.

∆Φ[k] =

{
Φmax − Φi[k], if Φmax ≥ Φi[k];
0, otherwise.

(22)

3.3.2 Pheromone Evaporation
In the second version of the Ant Behavior Model, the

length of the experiment (30–60 min) was considered too
short to produce significant evaporation [7], then it was ig-
nored. However, evaporation of more volatile components of
pheromone, and influences of substrate and air speed may
influence how ants perceive pheromone. Moreover, chemical
recruiting in Linepithema humile, under laboratory condi-
tions, may be effaced for about 30 to 60 min [13, 14, 15],
and consequently the evaporation effect is possibly relevant.

Jeanson, Ratnieks and Deneubourg [14] pointed out that
the half-life time to the pheromone of the ant M. pharaonis
is about 9 min on a plastic substrate and 3 min on pa-
per substrate. The pheromone duration of M. pharaonis is
supposed to be similar to the Linepithema humile due to
the wandering behavior they have in common. Both species
present opportunistic nesting and probably benefit from the
short duration of their pheromone. In spite of this, the pres-
ence of long-term components in their pheromone shall not
be discarded [16].

In Solé et al. [17], for a given evaporation rate, low deposit
rates of pheromone lead to more flexibility, which is specially
useful when dealing with small and scattered food sources.
They also consider a saturation level for the pheromone
(Φmax), and the evaporation decay as in Eq. 23.

Φi[k + 1] = Φi[k]γ (23)

being Φi > Φmin and γ a constant, 0.92 ≤ γ ≤ 1.
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Halloy, et al. [18] also consider the evaporation propor-
tionally to the pheromone concentration. The Eq. 23, as
used in the ACF-DCM, is well established in the literature
[12], above all, for its simplicity. The best simulation results
were obtained when a subtle evaporation rate (γ ≈ 0.98)
was used.

3.3.3 Metropolis Criterion Modification: Crowding
Condition

The Metropolis criterion as used in the previous model
presupposes that ants evaluate the cumulative traffic in each
branch, and such perceptions influence their decisions, lead-
ing them to diverge from their ’deterministic’ choices – based
on the pheromone concentration and the geometry of the bi-
furcation (Eq. 17). Such mechanism made the ants in the
first experimental situation correctly avoid very-dominant
paths, and helped the model to reproduce real ant behavior.
However, for the second and third situations, the simple per-
ception of traffic flow did not suffice to reproduce correctly
the behavior observed in experiments.

There is a subtle but important difference between the
perception of the flow of ants and the perception of the num-
ber of ants within a determined branch at a given instant,
being stopped or in movement. If a branch has been blocked,
the ants stop within it and wait before turning back, as ob-
served in experiments (Eq. 15). Even if the ant flow (Ωi[k])
in this branch i is not altered, a little crowding occurs.

Another difficulty observed in the previous model was
caused by computing the flow of ants. This requires a time
interval in which a certain number of ants will pass through
the branch. Vittori et al. [3] employed the total number of
ants that have traversed the branch until the instant of cal-
culation. In this case, there is a tendency for the cumulative
effect to surpass the recent flow effect, and stagnation may
occur.

The supposition that the ants are capable of visually de-
tecting agglomerations has strong support in the literature
[19, 16, 20], reinforcing the importance of visual cues and
avoidance of crowding in foraging ants. The equation used
in ACF-DCM is quite similar to Eq.19 used in the previous
model, except for the meaning of its variables:

ϕCrowd = exp (
Ω[k]− Ωmax

Γ
) (24)

where Γ is a constant curve parameter, to regulate its smooth-
ing; Ω[k] is the number of ants within the chosen branch at
time step k, and; Ωmax indicates the maximum number of
ants above which the ants certainly will avoid the agglom-
eration.

The value of Ωmax shall depend on the capacity of the
branch, i.e., the narrower is the branch, the lower is Ωmax.
In this study, all the branches have the same thickness, thus
the same Ωmax.

3.3.4 New Parameters
Table 2 shows the parameters used in the successful sim-

ulations of ACF-DCM. Some parameters could not be mea-
sured or estimated from experiments and were empirically
set. Pheromone parameters were set empirically to avoid
stagnation, i.e, values should not allow branches to have
higher discrepancies on pheromone deposited during sim-
ulation time, which would make adaption difficult. First,
deposit parameters were set, then several evaporation rates

Table 2: Table of new parameters
Function Parameter Value Origin
Generation Fmax 0.42/s

of Ants F0 5x10−4s Estimated
τ 127.4s from

Branch κ 20 experiments
choice n 4

rpref 0.74
Delay on Baver 100s

blocked branch ∂ 2.09s
Velocity Vaver 1.06cm/s Measured

Θ 0.34 in the
Time spent Ξ 179.9s experiments
Pheromone ε 0.05

deposit Φmax 100
Φmin 5 Empirical

Evaporation γ 0.98 values
Metropolis Γ 0.98
Criterion Ωmax 10

were tested, being γ = 0.98 being the value that gave best
results.

For Metropolis Criterion parameters, Ωmax was firstly es-
timated based on the maximum number of ants in simu-
lations without the Metropolis Criterion, while Γ was set
empirically by trial and error.

4. RESULTS
The implementation of ACF-DCM in ANSI C allowed

analysis of the influence of parameters influence over sim-
ulations of the three experimental situations. Results were
computed to allow comparison with experimental measure-
ments as well as the dynamic of ant colonies The main results
are described below.

4.1 Results for Experimental Situation 1
While the previous models have already shown good re-

sults for the first experimental situation, ACF-DCM showed
even better ones, as they very accurately reproduced the
measurements collected in the laboratory with real ants, as
illustrated in Figure 2.

4.2 Results for Experimental Situation 2
Before the branch 3a (or 6a) is blocked, at time step

k = 1800, ants obviously behave similarly to situation 1, i.e.,
they take the shortest paths. After the blockade, several ants
take invalid routes, until gradually they find medium routes
(the shortest available) and cease the loops, as depicted in
Figure 3(a). The ACF-DCM reproduces such behavior very
precisely, despite there being a minor deficiency in replicat-
ing the number of ants that take a long route. In the reverse
direction, food-nest, a minor discrepancy is observed for very
long routes, as illustrated in Figure 3(b).

4.3 Results for Experimental Situation 3
The ACF-DCM, differently from previous models, repro-

duced the ants’ behavior observed in the laboratory, see Fig-
ure 4(a), although small discrepancies still remain. After un-
blocking (30min) it is possible to observe in the simulations
that no stagnation occurs. The ants that were previously
foraging through a long route, learn and redistribute them-
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(a)

(b)

Figure 2: Choice frequency for the two previous ver-
sions of the model, for ACF-DCM and for the exper-
iments, for situation 1, in (a) for nest-food direction
and (b), food-nest.

selves into medium paths, short paths and loops. As time
goes by, the ants migrate to the shortest paths until the end
of the simulations. Such observations are quite similar in
experiments, besides which real ants still present lower loop
rates.

In the food-nest direction, simulations also showed good
results, as shows Figure 4(b) shows. Here, real ants display
a curious behavior. After unblocking, there is a reduction
in the occurrence of long routes, but the ants start choosing
long paths again in the last 15 minutes of experiments. This
behavior was not completely reproduced by the simulations.

5. CONCLUSIONS
In the laboratory, foraging ants exhibited their amazing

capacities for self-organization and adapting, by finding the
best routes in a relatively complex environment and adapt-
ing themselves to environmental changes. Such achieve-
ments result from the superposition of relatively simple indi-
vidual behavioral rules. ACF-DCM succeeded in the repli-
cating several behavioral features observed in experiments
with the argentine ant Linepithema humile. The simulations
reproduce patterns observed in real ants when foraging into
confined and dynamic environment.

Both the individual and the collective characteristic be-

(a)

(b)

Figure 3: Choice frequency for the three versions of
the model and for the experiments, for situation 2,
in (a) direction nest-food and (b) food-nest.

haviors of the foraging ants were considered in the model.
The choices of the shortest routes were observed in the sim-
ulations exactly as in the experiments, when access to the
fourteen different paths was allowed (situation 1). When
dealing with a dynamic environment, the new model over-
comes the stagnation problem, diagnosed as being the main
problem in the previous models. This shows how the ants
adapt to blocked or unblocked branches (situation 2 and 3
respectively).

Three important new elements were introduced in the
ACF-DCM:

(i) Smoothing and Saturation in the perception and de-
posit of pheromone. Indeed, introducing these very natural
and simple non-linearities are responsible for greatly model-
ing improving the model;

(ii) Evaporation, which helps the model to avoid stagna-
tion. This reflects one of the most important features of real
ants, above all, those dependent on scattered food sources
and which have to cope with a changing foraging area, and;

(iii) Modifying the Metropolis Criterion, by considering
the ants’ perception of crowding, which enabled them to
avoid crowded branches. This new feature considers ants
have little visual capability, which is necessary to perceive
agglomerations and then, probably choose an alternative
way.
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(a)

(b)

Figure 4: Choice frequency for the three versions of
the model and for the experiments, for situation 3,
in the (a) direction nest-food and (b) food-nest.

ACF-DCM has shown to be efficacious at reproducing ac-
curately natural ant colony behavior in a confined and dy-
namic network, overcoming stagnation problem and increas-
ing biological plausibility. Work is now in progress to evalu-
ate the introduction of other ants sensorial capacities in the
model and to explore their possible applications.

6. REFERENCES
[1] E. Bonabeau, M. Dorigo and G. Theraulaz. Swarm

Intelligence: From Natural to Artificial Systems
Oxford University Press, New York, 1999.

[2] J. Kennedy, R. C. Eberhart and Y. Shi. Swarm
Intelligence Morgan Kaufmann Press, 1999.

[3] K. Vittori, G. Talbot, J. Gautrais, V. Fourcassié,
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