
Searching for Liveness Property Violations
in Concurrent Systems with ACO

Francisco Chicano
University of Málaga, Spain
chicano@lcc.uma.es

Enrique Alba
University of Málaga, Spain

eat@lcc.uma.es

ABSTRACT
Liveness properties in concurrent systems are, informally,
those properties that stipulate that something good even-
tually happens during execution. In order to prove that a
given system satisfies a liveness property, model checking
techniques are utilized. However, most of the model check-
ers found in the literature use exhaustive deterministic algo-
rithms that require huge amounts of memory if the concur-
rent system is large. Here we propose the use of an algorithm
based on ACOhg, a new kind of Ant Colony Optimization
algorithm, for searching for liveness property violations in
concurrent systems. We also take into account the structure
of the liveness property in order to improve the efficacy and
efficiency of the search. The results state that our algorith-
mic proposal, called ACOhg-live, is able to obtain very short
error trails in faulty concurrent systems using a low amount
of resources, outperforming by far the results of Nested-DFS
and Improved-Nested-DFS, two algorithms used in the lit-
erature for this task in the model checking community. This
fact makes ACOhg-live a very suitable algorithm for finding
liveness errors in large faulty concurrent systems, in which
traditional techniques fail because of the model size.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Veri-
fication—model checking ; I.2.8 [Artificial Intelligence]:
Problem Solving, Control Methods, and Search—Heuris-
tic methods; G.1.6 [Numerical Analysis]: Optimization—
Global optimization

General Terms
Verification, Algorithms, Experimentation

Keywords
Liveness properties, HSF-SPIN, SPIN, ant colony optimiza-
tion, metaheuristics

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’08, July 12–16, 2008, Atlanta, Georgia, USA.
Copyright 2008 ACM 978-1-60558-130-9/08/07…$5.00.

1. INTRODUCTION
Model checking [5] is a fully automatic technique that al-

lows to check if a given concurrent system satisfies a property
like, for example, the absence of deadlocks, the absence of
starvation, the fulfilment of an invariant, etc. The use of this
technique is a must when developing software that controls
critical systems, such as an airplane or a spacecraft. Un-
like test case generation, model checking is a formal method
that can prove that the software system fulfils a specified
property. However, the memory required for the verifica-
tion usually grows in an exponential way with the size of
the system to verify. This fact is known as the state explo-
sion problem and limits the size of the system that a model
checker can verify.

Several techniques exist to alleviate the state explosion
problem. They reduce the amount of memory required for
the search by following different approaches (see [13]). How-
ever, exhaustive search algorithms are always handicapped
in large concurrent systems because most of these systems
are too complex even for the most advanced techniques.
When the search for errors with a low amount of computa-
tional resources (memory and time) is a priority (e.g., in the
first stages of the development), non-exhaustive algorithms
using heuristic information can be used.

Non-exhaustive algorithms can find errors in programs us-
ing less computational resources than exhaustive algorithms,
but they cannot be used for verifying a property: when no
error is found using a non-exhaustive algorithm we still can-
not ensure that no error exists. Due to this fact we can
establish some similarities between heuristic model checking
using non-exhaustive algorithms and software testing [16].
In both cases, a large region of the state space of the pro-
gram is explored in order to discover errors; but the absence
of errors does not imply the correctness of the program.

A well-known class of non-exhaustive algorithms for solv-
ing complex problems is the class of metaheuristic algo-
rithms [4]. They are search algorithms used in optimization
problems that can find good quality solutions in a reason-
able time. In fact, Genetic Algorithms [11] and Ant Colony
Optimization [2] have been applied in the past for searching
for safety property violations in concurrent systems. The
search for liveness property violations is not so direct and,
in fact, no metaheuristic algorithm has been ever applied to
it in the literature to the best of our knowledge.

In this work we propose an algorithm based on the ACOhg
algorithm presented in [2] for searching for liveness property
violations in concurrent systems. We also take into account
the internal structure of the property itself in order to im-

1727

prove the search. The paper is organized as follows. The
next section presents the foundations of the problem. In Sec-
tion 3 the problem is formalized as a graph search. Section 4
describes our algorithmic proposal, called ACOhg-live. In
Section 5 we present some experimental results analyzing
the influence on the performance measures of the knowledge
about the property structure and we compare our proposal
against two exhaustive algorithms utilized for checking live-
ness properties in explicit state model checking: Nested-DFS
and Improved-Nested-DFS. Finally, Section 6 outlines the
conclusions and future work.

2. BACKGROUND
In this section we give some details on the way in which

properties are checked in explicit state model checking. In
particular, we will focus on the model checker HSF-SPIN [8],
an experimental model checker by Edelkamp, Lluch-Lafuente
and Leue based on the popular model checker SPIN[13].
First, we formally define the concept of property of a concur-
rent system. After that, we detail how the properties can
be represented using automata and we define the concept
of strongly connected components, which allows us to imple-
ment improvements on the search algorithms. Finally, we
detail how heuristic information is used to guide the search
for property violations.

2.1 Properties
Let S be the set of states of a program (concurrent sys-

tem), Sω the set of infinite sequences of program states, and
S∗ the set of finite sequences of program states. The ele-
ments of Sω are called executions and the elements of S∗

are partial executions. However, (partial) executions are not
necessarily real (partial) executions of the program. The real
executions of the program form a subset of Sω. A property
P is a set of executions, P ⊆ Sω. We say that an execution
σ ∈ Sω satisfies the property P if σ ∈ P , and σ violates the
property if σ /∈ P . In the former case we use the notation
σ ` P , and the latter case is denoted with σ 0 P . A prop-
erty P is a safety property if for all executions σ that violate
the property there exists a prefix σi (partial execution) such
that all the extensions of σi violate the property. Formally,

∀σ ∈ Sω : σ 0 P ⇒ (∃i ≥ 0 : ∀β ∈ Sω : σiβ 0 P) , (1)

where σi is the partial execution composed of the first i
states of σ. Some examples of safety properties are the ab-
sence of deadlocks and the fulfilment of invariants. On the
other hand, a property P is a liveness property if for all the
partial executions α there exists at least one extension that
satisfies the property, that is,

∀α ∈ S∗ : ∃β ∈ Sω, αβ ` P . (2)

One example of liveness property is the absence of starva-
tion. The only property that is a safety and liveness prop-
erty at the same time is the trivial property P = Sω. It can
be proved that any given property can be expressed as an
intersection of a safety and a liveness property [3].

The properties of a concurrent system are usually specified
using a temporal logic, like Linear Temporal Logic (LTL) or
computation Tree logic (CTL). We use the former in this
work. In this case, atomic propositions are defined on the
base of the variables and program counters of the processes

of the system. The property is expressed using an LTL for-
mula composed of the atomic propositions. For example,
an LTL property can be ¤p (read “henceforth p”), where
p ≡ x > 3. This property specifies an invariant: for a con-
current system to fulfil this property the variable x must
always be greater than 3. This property consists of all the
executions σ in which the variable x is greater than 3 for all
the states of σ.

2.2 Property Automaton and Checking
The way in which LTL properties are checked in HSF-

SPIN is by means of an automaton that captures the vi-
olations of the property, that is, the automaton accepts
the executions in which the property is violated. This au-
tomaton is called never claim in SPIN and HSF-SPIN. This
never claim can be automatically computed from the nega-
tion of the LTL formula [10]. In order to find a violation of
a given LTL property, HSF-SPIN (and SPIN) explores the
synchronous product of the concurrent model and the never
claim, also called Büchi automaton. As an illustration, in
Fig. 1 we show the automaton of a simple concurrent system
(left box), the never claim used to check the LTL formula
¤(p → ♦q) (which means that an occurrence of p is always
followed by an occurrence of q, not necessarily in the next
state), and the synchronous product of these two automata.

 q

 q ! p

true

a b

1

2 3

4

{p} {p}

{p, q}

{}
{}

4,a

3,a

 1,b 1,a

2,a 3,b

 4,b

 2,b × =

Concurrent system Never claim Synchronous product

Figure 1: Synchronous product of a simple concur-
rent system and a never claim.

HSF-SPIN (and SPIN) searches in the Büchi automaton
for an execution σ = αβω composed of a partial execution
α ∈ S∗ and a cycle of states β ∈ S∗ containing an accepting
state. If such an execution is found it violates the liveness
component of the LTL formula and, thus, the whole LTL
formula. During the search it can also be found a state
in which the end state of the never claim is reached. This
means that an execution has been found that violates the
safety component of the LTL formula and the partial exe-
cution α ∈ S∗ that leads the model to that state violates
the LTL formula1. In HSF-SPIN and SPIN model checkers
the search can be done using the Nested Depth First Search
algorithm (NDFS) [14]. However, if the LTL formula rep-
resents a safety property (the liveness component is true)
the problem of finding a property violation is reduced to
find a partial execution α ∈ S∗ violating the LTL formula,
i.e., it is not required to find an additional cycle containing
the accepting state. In this case classical graph exploration
algorithms such as Breadth First Search (BFS), or Depth
First Search (DFS) can be used for finding property viola-
tions. These classical algorithms cannot be used when we
are searching for liveness property violations (as we do in
this work) because they are not designed to find the cycle of
states β above mentioned.

1A deeper explanation of the foundations of the automata-
based model checking can be found in [5] and [13].

1728

In order to improve the search for property violations it
is possible to take into account the structure of the never
claim. The idea is based on the fact that a cycle of states in
the Büchi automaton entails a cycle in the never claim. For
improving the search first we need to compute the strongly
connected components (SCCs) of the never claim. A strongly
connected subgraph G = (V, A) of a directed graph is that in
which for all pairs of different nodes u, v ∈ V there exist two
paths: one from u to v and another one from v to u. The
strongly connected components of a directed graph are its
maximal strongly connected subgraphs. Once we have the
SCCs of the never claim we have to classify them into three
categories depending on the accepting cycles they include.
We denote with N-SCC those SCCs in which no cycle is
accepting. A P-SCC is that in which there exists at least
one accepting cycle and at least one non-accepting cycle.
Finally, F-SCC are the SCCs in which all the cycles are
accepting [9]. All the cycles found in the Büchi automaton
have an associated cycle in one SCC of the never claim.
Furthermore, if the cycle is accepting (which is the objective
of the search) this SCC is necessarily a P-SCC or an F-SCC.
The classification of the SCCs of the never claim can be used
to improve the search for property violations. In particular,
the accepting states in an N-SCC can be ignored, and the
cycles found inside an F-SCC can be considered as accepting.
In HSF-SPIN, there is an implementation of an improved
version of NDFS called Improved-Nested-DFS (INDFS) that
takes into account the classification of the SCCs of the never
claim [9].

2.3 Using Heuristic Information
In order to guide the search, a heuristic value is associated

to each state of the transition graph of the model. Different
kinds of heuristic functions have been defined in the past to
better guide exhaustive algorithms. In [12] structural heuris-
tics are introduced that attempt to explore the structure of
a program in a way conducive to find errors. One exam-
ple of this kind of heuristic information is code coverage, a
well known metric in the software testing domain. Another
example is thread interleaving, in which states yielding a
thread scheduling with many context changes are rewarded.

Unlike structural heuristics, property-specific heuristics
[12] rely on features of the particular property checked. For-
mula-based heuristics, for example, are based on the expres-
sion of the LTL formula checked [8]. Using the logic expres-
sion that must be false in an objective state, these heuristics
estimate the number of transitions required to get such an
objective state from the current one. Given a logic formula
ϕ, the heuristic function for that formula Hϕ is defined us-
ing its subformulae. In this work we use a formula-based
heuristic that is defined in [8].

There is another group of heuristic functions called state-
based heuristics that can be used when the objective state is
known. From this group we can highlight the Hamming dis-
tance Hham and the distance of finite state machines Hfsm.
In the first case, the heuristic value is computed as the Ham-
ming distance between the binary representations of the cur-
rent and the objective state. In the latter, the heuristic value
is the sum of the minimum number of transitions required
to reach the objective state from the current one in the local
automata of each process. In the experimental section we
will use Hfsm.

3. PROBLEM FORMALIZATION
In this article we tackle the problem of searching for live-

ness property violations in concurrent systems. As we pre-
viously mentioned, this problem can be translated into the
search of a path in a graph (the Büchi automaton) starting
in the initial state and ending in an objective node (accept-
ing state) and an additional cycle involving the objective
node. We formalize here the problem as follows.

Let G = (S, T) be a directed graph where S is the set of
nodes and T ⊆ S × S is the set of arcs. Let q ∈ S be the
initial node of the graph and F ⊆ S a set of distinguished
nodes that we call final nodes. We denote with T (s) the suc-
cessors of node s. A finite path over the graph is a sequence
of nodes π = s1s2 . . . sn where si ∈ S for i = 1, 2, . . . , n and
si ∈ T (si−1) for i = 2, . . . , n. We denote with πi the ith
node of the sequence and we use |π| to refer to the length of
the path, that is, the number of nodes of π. We say that a
path π is a starting path if the first node of the path is the
initial node of the graph, that is, π1 = q. We will use π∗ to
refer to the last node of the sequence π, that is, π∗ = π|π|.
We say that a path π is a cycle if the first and the last nodes
of the path are the same, that is, π1 = π∗.

Given a directed graph G, the problem at hand consists in
finding a starting path π ending in an final node plus a cycle
ν containing the final node. That is, find π and ν subject to
π1 = q ∧ π∗ ∈ F ∧ π∗ = ν1 = ν∗.

The graph G used in the problem is derived from the
Büchi automaton B (synchronous product of the concurrent
system and the never claim). The set of nodes S in G is
the set of states in B, the set of arcs T in G is the set of
transitions in B, the initial node q in G is the initial state in
B, and the set of final nodes F in G is the set of accepting
states in B. In the following, we will also use the words
state, transition, and accepting state to refer to the elements
in S, T , and F , respectively.

4. ALGORITHMIC PROPOSAL
In order to find accepting paths in the Büchi automaton

we propose here an algorithm that we call ACOhg-live. This
algorithm is based on ACOhg, a new kind of ACO that has
been applied to the search for safety errors in concurrent
systems [2]. We describe ACOhg in the next section and
ACOhg-live in Section 4.2. Finally, we describe how the
improvement based on SCCs is applied to ACOhg-live.

4.1 ACOhg algorithm
ACOhg is a new kind of Ant Colony Optimization model

proposed in [2] that can deal with construction graphs of
unknown size or too large to fit into the computer mem-
ory. Actually, this new model was proposed for applying an
ACO-like algorithm to the problem of searching for safety
property violations in very large concurrent systems.

In short, the two main differences between ACOhg and
the traditional ACO models are the following ones. First,
the length of the paths (defined as the number of arcs in the
path) traversed by ants in the construction phase is limited.
That is, when the path of an ant reaches a given maximum
length λant the ant is stopped. Second, the ants start the
path construction from different nodes during the search. At
the beginning, the ants are placed on the initial node of the
graph, and the algorithm is executed during a given number
of steps σs (called stage). If no objective node is found, the
last nodes of the best paths constructed by the ants are used

1729

as starting nodes for the ants in the next stage. In this way,
during the next stage the ants try to go further in the graph
(see [2] for more details). In Algorithm 1 we present the
pseudocode of ACOhg.

Algorithm 1 ACOhg

1: init = {initial node};
2: next init = ∅;
3: τ = initializePheromone();
4: step = 1;
5: stage = 1;
6: while step ≤ msteps do
7: for k=1 to colsize do {Ant operations}
8: ak = ∅;
9: ak

1 = selectInitNodeRandomly (init);
10: while |ak| < λant ∧ T (ak

∗)− ak 6= ∅ ∧ ak
∗ /∈ O do

11: node = selectSuccessor (ak
∗, T (ak

∗), τ ,η);
12: ak = ak + node;
13: τ = localPheromoneUpdate(τ ,ξ,node);
14: end while
15: next init = selectBestPaths(init, next init, ak);
16: if f(ak) < f(abest) then
17: abest = ak;
18: end if
19: end for
20: τ = pheromoneEvaporation(τ , ρ);
21: τ = pheromoneUpdate(τ , abest);
22: if step ≡ 0 mod σs then
23: init = next init;
24: next init = ∅;
25: stage = stage+1;
26: τ = pheromoneReset();
27: end if
28: step = step + 1;
29: end while

In the following we will describe the algorithm, but pre-
viously we are going to clarify some issues related to the
notation used in Algorithm 1. In the pseudocode, the path
traversed by the kth artificial ant is denoted with ak. For
this reason we use the same notation as in Section 3 for re-
ferring to the length of the path (|ak|), the jth node of the
path (ak

j), and the last node of the path (ak
∗). We use the

operator + to refer to the concatenation of two paths. In
line 10, we use the expression T (ak

∗)− ak to refer to the ele-
ments of T (ak

∗) that are not in the sequence ak. That is, in
that expression we interpret ak as a set of nodes.

In this work we use a node-based pheromone model, that
is, the pheromone trails are associated to the nodes instead
of the arcs. The algorithm works as follows. At the begin-
ning, the variables are initialized (lines 1-5). All the phero-
mone trails are initialized with the same value: a random
number between 0.1 and 10. In the init set (initial nodes for
the ants construction), a starting path with only the initial
node is inserted (line 1). This way, all the ants of the first
stage begin the construction of their path at the initial node.

After the initialization, the algorithm enters in a loop that
is executed until a given maximum number of steps (msteps)
set by the user is performed (line 6). In a loop, each ant
builds a path starting in the final node of a previous path
(line 9). This path is randomly selected from the init set
using a fitness proportional probability distribution. For
the path construction, the ants enter a loop (lines 10-14)

in which each ant k stochastically selects the next node ac-
cording to the traditional stochastic rule used in ACO [7].
This rule takes into account the amount of pheromone of
the following nodes and the heuristic values associated to
these nodes. This heuristic value is defined after the heuris-
tic function H used for guiding the search of the objective
node. The exact expression we use is ηj = 1/(1 + H(j)).
After the movement of an ant from a node to the next
one the pheromone trail associated to the new node is up-
dated as in Ant Colony Systems (ACS) using the expression
τj ← (1−ξ)τj (line 13). This mechanism increases the explo-
ration of the algorithm, since it reduces the probability that
an ant follows the path of a previous ant in the same step.
All this construction phase is iterated until the ant reaches
the maximum length λant, it finds an objective node, or all
the successors of the last node of the current path, T (ak

∗),
have been visited by the ant during the construction phase.
This last condition prevents the ants from constructing cy-
cles in their paths.

After the construction phase, the ant is used to update
the next_init set (line 15), which will be the init set in
the next stage. In next_init, only starting paths are al-
lowed and all the paths must have different last nodes. The
cardinality of next_init is bounded by a given parameter ι.
When this limit is reached and a new path must be included
in the set, the starting path with higher objective value is
removed from the set.

When all the ants have built their paths, a pheromone up-
date phase is performed. First, all the pheromone trails are
reduced according to the expression τj ← (1− ρ)τj (line 20).
Then, the pheromone trails associated to the nodes traversed
by the best-so-far ant (abest) are increased using the expres-
sion τj ← τj + 1/f(abest), ∀j ∈ abest (line 21). We use
here the mechanism introduced in Max-Min Ant Systems
(MMAS) for keeping the value of pheromone trails in a
given interval [τmin, τmax] in order to maintain the probabil-
ity of selecting one node above a given threshold. The values
of the trail limits are τmax = 1/ρf(abest) and τmin = τmax/a
where the parameter a controls the size of the interval.

Finally, with a frequency of σs steps, a new stage starts.
The init set is replaced by next_init and all the pheromone
trails are removed from memory (lines 22-27).

The objective function f to be minimized is defined as

f(a
k
) =

{ |π + ak| if ak
∗ ∈ O

|π + ak|+ H(ak
∗) + pp + pc

λant−|ak|
λant−1 if ak

∗ /∈ O ,
(3)

where π is the starting path in init whose last node is the
first one of ak, pp, and pc are penalty values that are added
when the ant does not end in an objective node and when ak

contains a cycle, respectively. The last term in the second
row of Eq. (3) makes the penalty higher in shorter cycles.

4.2 ACOhg-live
In Algorithm 2 we show a high level object oriented pseu-

docode of ACOhg-live. We assume that acohg1 and acohg2

are two instances of a class implementing ACOhg. The
search that ACOhg-live performs is composed of two dif-
ferent phases (see Fig. 2). In the first one, ACOhg is used
for finding accepting states in the Büchi automaton (line 2 in
Algorithm 2). In this phase, the search of ACOhg starts in
the initial node of the graph q and the the set of objective
nodes is empty. That is, although the algorithm searches
for accepting states, there is no preference on a specific set

1730

Algorithm 2 ACOhg-live

1: repeat
2: accpt = acohg1.findAcceptingStates(); {First phase}
3: for node in accpt do
4: acohg2.findCycle(node); {Second phase}
5: if acohg2.cycleFound() then
6: return acohg2.acceptingPath();
7: end if
8: end for
9: acohg1.insertTabu(accpt);

10: until empty(accpt)
11: return null;

of them. If the algorithm finds accepting states, in a sec-
ond phase a new search is performed using ACOhg again for
each accepting state discovered (lines 3 to 8). In this second
search the objective is to find a cycle involving the accepting
state. The search starts in one accepting state and the al-
gorithm searches for the same state in order to find a cycle.
That is, the initial node of the search and the only objective
node are the same: the accepting state. If a cycle is found
ACOhg-live returns the complete accepting path (line 6). If
no cycle is found for any of the accepting states ACOhg-live
runs again the first phase after including the accepting states
in a tabu list (line 9). This tabu list prevents the algorithm
from searching again cycles containing the just explored ac-
cepting states. If one of the accepting states in the tabu
list is reached it will not be included in the list of accepting
states to be explored in the second phase. ACOhg-live al-
ternates between the two phases until no accepting state is
found in the first one (line 10).

First phase Second phase

Figure 2: An illustration of the search that ACOhg-
live performs in the first and second phase.

The configuration of the ACOhg algorithms is, in general,
different in the two phases, since they tackle different ob-
jectives. We highlight this fact by using different variables
for referring to both algorithms in Algorithm 2: acohg1 and
acohg2. For example, in the first phase (acohg1) a more
exploratory search is required in order to find a diverse set
of accepting states. In addition, the accepting states are not
known and no state-based heuristic can be used; a formula-
based heuristic must be used instead. On the other hand,
in the second phase (acohg2) the search must be guided to
search for one concrete state and, in this case, a state-based
heuristic like the Hamming distance or the finite state ma-
chines distance is more suitable.

4.3 Improvement using SCCs
We can make the search for liveness errors more efficient

if we take into account the classification of the never claim
SCCs. The improvements are localized in two places of

ACOhg-live. During the first phase, in which accepting
states are searched for, those accepting states that belong
to an N-SCC in the never claim are ignored. The reason is
that an accepting state in an N-SCC cannot be part of an ac-
cepting cycle. This way, we reduce the number of accepting
states to be explored in the second phase.

The second improvement is localized in the computation
of the successors of a state (line 10 in Algorithm 1) in both,
the first and the second phase of ACOhg-live. When the
successors are computed, ACOhg checks if they are included
in the path that the ant has traversed up to the moment.
If they are, the state is not considered as the next node to
visit since the ant would build a cycle. The improvement
consists in checking if this cycle is in an F-SCC. This can be
easily checked by finding if the state that closes the cycle is
in an F-SCC of the never claim. If it is, then an accepting
cycle has been found and the global search stops.

The advantages of these improvements depend on the struc-
ture of the LTL formula and the model to check. We can no-
tice no advantages in some cases, especially when the num-
ber of N-SCC and F-SCC is small. However, the compu-
tational cost of the improvements is negligible, since it is
possible to check the kind of SCC associated to a state in
constant time.

5. EXPERIMENTS
In this section we present some results obtained with our

ACOhg-live algorithm. For the experiments we have se-
lected five Promela2 models (three of them scalable) that
are presented in the following section. After that, we dis-
cuss the algorithmic parameters used in the experiments in
Section 5.2. In Section 5.3 we compare two versions of the
algorithm with and without the improvement based on the
SCC classification of the never claim. Next, in Section 5.4
we compare the results obtained with ACOhg-live against
NDFS and INDFS.

5.1 Promela Models
We have selected five Promela models implementing faulty

concurrent systems. Most of them have been previously re-
ported in the literature [9]. All of these models violate a
liveness property that is specified in LTL. In Table 1 we
present the models with some information about them (lines
of code, scalability, processes, and kind of LTL formula).

Table 1: Promela models used in the experiments
Model LoC Sc. Processes LTL formula
alter 64 no 2 ¤(p → ♦q) ∧¤(r → ♦s)
giopj 740 yes j + 6 ¤(p → ♦q)
phij 57 yes j + 1 ¤(p → ♦q)
elevj 191 yes j + 3 ¤(p → ♦q)
sgc 1001 no 20 ♦p

The first model, alter, implements the alternating bit
protocol. The giopj model is a scalable implementation
of the CORBA Inter-ORB protocol for j clients and one
server [15]. The phij model is an implementation of the Di-
jkstra dining philosophers problem for j philosophers. The
forth model, elevj simulates an elevator working on a build-
ing with j floors. Finally, sgc implements an operator pro-
cedure of a power plant [18].

2Promela is the modeling language used by SPIN and HSF-
SPIN for specifying the concurrent system.

1731

Out of these models, the smallest one is alter with 393
states. In the experiments we use for the giopj model
the values j = 10, 15, 20. In the case of phij we set j =
20, 30, 40. For the third scalable model, elevj, we use j =
10, 15, 20. The versions of the scalable models used are very
large: the only model that fits into the memory of the ma-
chine used for the experiments is alter. As an illustration
we can say that phi20 requires more than 1039 GB of mem-
ory for storing all the states.

5.2 Parameters of the Algorithm
The parameters used in the experiments for the ACOhg

algorithms in the two phases of ACOhg-live are shown in
Table 2. These parameters have been selected according to
the recommendations in [1]. As mentioned in Section 4, in
the first phase we use an explorative configuration (ξ = 0.7,
λant = 20) while in the second phase the configuration is ad-
justed to search in the region near the accepting state found
(intensification). It is possible that these parameters can be
tuned in order to improve the efficiency and the efficacy of
the search. However, this tuning requires time and we must
take into account this time when the algorithm has to be ap-
plied, especially if we want to compare it against parameter-
free algorithms like NDFS or INDFS. In this work, we do not
tune the parameters of the algorithms; we just run the al-
gorithm with the parameters recommended in the literature
for ACOhg. This way the tuning time is zero.

Table 2: Parameters for ACOhg-live
First phase ACOhg Second phase ACOhg

Parameter Value Parameter Value
msteps 100 msteps 100
colsize 10 colsize 20
λant 20 λant 4
σs 4 σs 4
ι 10 ι 10
ξ 0.7 ξ 0.5
a 5 a 5
ρ 0.2 ρ 0.2
α 1.0 α 1.0
β 2.0 β 2.0
pp 1000 pp 1000
pc 1000 pc 1000

With respect to the heuristic information, we use Hϕ (the
formula-based heuristic) in the first phase of the search when
the objective is to find accepting states. In the second phase
we use the distance of finite state machines Hfsm. ACOhg-
live has been implemented inside HSF-SPIN.

We need to perform several independent runs in order
to get quantitative information of the behaviour of the al-
gorithm. We perform 100 independent runs to get a high
statistical confidence, and we report the mean and the stan-
dard deviation of the independent runs. The machine used
in the experiments is a Pentium IV at 2.8 GHz with 512 MB
of RAM and Linux with kernel version 2.4.19-4GB.

5.3 Influence of the SCC Improvement
In this first experiment we compare two versions of the

ACOhg-live algorithm: one of them using the SCC improve-
ment (called ACOhg-live+ in the following) and the other
one without that improvement (called ACOhg-live−). With
this experiment we want to analyze the influence on the re-
sults of the SCC improvement. All the properties checked in
the experiments have at least one F-SCC in the never claim;
none of them has a P-SCC; and all except sgc have exactly
one N-SCC. In Table 3 we show the hit rate, the length

of the error trails, the memory required (in Kilobytes), and
the run time (in milliseconds) of the ACOhg-live algorithms.
The average values of the 100 independent runs are shown
in normal size while the standard deviation values are shown
as subscript. We highlight with a grey background the best
results (maximum values for hit rate and minimum values
for the rest of the measures). We also show the results of a
statistical test (with level of significance α = 0.05) in order
to check if there exist statistically significant differences (last
column). A plus sign means that the difference is significant
and a minus sign means that it is not. In the case of the
hit rate we use a Westlake-Schuirmann test of equivalence
of two independent proportions, for the rest of the measures
we use a Kruskal-Wallis test [17].

Table 3: Influence of the SCC improvement
Models Meas. ACohg-live− ACOhg-live+ T

alter

Hit 100/100 100/100 -
Len. 10.00 0.00 15.82 6.74 +
Mem. 1929.00 0.00 1929.00 0.00 -
CPU 241.80 59.35 10.40 3.98 +

giop10

Hit 84/100 89/100 -
Len. 68.57 5.29 67.60 6.09 -
Mem. 6375.90 542.50 5098.75 1580.90 +
CPU 7816.55 4779.41 935.84 1009.74 +

giop15

Hit 46/100 57/100 -
Len. 81.26 3.64 78.30 6.49 +
Mem. 9001.17 483.22 8538.54 1610.63 -
CPU 11725.65 7307.22 2016.84 1254.88 +

giop20

Hit 14/100 30/100 +
Len. 93.29 2.08 88.47 4.72 +
Mem. 11132.71 894.26 10403.17 1920.50 -
CPU 11360.00 4564.72 2575.33 1103.46 +

phi20

Hit 98/100 97/100 -
Len. 88.29 6.91 108.73 10.08 +
Mem. 3398.63 34.05 3385.04 63.41 -
CPU 5162.04 645.64 851.75 1462.71 +

phi30

Hit 94/100 95/100 -
Len. 122.60 9.58 139.15 9.06 +
Mem. 5146.62 44.70 5148.12 57.48 -
CPU 10980.64 2156.73 2701.79 3876.34 +

phi40

Hit 77/100 81/100 -
Len. 154.74 9.74 166.83 9.44 +
Mem. 7573.68 66.50 7545.35 81.04 +
CPU 20422.60 5795.93 5807.41 7588.17 +

elev10

Hit 100/100 100/100 -
Len. 126.56 18.32 127.76 16.89 -
Mem. 2617.60 7.93 2617.04 9.72 -
CPU 2577.30 2258.38 2372.90 1963.04 -

elev15

Hit 100/100 100/100 -
Len. 182.02 9.75 180.04 16.83 -
Mem. 3163.56 10.98 3164.64 13.44 -
CPU 2683.00 3274.20 2812.10 3540.73 -

elev20

Hit 100/100 100/100 -
Len. 233.00 0.00 231.62 13.73 -
Mem. 3716.44 13.15 3716.92 11.29 -
CPU 3900.60 7141.02 3034.00 4709.07 -

sgc

Hit 32/100 100/100 +
Len. 24.00 0.00 24.00 0.00 -
Mem. 2699.00 23.13 2285.00 0.00 +
CPU 575191.88 62021.86 710.20 48.58 +

With respect to the hit rate both algorithms obtain the
maximum value (100%) in the models alter and elevj. In
giopj ACOhg-live+ obtains higher hit rate than ACOhg-
live− and the difference increases with the model size. In
phij the hit rate is similar in both algorithms (not statis-
tically significant). In sgc, ACOhg-live+ obtains the max-
imum hit rate while ACOhg-live− is only able to find an
error in 32% of the executions. Thus, the first conclusion of
the experiment is that ACOhg-live+ is able to obtain higher
hit rates than ACOhg-live−.

Now we focus on the length of the error paths, which is
a measure of their quality (the shorter the path the higher

1732

its quality). We observe in Table 3 that the length of the
error paths obtained with ACOhg-live− is shorter with sta-
tistical confidence than the length of the ones obtained with
ACOhg-live+ in alter and phij. On the other hand, the
lengths of the error paths obtained by ACOhg-live+ are
shorter than the ones obtained by ACOhg-live− with sta-
tistical confidence in giop15 and giop20. In the rest of the
models there is no statistically significant difference. In gen-
eral, the SCC improvement can entail an increase in the
length of the error paths found. This happens when a cycle
is found inside an F-SCC. In that case the algorithm imme-
diately stops yielding an error path that can be longer than
the one obtained if the search would continue.

Finally, concerning the computational resources (memory
and time required for finding an error path) we can observe
that ACOhg-live+ outperforms the results of ACOhg-live−.
All the statistically significant differences in memory and
CPU time support this claim. This is the expected result,
since the cost of the SCC improvement in terms of mem-
ory and computation time is negligible and, in addition, the
search is more effective.

In summary, we can conclude that the use of the SCC
improvement increases the hit rate and decreases the com-
putational resources required for the search. The length of
error paths could be slightly increased depending on the par-
ticular model.

5.4 ACOhg-live vs. Exhaustive Algorithms
In the next experiment we compare the results obtained

with ACOhg-live+ against a classical algorithm used for
finding liveness errors in concurrent systems, NDFS, and
an improved version of NDFS that takes into account the
SCCs of the never claim, INDFS. Both algorithms are de-
terministic and for this reason we only perform one single
run. In Table 4 we show the results of the three algorithms
(for ACOhg-live+ we only show the average). For compar-
ing the hit rate we use again the Westlake-Schuirmann test.
However, for the other measures we utilize this time the
one sample Wilcoxon sign rank test because we compare
one sample (the results of ACOhg-live+) with one single
value (the results of NDFS and INDFS). The results of the
Wilcoxon test are the same in all the measures and models:
all the differences are statistically significant. On the other
hand, the Westlake-Schuirmann test reveals that the only
statistically significant differences in the hit rate are those
of the giopj models, phi30, and phi40. Due to this homo-
geneity in the statistical analysis we do not show the tests
results in Table 4 in order to save room.

Concerning the hit rate we can observe that ACOhg-live+

is the only one that is able to find error paths in all the mod-
els. NDFS and INDFS are not able to find error paths in
the giopj models and the largest phij models because they
require more than the available memory. This is a very im-
portant result since NDFS is a very popular algorithm in the
formal methods community for checking liveness properties
using an explicit state model checker. We must clarify here
that NDFS and INDFS do not store the visited states in
memory (as other algorithms like BFS do), they only store
the states belonging to a branch of the search as they are
needed. If we focus on the remaining models we observe a
similar hit rate in both algorithms (in NDFS and INDFS
the hit rate is always 100% since they are deterministic al-
gorithms).

Table 4: Comparison of ACOhg-live+ and (I)NDFS
Models Meas. ACOhg-live+ NDFS INDFS

alter

Hit 100/100 1/1 1/1
Len. 15.82 64.00 64.00
Mem. 1929.00 1887.00 1887.00
CPU 10.40 0.00 0.00

giop10

Hit 89/100 0/1 0/1
Len. 67.60 • •
Mem. 5098.75 • •
CPU 935.84 • •

giop15

Hit 57/100 0/1 0/1
Len. 78.30 • •
Mem. 8538.54 • •
CPU 2016.84 • •

giop20

Hit 30/100 0/1 0/1
Len. 88.47 • •
Mem. 10403.17 • •
CPU 2575.33 • •

phi20

Hit 97/100 1/1 1/1
Len. 108.73 10001.00 10001.00
Mem. 3385.04 392192.00 388096.00
CPU 851.75 15670.00 15320.00

phi30

Hit 95/100 0/1 0/1
Len. 139.15 • •
Mem. 5148.12 • •
CPU 2701.79 • •

phi40

Hit 81/100 0/1 0/1
Len. 166.83 • •
Mem. 7545.35 • •
CPU 5807.41 • •

elev10

Hit 100/100 1/1 1/1
Len. 127.76 629.00 619.00
Mem. 2617.04 2195.00 2015.00
CPU 2372.90 0.00 10.00

elev15

Hit 100/100 1/1 1/1
Len. 180.04 849.00 839.00
Mem. 3164.64 2271.00 2271.00
CPU 2812.10 10.00 10.00

elev20

Hit 100/100 1/1 1/1
Len. 231.62 1069.00 1059.00
Mem. 3716.92 2595.00 2399.00
CPU 3034.00 20.00 10.00

sgc

Hit 100/100 1/1 1/1
Len. 24.00 9999.00 46.00
Mem. 2285.00 15360.00 2014.00
CPU 710.20 500.00 10.00

With respect to the length of the error paths we observe
that ACOhg-live+ obtains shorter error paths than NDFS
and INDFS in all the models (with statistical significance).
Furthermore, we limited the exploration depth of NDFS and
INDFS to 10,001 in order to avoid stack overflow problems.
If we allowed these algorithms to explore deeper regions we
would obtain longer error paths with them. In fact, we run
NDFS and INDFS using a depth limit of 50,001 in phi20

and we got an error path of 50,001 states. This means that
the lengths of the error paths that are shown in Table 4 for
NDFS and INDFS in phi20 and for NDFS in sgc are in fact
a lower bound of the real length that these algorithms would
obtain in theory. In conclusion, ACOhg-live+ obtains error
paths that are by far shorter than the ones obtained with
NDFS and INDFS. This is a very important result since
short error paths are preferred in order for the programmers
to understand faster what is wrong in the concurrent model.

If we focus on the computational resources we observe
that ACOhg-live+ requires less memory than both NDFS
and INDFS in giopj and phij. In the other models the dif-
ference between the memory required by ACOhg-live+ and
INDFS is less than 1.5 MB. The biggest differences are that
of giopj, phi30, and phi40, in which NDFS and INDFS re-
quire more than the available memory while ACOhg-live+

1733

obtains error paths with 10 MB at most. Memory is the
main problem of the traditional model checking techniques
and we can observe here that ACOhg-live+ is more toler-
ant to the state explosion problem. With respect to the
time required for the search, NDFS and INDFS are faster
than ACOhg-live+ in all the models except in phi20. The
mechanisms included in ACOhg-live+ in order to be able to
find short error paths with high hit rate and low amount of
memory extend the time required for the search. Anyway,
the maximum difference with respect to the time is around
three seconds (in elev20), which is not large if we take into
account that the error path obtained is much shorter.

In summary, the results obtained with ACOhg-live+ out-
perform the ones of the exhaustive algorithms tradition-
ally used in model checking. ACOhg-live+ is able to find
much shorter error paths using much less memory. This
improvement implies that ACOhg-live+ can find errors for
large models in machines with a regular amount of memory
(512 MB in our case) and, in addition, these error paths are
more suitable for the programmers to understand where is
the problem of the concurrent system.

Although the concurrent models used in this work are re-
ally large, real concurrent systems can be even larger. That
is, we are not dealing with excessively large unreal models.
In fact, in order to find errors in real concurrent systems us-
ing existing approaches it is necessary to apply techniques
that require human involvement, such as abstract interpre-
tation [6]. In this context, AGOhg-live+ is a completely
automatic algorithm that is able to outperform existing ap-
proaches. Thus, we think that it is suitable for finding live-
ness property violations in real concurrent systems.

6. CONCLUSIONS AND FUTURE WORK
We have presented here a novel proposal based on ant

colony optimization for finding liveness property violations
in concurrent systems: ACOhg-live. This problem is of cap-
ital importance in the development of software for critical
systems and no metaheuristic algorithm has been applied
to it in the literature, to the best of our knowledge. We
have also proposed an improvement of the technique based
on the classification of the strongly connected components
of the never claim. We have shown the performance of the
proposals with a series of experiments. First, we have com-
pared two versions of the algorithm with and without the
SCC improvement. After that, we have compared the re-
sults obtained with our proposal against two algorithms used
for finding liveness errors in concurrent systems: NDFS and
INDFS. The results show that ACOhg-live is able to outper-
form both algorithms in efficacy and efficiency. It requires
a very low amount of memory and it is able to find errors
even in models in which NDFS and INDFS fail in practice
due to memory requirements.

As future work we plan to combine ACOhg-live with other
techniques for reducing the amount of memory required in
the search such as partial order reduction, symmetry reduc-
tion, or state compression. We have observed in a prelim-
inary (not published) study that a version of ACOhg-live
that does not use pheromone trails for guiding the search
is also able to obtain competitive results and requires even
less memory. An additional advantage of such kind of algo-
rithm is that it has fewer parameters than a version using
pheromone trails. We will study the advantages and limita-
tions of this alternative.

7. ACKNOWLEDGEMENTS
This work has been partially funded by the Spanish Min-

istry of Education and Science and FEDER under contract
TIN2005-08818-C04-01 (the OPLINK project). It has also
been partially funded by the Spanish Ministry of Industry
under contract FIT-330225-2007-1 (the European EUREKA-
CELTIC project CARLINK)

8. REFERENCES
[1] E. Alba and F. Chicano. ACOhg: Dealing with huge

graphs. In Proc. of GECCO, pages 10–17, 2007.

[2] E. Alba and F. Chicano. Finding safety errors with
ACO. In Proc. of GECCO, pages 1066–1073, 2007.

[3] B. Alpern and F. B. Schneider. Defining liveness.
Inform. Proc. Letters, 21:181–185, 1985.

[4] C. Blum and A. Roli. Metaheuristics in combinatorial
optimization: Overview and conceptual comparison.
ACM Computing Surveys, 35(3):268–308, 2003.

[5] E. M. Clarke, O. Grumberg, and D. A. Peled. Model
Checking. The MIT Press, January 2000.

[6] P. Cousot and R. Cousot. Abstract interpretation: a
unified lattice model for static analysis of programs by
construction or approximation of fixpoints, 1977.

[7] M. Dorigo and T. Stützle. Ant Colony Optimization.
The MIT Press, 2004.

[8] S. Edelkamp, A. L. Lafuente, and S. Leue. Protocol
verification with heuristic search. In AAAI-Spring
Symposium on Model-based Validation Intelligence,
pages 75–83, 2001.

[9] S. Edelkamp, S. Leue, and A. Lluch-Lafuente.
Directed explicit-state model checking in the
validation of communication protocols. Intl. Jnl. of
Soft. Tools for Tech. Transfer, 5:247–267, 2004.

[10] R. Gerth, D. Peled, M. Vardi, and P. Wolper. Simple
on-the-fly automatic verification of linear temporal
logic. In Proceedings of IFIP/WG6.1 Symposium on
Protocol Specification, Testing, and Verification
(PSTV95), pages 3–18, Warsaw, Poland, June 1995.

[11] P. Godefroid and S. Khurshid. Exploring very large
state spaces using genetic algorithms. Intl. Jnl. on
Soft. Tools for Tech. Transfer, 6(2):117–127, 2004.

[12] A. Groce and W. Visser. Heuristics for model checking
Java programs. Intl. Jnl. on Software Tools for
Technology Transfer, 6(4):260–276, 2004.

[13] G. J. Holzmann. The SPIN Model Checker.
Addison-Wesley, 2004.

[14] G. J. Holzmann, D. Peled, and M. Yannakakis. On
nested depth first search. In Proc. Second SPIN
Workshop, pages 23–32, 1996.

[15] M. Kamel and S. Leue. Validation of a remote object
invocation and object migration in CORBA GIOP
using Promela/Spin. In Intl. SPIN Workshop, 1998.

[16] C. C. Michael, G. McGraw, and M. A. Schatz.
Generating software test data by evolution. IEEE
Trans. on Soft. Eng., 27(12):1085–1110, 2001.

[17] D. J. Sheskin. Handbook of Parametric and
Nonparametric Statistical Procedures. Chapman &
Hall/CRC, 2007.

[18] W. Zhang. Model checking operator procedures. In
Theoretical and Practical Aspects of SPIN Model
Checking, volume 1680 of Lecture Notes in Computer
Science, pages 200–215. Springer-Verlag, 1999.

1734

