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ABSTRACT

Model checking is a fully automatic technique for check-
ing concurrent software properties in which the states of
a concurrent system are explored in an explicit or implicit
way. However, the state explosion problem limits the size of
the models that are possible to check. Genetic Algorithms
(GAs) are metaheuristic techniques that have obtained good
results in problems in which exhaustive techniques fail due
to the size of the search space. Unlike exact techniques,
metaheuristic techniques cannot be used to verify that a
program satisfies a given property, but they can find errors
on the software using a lower amount of resources than exact
techniques. In this paper, we compare a GA against clas-
sical exact techniques and we propose a new operator for
this problem, called memory operator, which allows the GA
to explore even larger search spaces. We implemented our
ideas in the Java Pathfinder (JPF) model checker to validate
them and present our results. To the best of our knowledge,
this is the first implementation of a Genetic Algorithm in
this model checker.

Categories and Subject Descriptors

D.2.4 [Software Engineering]: Software/Program Veri-
fication—Model checking; 1.2.8 [Artificial Intelligence]:
Problem Solving, Control Methods, and Search— Heuristic
methods

General Terms

Verification
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1. INTRODUCTION

Concurrent systems are the target of subtle errors that
are very difficult to detect as they may depend on the or-
der the operating system chooses to execute the different
threads of the application. Some examples of this kind of
errors are deadlocks, livelocks and starvation. One tech-
nique used to validate and verify programs against several
properties like the ones mentioned is model checking. Ba-
sically, a model checker uses an abstract simplification of
the program (called the model), creating and traversing a
graph representing all the possible states of that model to
find a path starting in the initial state that violates the
given properties. Usually, the size of the graph is very large,
which leads to the main problem in model checking, known
as state explosion. This problem consists in the fact that
realistic and complex models have too many possible states,
sometimes even an infinite number, to allow efficient model
checking. If; instead of using a model, the real application
is used, the number of states is even higher.

We show in this work that a variation on Genetic Algo-
rithms (GAs) combined with Java Pathfinder, a well known
model checker, can be used to search for errors in complex
applications. We will show that good results, while not op-
timal, can be obtained faster and with fewer resources than
using the standard exact search methods. We will show
that, using a new operator, even more complex applications
can be searched with good results. While we will focus on
searching for deadlock, any kind of safety property violation
could be searched for with our algorithms, changing only the
fitness function.

The rest of this paper is structured in the following way:
Section 2 gives background on model checking. Section 3
describes our proposal of a new Genetic Algorithm that can
be used to discover paths to objective nodes on large state
graphs. Section 4 presents our experiments and results and
Section 5 describes our proposal of a new operator to im-



prove our Genetic Algorithm. Finally, Section 6 summarizes
our conclusions and refers to further work in this area.

2. BACKGROUND

Model Checking is an automatic technique for checking if
a reactive system fulfills a given property. Properties can
be classified into two groups: safety and liveness proper-
ties. Informally, a safety property asserts that “something
bad does not happen” while a liveness property asserts that
“something good eventually happens” [12]. In order to find
a safety property violation, it is only needed to find a finite
path to a violating state (where something bad happened,
like for example a deadlock state). However, to find a live-
ness property violation, it is needed to find an infinite path
in which a desired state never occurs (that is, the expected
good never happened) [8].

To find safety property violations, model checking works
by searching through all the states of a model (either explic-
itly or implicitly) and validating each of them against the
specified properties. If all the states are valid, it is proved
that those properties are valid in the model. If any of those
properties fail, the model checker can give an execution path
that leads to that error. This execution path is also known as
the counterexample or the error trail. As it is needed to run
through all possible states in the model to prove correctness,
the number of states must be relatively small; otherwise the
model checker reaches memory constraints.

There are techniques for reducing the search space, like
Partial Order Reduction [5] and Symmetry Reduction [11],
which allow model checkers to tackle larger models; however
they are not yet sufficient to deal with large and complex
programs. Symbolic model checking [4] is also a very pop-
ular alternative to the explicit state model checking that
can reduce the amount of memory required for the verifica-
tion by means of a compact representation for set of states.
When the search space is very large, it may be impossible
to prove correctness of the model. However, an error might
be found without searching the entire search space, proving
the incorrectness of the model.

Since typically not all state-space can be explored, the
method used to search through the states is of critical im-
portance to determine if and how quickly an error is found.
Also, the size of the execution path that leads to the er-
ror is important to debug: it must be as short as possible.
That leads to the question: what is, if any, the best search
algorithm?

Nested Depth First Search has been utilized in model
checkers for checking liveness and safety properties. In the
case of safety properties, Depth First Search (DFS) and
Breadth First Search (BFS) have also been used, since they
can be applied to the search for one objective node in a
graph. The use of heuristic-based search algorithms such
as A* and Best-First Search has been studied also in the
context of safety properties [9].

These search methods are not appropriate to deal with
the state-explosion problem, as they may need to search the
entire search space. To limit the memory used and time
consumed, some heuristic searches are used not to prove the
correctness of the model but to find an error in it. This
kind of search may not search the whole search space. One
example is the Beam Search Algorithm [9].

Another type of search algorithms, very popular in the
optimization domain, is the metaheuristic search algorithms.

1736

Unlike simple heuristic algorithms, metaheuristic search al-
gorithms try to find new solutions using information avail-
able from previous solutions [14]. There are several meta-
heuristic search algorithms, both single-solution based and
population based, some of the most popular being Simulated
Annealing, Tabu Search, Evolutionary Algorithms, Scatter
Search, and Ant Colony Optimization (ACO) [3].
Although metaheuristic search algorithms have been widely

used in optimization problems of many different areas, there
have been few incursions to model checking. It may be due
to the fact that metaheuristic searches are not optimal and
complete and as a consequence cannot be used to prove cor-
rectness of a model. Previous work using metaheuristics
in model checking includes the usage of genetic algorithms
in Protocol Validation [2] and to explore large state-space
problems [7], and using ACO algorithms to find short coun-
terexamples [1]. Both [2] and [7] show that it is possible, and
advantageous, to use genetic algorithms in model checking.
However, Alba [2] uses an encoding specific to protocol val-
idation and Godefroid [7] implemented his GA in VeriSoft,
a model checker used with C programs.

3. USING GAs IN MODEL CHECKING

A Genetic Algorithm is a population based metaheuristic
search algorithm. Its basic operation is depicted in Algo-
rithm 1.

Algorithm 1 Pseudocode of a Genetic Algorithm

P = generatelnitialPopulation();
evaluate(P);
while not stoppingCondition() do
P’ = selectParents(P);
P’ = applyVariationOperators(P’);
evaluate(P’);
P = selectNewPopulation(P, P’);
end while
return the best found solution

Basically, a GA starts by creating an initial population P
and evaluating it. Then, it creates a new population (P’) by
selecting parents and applying variation operators on those
parents. These variation operators are usually crossover and
mutation operators. Having evaluated the new population,
the next generation is selected using elements from both the
old and the new population.

As with all metaheuristic algorithms, the GA is more like
a framework and as such must be adapted to the problem it
will solve. We will show which parameters and methods can
be used to adapt that framework to find safety property vio-
lations with model checking. We will discuss how to encode
solutions as individuals, how to perform the crossover and
mutation of those individuals and the fitness function used
to evaluate them. We call the resulting algorithm geGA, a
graph-exploring Genetic Algorithm.

3.1 Individual Encoding

In a GA an individual represents a possible solution to
the problem. In our case, the problem is to find a path to
a goal state (a state that causes a safety property violation
in the model). A path can be described as the sequence of
transitions that occurred from an initial state to a final state.
Figure 1 shows an example of a state graph evidencing the
path described by transitions 0, 1, 1.



In the particular problem we are solving, the number of
transitions needed to reach a goal state (the path size) is
unknown beforehand, that is, we do not know the length of
the shortest path from the initial state to a goal state. If
the individuals were composed of a fixed length sequence of
transitions, the algorithm might always fail in finding a goal
state. We solve the path size problem using variable-length
chromosomes. This allows our GA to create solutions of
variable number of transitions and determine which size is
best.

As is shown in Figure 1, the number of enabled transi-
tions in each state is not always the same and is unknown
until that state is visited by the model checker. One pos-
sible solution to deal with unknown number of transitions
would be to use an integer to identify the transition. This
raises two questions: what should be the maximum value of
that integer and, what to do if in a particular state there
are fewer transitions than the corresponding value in the
chromosome? There is no easy answer to these questions.
One might use the maximum number of transitions avail-
able in a model as the maximum integer, but that number
is not always easy to figure out, and sometimes is simply
impossible to determine. Then comes the second problem:
if the next integer in the chromosome is s and the state
had only n transitions available (with s > m) which tran-
sition ¢t would we choose? We could choose to cut s at n
with ¢ = Min(s,n) but that would create a bias toward
n. Something similar, but harder to detect, would happen
if we used a modulo operation like ¢ = (s mod n). Con-
sider the following example: a state has 3 transitions and
the GA uses the maximum transition number as 5. Thus, in
that particular state, the choices available to the GA would
be: s=0=t=0,s=1=1¢t=1,s 2 =1=2,
s=3=1t=0,s =4= 1t =1 That would result in
transition 2 to have half the chances of being selected than
transition 0 or 1.

We chose to use a representation for the transition other
than an integer. To represent the selected transition s in
a state we use a floating-point number in the range [0..1).
To determine the transition ¢ in a state with n transitions,
we just use the formula ¢ = |s X n]. Since s is normal-
ized (between 0 and 1, exclusive), the resulting value ¢ is an
integer number between 0 and the number of possible tran-
sitions in the state, uniquely identifying a transition. This
allows an unknown number of transitions while maintain-
ing a linear conversion from the selected transition to the
available transition. However, this may create a problem
with the mutation operator because the number of possible
values for the gene (the alphabet) is (theoretically) infinite,
but the meaning of that alphabet is finite. The mutation

w

Figure 1: Example graph showing the states of a
program and the variable number of transitions in
each state.
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operator must be able to guarantee that, when changing the
value of the gene, the new value means a new path choice
after the linear conversion.

3.2 Crossover and Mutation

To allow the chromosome to grow and shrink, the crossover
operator has been adapted. Our crossover chooses a differ-
ent position for each parent and then swaps the genes after
that position to form the offspring. The offspring will prob-
ably have different sizes than their parents. Also, as we
use floating-point numbers instead of a more traditional bit
encoding, the cut positions are always between transition
choices. There is little sense in using two positions per par-
ent because, when inserting at the middle different values
and probably different number of transitions, the remain-
ing values lose their meaning. An example of the crossover
operator described can be seen in Figure 2.

Our mutation operator traverses all the genes in the in-
dividual and, with a given probability, creates new random
values for those genes. However, since we are using floating-
point numbers to encode the individual, we must guarantee
that when we change the gene value, that change really af-
fects the path choice that gene represents. We make this
guarantee by traversing the path identified by the chromo-
some up to the selected gene and checking how many tran-
sitions are available at that point. We then check which of
those transitions corresponds to the current gene value and
generate new random values until one is found correspond-
ing to a different transition and use it to replace the gene
value. Our mutation operator does not change the size of
the chromosome, and that might be a change to consider in
the future.

3.3 Fitness Function

Genetic Algorithms are function optimizers. They usu-
ally maximize or minimize the value of a given function. In
our case, we want to detect paths that lead to deadlocks,
and prefer shorter paths. As such, our fitness function f(z)
is defined as shown in (1), where the variable numblocked
represents the number of blocked threads generated by the
path while pathlen represents the number of transitions in
the path and deadlock is 1 if a deadlock was found, 0 oth-
erwise. The Genetic Algorithm will try to maximize f(x).

1

f(x) = deadlock + numblocked + m

(1)

Equation (1) assumes that the number of threads in the
model to be checked is constant or that a deadlock only
occurs when all the threads are blocked. If that is not the
case, a much bigger deadlock value must be used when a
deadlock is found.

4. EXPERIMENTS

In this section we present the results of our experiments.
The experiments have been performed with Java Pathfinder

0.50.1/0.9 0.3 0.5 0.9

0.50.1/0.2 0.0 0.6
0.20.60.10.7 0.8 0.4/0.2 0.0 0.6

0.20.60.10.70.8 0.4|0.9 0.30.50.9

Figure 2: The crossover we implemented allows for
chromosome length changes to occur



on an Intel Core Duo T2400 (1.83 MHz) processor, with a
Java virtual machine restricted to 512Mb of memory (Sun
JVM 1.6.0_01-b06). To detect deadlocks, we have used two
well-known problems in the Java Pathfinder and the model
checking community: the Dining Philosophers [6] and the
Stable Marriage problem [10].

The Dining Philosophers problem is an illustrative exam-
ple of common concurrency problems. It consists of a num-
ber of philosophers (originally 5) around a round table. Each
philosopher shares a fork with the philosopher to his right
and another fork with the philosopher to his left. When-
ever a philosopher gets hungry, he picks the left fork, then
the right fork, eats and drops the left fork and finally the
right fork, returning to a thinking state. As the forks are
shared between philosophers, whenever one philosopher is
eating, the other two close to him cannot eat. If all the
philosophers decide to eat at the same time, they will all
pick their left forks but will all be waiting for the right fork
to be available (which will never happen), thus creating a
deadlock.

The Stable Marriage problem has two sets on n elements,
the man and the women. Each element of each set ranks each
element of the other set in order of preference. The problem
consists in pairing each man to a woman in a manner that
there exists no man and woman who are not assigned to each
other but who would both prefer each other to their present
partners. When that happens, we have a stable marriage.

For the Dining Philosophers problem we used the two dif-
ferent implementations included with JPF. In the first one,
called DiningPhilosophers, each philosopher cycles through
the pick forks, eat, drop forks and think states. In the second
implementation, called DiningPhil, each philosopher only
pick the forks, eat and drop the forks once, thus limiting
the number of possible deadlocks.

For the Stable Marriage Problem (SMP), we converted a
distributed solution from a model in Promela. This solu-
tion has an intentional bug created by splitting a critical
section in two, giving the opportunity to another thread to
interleave and create a deadlock. Without that intentional
error, the solution have been proven correct with JPF using
complete search methods (such as BFS), but restricting the
number of couples to 3.

While these problems seem simple, the amount of states
generated by them is huge as they grow exponentially with
the number of philosophers or couples. We have tried to
explore the entire graph of these problems to have an idea
of their size. DiningPhilosophers grows from 2094 to 120544
states when the number of philosophers is increased from 3
to 4. We could not explore the entire graph with 5 philoso-
phers. The same happens to SMP, growing from 10509 to
773843 states when increasing the number of couples from 3
to 4.

Our purpose is to have short error trails. We do not want
to stop as soon as the algorithm finds a deadlock. Instead,
we want to give geGA a chance for that solution to improve.
To allow some improvement we set the stopping criterion of
geGA to end the search only after a number of iterations,
even if a deadlock has been found before. As it can be seen
in Table 1, we used a well-known and studied selection oper-
ator, the tournament selection with size of 2. As the muta-
tion probability we have used the value of 0.01, which means
that every gene as a 1% (in average) chance to have its value
mutated. We also used an elitist replacement, which means
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that the best individual of the previous generation survives
to the next generation. The parameters for each problem are
the result of a previous study aimed at finding good configu-
rations for tackling the respective problem. Notice that due
to the increased difficulty of the DiningPhil problem we had
to use more iterations and even a bigger population to find
property violations.

Table 1: Configuration of the geGA

Problem Size Parameter Value
Selection Tournament(2)
Common to all Mut. Prob. 1%
Replacement Elitism(1)
Pop. Size 50
DiningPhilosophers 4 Max Length 50
Iterations 50
Pop. Size 50
DiningPhilosophers 8 Max. Length 60
Iterations 50
Pop. Size 50
DiningPhilosophers 16 Max Length 120
Iterations 50
Pop. Size 50
DiningPhil 4 Max Length 25
Iterations 100
Pop. Size 50
DiningPhil 8 Max Length 50
Iterations 100
Pop. Size 200
DiningPhil 16 Max Length 100
Iterations 150
Pop. Size 50
SMP 3 Max Length 50
Iterations 50
Pop. Size 50
SMP 4 Max Length 60
Iterations 50
Pop. Size 50
SMP 5 Max Length 60
Iterations 50

Since Genetic Algorithms are stochastic algorithms, the
results of a single execution are not sufficient to conclude
anything about its performance, so we have run the algo-
rithm several times and report the average of the measures
considered for each problem. Our results are shown in Ta-
bles 2, 3 and 4. Because of the time given to geGA to im-
prove solutions, for each of the problems, we show the time
taken to find an error (Time to 1°* Error) and the total ex-
ecution time of the search (Total Time), which includes the
error trail improvement time. These are always the same
for DF'S and BF'S as these search methods stop as soon as
they find an error. We also present the depth of the first
error found (Depth of 1°% Error) and the error depth after
improvement (Final Depth). Times are expressed in seconds
and depths are expressed in number of states traversed to
reach the error state. Finally we show the memory used by
the search algorithm, expressed in Megabytes.

We also show in the tables the results of a statistical test
(with level of significance o« = 0.05) in order to check if



there exist statistically significant differences. An item in
DFS or BFS is marked with a + sign in parenthesis if the
difference with geGA is significant and it is marked with a
- sign if it is not. We use the one sample Wilcoxon sign
rank test because we compare one sample (the results of
geGA) with one single value (the result of the corresponding
exhaustive algorithm). The better results in each measure
are highlighted in boldface.

The results presented in Table 2 show that geGA was the
fastest algorithm to find a property violation in the Dining-
Philosophers problem. However, the total execution time
of our algorithm is greater than the one of DFS for 4 and
8 philosophers. The improvement provided by that extra
number of iterations is clearly visible, reaching more than
30% of improvement in the error depth. In terms of find-
ing the deadlock, geGA was the only algorithm capable of
finding it with 16 philosophers. We aborted the DFS search
for 16 philosophers after 2 hours without finding any dead-
lock. Comparing the quality of the error trail, we can verify
that geGA gives short error trails, very close to the small-
est possible. Finally, in terms of memory, BFS uses more
than the other algorithms, running out of memory from 8
philosophers on. Overall, geGA provided the best solutions
in the shortest amount of time, but requires a large amount
of memory.

Table 3 shows the results of our experiments with the Din-
ingPhil problem. Again, our algorithm was the fastest in
finding a property violation in all instances of the problem.
All the algorithms have the same error trail length because
the lack of cycles in the graph. Comparing the memory re-
quirements, we can verify that geGA requires more memory
than DFS, but much less than BFS which could not solve
the problem with 8 philosophers due to insufficient memory.
Again, geGA was the only algorithm to find the deadlock
with 16 philosophers (DFS did not find it in 2 hours of ex-
ecution). In this problem, geGA was not able to find the
deadlock in every run, but reached a hit rate of 90%.

In the Stable Marriage Problem, the geGA was not the
fastest algorithm. DFS was faster but the resultant path
quality was the worst for every instance of the SMP. BFS
was the slowest algorithm and gave the best error trails up
to 4 couples. BFS ran out of memory with 5 couples in the
SMP. geGA delivered good results, both performance wise
and quality wise. Again, its memory requirements are big-
ger than DFS and smaller than BFS. Notice that although
achieving good results, geGA couldn’t deliver a 100% hit
rate, finding a deadlock in 47 of the 50 runs.

From these experiments one can clearly see that geGA
poses a problem regarding the memory requirements. GAs
are population based and as such represent many solutions
at any given generation. All the states in those solutions
must be expanded to be evaluated. Unfortunately, JPF does
not allow moving forward through a known transition. In-
stead, the method that is used is to expand the first state,
save the new state in memory, go back, expand the second
state, and so on. After all states are expanded and stored
in memory, one can instruct JPF to go directly to a saved
state. Fortunately, geGA does not need to remember previ-
ously visited states. This allows us to free all the memory
used to store those states. We use this as last resort because
freeing the memory means we might need to expand some
states again which consumes time. In these experiments we
cleared the memory whenever the available memory became
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less than 100 MB. This explains why geGA never consumes
more than approximately 400 MB of memory.

We compared our results to Godefroid’s results in [7].
In order to be able to make this comparison fair, we had
to change the DiningPhilosophers implementation. Gode-
froid’s implementation chooses non-deterministically the fork
to pick-up first, meaning that a philosopher can pick his left
fork first and then the right fork, or can choose to pick the
right fork first and only then the right fork. We implemented
this non-determinism using the randomBool () method of the
Verify JPF class. We used the same number of iterations
Godefroid used as stopping criterion (50 iterations) and the
same number of philosophers: 17. We used a smaller popu-
lation of only 50 individuals, compared to 200 used by Gode-
froid. Table 5 summarizes our results. Due to differences in
the environment used, we cannot compare the times nor the
depth of the error directly. We can compare the hit rate,
where geGA shows a clear improvement over Godefroid’s
GA, specially taking into consideration that geGA had to
look deeper to find the deadlock).

Table 5: Comparison of geGA vs. Godefroid’s GA

Algorithm Errors / Runs Time(s) Depth
Godefroid GA 26/50 177 65
geGA 48/50 101 170

S. THE MEMORY OPERATOR

We now introduce a novel operator, called memory oper-
ator (MO), to allow the path to extend indefinitely while
preserving the memory required evaluating individuals.

The memory required to evaluate a large individual is a di-
rect consequence of the number of states the model checker
has to expand/generate. In the GA described before, the
model checker started with the initial state (there is only
one in every model) and expanded it to follow the selected
transition and repeat the process until all transitions de-
fined by the individual had been traversed. As the popula-
tion evolves and grows, the first transitions in the individual
tend to stabilize, but the model checker still has to evalu-
ate them every generation. We propose saving the resulting
states of those stable first transitions in memory slots and
use them as the starting point for next generations. The
advantages are obvious: less memory and time are required
to evaluate an individual and the path can maintain a con-
stant growth without requiring more memory. There are,
of course, disadvantages: part of the search space is being
discarded, and a good solution might be in that part.

To avoid discarding search space where a good solution
might be found, we suggest that an individual may always
use the initial state as a starting point for its path. We use
the memory slot 0 to store that initial state. Also, we pro-
pose that a selection operator be used to select which states
to put in the rest of memory slots. If that selection operator
is too elitist, we may easily fall in a local maximum. If that
selection is well balanced, however, the algorithm becomes
less greedy and more capable of leaving that local maximum.
Figure 3 shows how the search space is segmented and where
the search concentrates as the memory operator is used. In
this figure, each triangle represents the model state graph



Table 2: Results of the algorithms with DiningPhilosophers

Search  Number of  Time to 15  Total Depth of Final Memory errors /
Method Philosophers error (s) Time (s) 1%t error Depth  (MB) runs
DFS 4 (+)2.00 (+)2.00 (4+)147.00 (4+)147.00 (+)20.00 1/1
BFS 4 (4+)36.00  (4)36.00 (+)20.00 (-)20.00 (+)168.00 1/1
geGA 4 0.00 5.82 32.68 20.00 81.12 50/50
DFS 8 (+)10.00 (+)10.00 (+)24248.00 (+)24248.00 (+)71.00 1/1
BFS 8 - - - - - 0/1
geGA 8 1.90 14.50 55.32 41.72 170.06  50/50
DFS 16 - - - - - 0/1
BFS 16 - - - - - 0/1
geGA 16 16.62 53.16 112.14 95.66 408.9 50/50
Table 3: Results of the algorithms with DiningPhil
Search  Number of  Time to 15*  Total Depth of Final Memory errors /
Method Philosophers error (s) Time (s) 1°¢ error Depth  (MB) runs
DFS 4 (+)3.00 (+)3.00 (-)16.00 (-)16.00 (+)24.00 1/1
BFS 4 (+)3.00 (+)3.00 (-)16.00 (-)16.00 (-)31.00 1/1
geGA 4 0.44 1.00 16.00 16.00 31.11 45/50
DFS 8 (+)132.00 (+)132.00 (-)33.00 (-)33.00 (+)39.00 1/1
BFS 8 - - - - - 0/1
geGA 8 1.42 6.25 33.00 33.00 76.00 45/50
DFS 16 - - - - - 0/1
BFS 16 - - - - - 0/1
geGA 16 44.40 118.87 65.00 65.00 408.07  48/50
Table 4: Results of the algorithms with SMP
Search  Num. Time to 15  Total Depth of Final Memory errors /
Method Couples error (s) Time (s) 1% error Depth (MB) runs
DFS 3 (+)0.00 (+)0.00 (+)39.00 (+)39.00 (+)25.00 1/1
BFS 3 (+)2.00 (4+)2.00 (+)22.00 (+)22.00 (+)35.00 1/1
geGA 3 0.02 3.78 28.16 23.04 54.06 50/50
DFS 4 (-)1.00 (+)1.00 (+)67.00 (+)67.00 (+)31.00 1/1
BFS 4 (+)84.00 (+)84.00 (+)30.00 (+)30.00 (+)397.00 1/1
geGA 4 2.34 10.12 45.88 34.36 104.12 50/50
DFS 5 (+)2.00 (+)2.00 (+)103 (+)103 (+)34 1/1
BFS 5 - - - - - 0/1
geGA 5 2.55 10.36 55.7 49.62 119.62 47/50
with the top of the triangle representing the initial state. Subgraphs
Each triangle represents a moment in time, with the time - \
increasing from left to right. Each segment of a triangle rep-
resents a subgraph having a minimum and maximum depth. — —
This operator is based on the, so called, missionary tech-
nique used in [1] for reaching deep graph regions.
Time >

5.1 Using the Memory Operator

Our use of the memory operator is as follows: the geGA
executes as described before using a relatively small max-
imum chromosome length. After a predetermined number
of iterations have been executed the memory operator se-
lects some of the individuals and stores their final states in
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Figure 3: Segmentation of the search space and con-
centration of the individuals at 3 different moments.
The darker the segment is, the higher the individual
concentration is on that segment.



the memory slots and removes all other states from memory.
This does not pose a problem for the counterexamples be-
cause JPF stores in each state the complete path of choices
made to reach that state, which means that having a state
is enough to describe the path leading to it. Then geGA
resumes its normal operation creating an execution cycle.
For the memory operator to work, each individual must
be able to choose its starting state. That could be done
by storing in the chromosome which memory slot is to be
used. Fortunately, our encoding of the individual described
in Section 3.1 can still be applied. However, the first element
in the chromosome is not used to describe a transition from
the initial state, but to select the starting state. Since it
is a floating-point number between [0..1) we just need to
multiply it by the number of memory slots to determine
which will be the starting state of the individual’s path.

5.2 Experimental Results with the MO

In this section we will try to find deadlocks on the Dining
Philosopher and Stable Marriage problems using geGA with
and without the memory operator. We will use larger prob-
lem instances than the previous to verify if the MO helps
with very large graphs. We will then compare the results
obtained using both algorithms.

Many more iterations are needed when using the mem-
ory operator (geGA™M©) than when not using it (gaGA) be-
cause the individual length is much smaller than required
and the individuals must reach deep regions in the states
graph. To make both algorithms comparable we decided to
use the same computational effort on both algorithms. This
means that, contrary to our previous experiments, our stop-
ping criterion now is the computational time (measured in
seconds). Table 6 shows the configuration used in each of
the problems. Notice that we must estimate a maximum
length of the chromosome when we are not using the MO,
but we always use the same size (50 state transitions) when
using MO. The MO will make the individuals move in the
search-space to reach the goal at a deeper depth. We also
use the same number of memory slots as individuals in the
population. This allows storing a different starting position
to each individual. We also chose to use 20 iterations as
the MO frequency, which will allow the individuals to move
further rather quickly, while having a little time to optimize
the solutions in each search-space segment. With SMP we
have used only 10 iterations as the frequency because a pre-
vious study showed it to yield better results. The selection
method, crossover, and mutation parameters are the same
as described in the previous section.

In Table 7 we present the results obtained using geGA and
geGAMC . Tn this case we use the Kruskal-Wallis test [13] for
checking the statistical significance of the differences, since
we are comparing two samples.

The DiningPhilosophers problem was very well tackled
with geGAMO.  As seen in Table 7 geGAMO is faster to
find a deadlock, requires less memory than geGA and has a
better hit rate (geGA™ 9 found an error in every run on both
instances of the problem). With 16 philosophers, however,
geGA provided the error trail with better quality. With 32
philosophers geGA only found one deadlock in one of the 50
runs of the algorithm.

With the DiningPhil problem the geGAM© is again faster,
consumes less memory and is more effective (better hit rate)
than geGA.
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Table 6: Configuration of the geGA with and with-
out the memory operator

Algorithm  Problem Size Parameters
Common to all Pop. Size 50
.. . Max Length 120
geGA DiningPhilosophers 16 Stop At 60
.. . Max Length 260
geGA DiningPhilosophers 32 Stop At 60
Max Length 50
.. . MO Slots 50
MO \ )
geGA DiningPhilosophers 16 MO Freq. 20
Stop At 60
Max Length 50
.. . MO Slots 50
MO
geGA DiningPhilosophers 32 MO Freq. 20
Stop At 60
.. . Max Length 70
geGA DiningPhil 16 Stop At 60
Max Length 50
.. . MO Slots 50
MO
geGA DiningPhil 16 MO Freq. 20
Stop At 60
Max Length 140
geGA SMP 8 Stop At 20
Max Length 50
MO Slots 50
MO
geGA SMP 8 MO Fregq. 10
Stop At 20

Finally, with SMP we have the opposite situation. Table 7

show that not only geGA was the fastest algorithm of the
two to find the path to the deadlock, but it found shorter
paths and had a better hit rate. geGAM© still used less
memory but had more difficulty to find the deadlock.

geGAMO fulfills its promise of being able to tackle with
larger search-spaces. The segmentation of the search-space
allows the algorithm to be faster and consume less memory.
However, there is a compromise between these advantages
and the quality of the solution.

The use of the MO is not a good solution to every problem
as we have seen with SMP. In this problem, the last steps
depend greatly on the choices made in the beginning. The
MO segments the search space and geGA™M© tries to find
the best solution in each segment, starting from the pre-
vious segment solutions. However, it may be necessary to
have a bad (partial) solution in the first segments to find a
good (global) solution on the last segments. Further study
is required to reach a definitive conclusion, but a better fit-
ness function might help for these problems, instead of the
generic one we used.

6. CONCLUSION AND FUTURE WORKS

We have presented here a genetic algorithm for the prob-
lem of finding safety errors in concurrent programs. This
algorithm, called geGA, has been implemented inside the
Java Pathfinder model checker, which is able to check Java
programs. We compared this algorithm to the standard ex-
haustive search algorithms, DFS and BFS, using them to



Table 7: Results of geGA and geGAM? with the problems

Problem Search Time to 1¥° Total Depth of Final Memory  errors /
Method  error (s) Time (s) 1% error Depth (MB) runs
DiningPhilosophers 16 geGA 23.56 60.54  114.10 99.00 408.48 48/50
geGAMO  (1)12.82 60.06 (+)125.84  (+)114.9 (4+)106.34 (-)50/50
DiningPhilosophers 32 geGA 51.00 63.00  256.00 256.00 417.00 1/50
geGAM®  (4)36.26 60.00 (-)260.02 (+)248.06 (+)154.88 (+)50/50
DiningPhil 16 geGA 41.67 60.00 65.00 65.00 408.00 6/50
geGAMC  (4)19.03 60.00 (-)65.00  (-)65.00 (+)56.83 (+)35/50
SMP & geGA 2.58 20.42  126.88 104.12 267.54 50/50
geGAMO (+)13.40 20.00 (-)134.45 (+)122.34 (4)62.60 (+)38/50

detect deadlocks (one example of a safety property) in large
concurrent programs. We have shown that while it gener-
ally requires more time than DF'S to reach an error, the error
trails generated by geGA are smaller and therefore simpler
to use in the debugging of the program. geGA is also faster
than BFS and the lengths of the error trails that geGA ob-
tains are very close to the BFS’ ones. Besides, it can be used
in larger problems, where BFS cannot be used due to the
required amount of memory. There are, however, problems
remaining with geGA. One problem lies in the fact that one
must limit the growth of the chromosomes in the individu-
als. This requires having an a priori estimate of the length
of the error trail, which is frequently impossible to know.
The other problem is the memory requirements of this algo-
rithm. We proposed a novel operator, the memory operator,
and have shown that using it with our geGA, a combination
we called geGAMO | could solve those problems while being
able to tackle with even larger problems.

Some research can still be done to improve our algorithms.
It is possible to modify geGA to be usable in the detection
of liveness properties. That would imply adding a second
phase to the Algorithm that, instead of looking for an error
state, would look for a cycle including the state found in
the first phase. Early studies we made suggest that the fre-
quency of the memory operator execution and the maximum
chromosome length affects the compromise between speed,
memory and quality of the solutions: low frequencies and
bigger chromosomes leads to better quality of the solutions
at the expense of slower execution. We plan to study this
issue in the future.
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