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ABSTRACT 
The Schrodinger equation is a second order differential equation 
that describes and governs many real world systems of interest. 
Analytical techniques are sufficient to solve this equation for 
some simple systems, and numerical techniques can provide 
adequate approximate solutions for somewhat more complex 
problems. However, attempts to use numerical techniques for yet 
more complex systems, some of great interest, have proven to be 
beyond the capabilities of conventional computing resources. 
Computational intelligence techniques have been applied in some 
approaches to addressing this problem. This paper reports an 
approach to using genetic algorithms with “mixed” analytical 
wave functions, to solve the Schrodinger equation.  
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1. INTRODUCTION 
Schrodinger’s equation is a second order partial differential 
equation that sits at the heart of quantum mechanics [9]. Its 
solutions describe and govern many systems of interest in physics, 
chemistry, finance and biology. Closed form analytical solutions 
of this equation are known for some simple systems. More 
complicated systems require more complicated versions of the 
equation. For systems without known closed form analytical 
solutions other approaches are used. These approaches are based 
on simplifying assumptions regarding the equation itself and/or 
the use of numerical methods for solving the equation. Extensive 
work on both of these approaches has been done, and substantial 
and useful results have been obtained [8]. Yet even these 
innovations have not been sufficient to obtain usable solutions to  

Schrodinger’s equation for many systems of great interest. Would 
it be possible to formulate it, protein folding might be such a 
system [1]. 

Accordingly, it seems useful to enquire into other approaches that 
might contribute to making the solution of this equation more 
computationally feasible. Computational intelligence techniques 
might be considered, separately or in combination. An 
incremental approach to such a development effort seems prudent, 
and might start by applying a single CI technique to multiple 
versions of the problem (multiple systems), beginning with very 
simple systems and working up to more complicated systems.  

Genetic algorithms and genetic programming have already been 
applied to the solution of differential equations. Koza [6] 
demonstrated the use of genetic programming to solve differential 
equations. In celestial mechanics Bello-Mora et al. [2] used 
genetic algorithms to explore the solution space for weak stability 
boundary transfer orbits. Howard and Roberts  [5] presented a 
method for the challenge of solving the steady state convection-
diffusion equations directly as an alternative to the imperfect and 
ad-hoc methods of today: weighted residual methods (Petrov-
Galerkin finite elements, upwind finite differences, etc.) by means 
of genetic programming; Howard and Kolibal [4] later advanced 
an alternative approach that combined stochastic interpolation and 
genetic programming, and which offered more generality and the 
potential for the solution of 2D and 3D convection-diffusion 
equations and Navier-Stokes equations with arbitrary boundary 
conditions.  With both methods they discovered a type of “GA 
deceptive problem” [3] concerning high Peclet numbers. 

This paper reports an approach to using genetic algorithms with 
“mixed” analytical wave functions, for Schrodinger’s equation. 

2. APPROACH ALTERNATIVES 
We may distinguish three paths to solution of the equation of 
interest: 

1. Attempts to directly solve the (un-simplified) equation, with 
closed form (but possibly approximate) analytic solutions; 

2. Attempts to solve versions of the equation that have been 
subjected to simplifying assumptions; and  

3. Attempts to apply numerical techniques to either the un-
simplified equation, or to versions of the equation that have been 
subjected to simplifying assumptions.  

Any of theses approaches might possibly be rendered more 
computationally feasible by the application of CI techniques. 

It would be tempting to try to estimate the computational 
efficiency of any of these approaches by applying them to small-
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scale systems followed by scaling the results up to large scale 
systems. However, the convergence of techniques such as genetic 
algorithms is difficult to predict, so estimates of scale-up are 
unreliable or need to be investigated. 

Similarly, we might try to compare the computational demands of 
a CI approach with those of a traditional numerical approach for 
simple systems, determining which was the more computationally 
efficient. However, given the difficulty of forecasting the 
convergence of both CI techniques and traditional numerical 
techniques when applied to very complicated problems, this 
approach seems futile. At best, mathematical numerical analysis 
will only yield error estimates which indicate orders of 
convergence that are bound by unknown constants.  It seems that 
we must try out the CI techniques in order to determine their 
effectiveness. 

3. A GENETIC ALGORITHM SOLUTION 
OF THE SCHRODINGER EQUATION 
3.1 Formulation and Representation  
Solutions consist of complex-valued functions of position called 
ψ, the wave function, and E, a corresponding real-valued 
eigenvalue.  It is tempting to try to use the GA to directly estimate 
numerical values of ψ and E. E is a single value, and ψ could be 
approximated by its value at a grid of points [7]. We note that this 
representation would allow the wave function to take dramatically 
different values at adjacent points, with the potential for 
dramatically different values of the (approximated) second 
derivative of ψ at some of those points. However, the Schrodinger 
equation itself constrains the value of the second derivative. For 
lower energy solutions, we expect low values of the second 
derivative. We seek to use this constraint to reduce computational 
demands by avoiding computations that allow excessive values 
for the second derivative of the wave function. 

How then can we represent the potential solutions for the GA? 
The ψ functions could be represented by analytical functions, such 
as sine and, cosines, and/or exponentials, and/or Laguerre 
polynomials, etc., or as sums of analytic functions. The use of 
analytic functions to represent ψ has the great advantages of (1) in 
limiting the magnitude of the second derivative (smoothly varying 
functions) and (2) in reducing the computational load that is 
requires to compute the fitness. 

3.2 Solution Approach 
This representation would allow the wave function to take 
dramatically different values at adjacent points, which is 
physically excluded for many interesting problems. Solutions of 
the Schrodinger equation are defined in terms of sets of basis 
functions (sets of basis vectors). “Good” sets of basis functions 
facilitate solution, while less appropriate sets hinder solution. 
Where exact analytic solutions are known, the appropriate sets of 
basis vectors are also well known [9]. 

What constitutes appropriate sets for problems without known 
analytic solutions? In particular, for molecules and for atoms more 
complicated than hydrogen (which has a known analytic solution), 
what then are the appropriate sets?  The Linear Combination of 
Atomic Orbitals (LCAO) approach is widely used.  Wave 
functions for single electrons centered on individual nuclei 
constitute the basis set. These wave functions might be, for 

example, the analytically derived solutions for hydrogen-like 
atoms (called Slater-type orbitals). Alternatively, the selection of 
these basis functions may be based more on computational 
efficiency rather than on a physical motivation. Gaussian orbitals 
are a widely used example of such basis functions  [8]. 

The following solution approach is proposed. Create prospective 
approximate basis sets from combinations of finite subsets of 
analytically derived solutions from various problems, and 
computationally motivated basis sets also. For example, truncate 
the (infinite) set of solution functions from a variety of problems 
(e.g., hydrogen atom, infinite potential well, varieties of finite 
potential well, etc.) to finite subsets, and merge those subsets. Add 
a (finite) subset of Gaussian functions to this merged set. In 
attempting solutions to the Schrodinger equation the GA will use 
the resulting set, here termed “mixed set”. 

First efforts to use these sets must be on problems with known 
solutions as this enables validation of the approach by a 
comparison with the known analytical solutions. This also 
facilitates numerical experiments with regard to the minimum 
sizes and compositions of the mixed sets.  Experiments on 
problems without known analytical solutions follow. These would 
start with more complicated (than hydrogen-line) atoms and with 
simple molecules. 
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