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ABSTRACT 
Evolutionary testing denotes the use of evolutionary algorithms, 
e.g., Genetic Algorithms (GAs), to support various test 
automation tasks. Since evolutionary algorithms are heuristics, 
their performance and output efficiency can vary across multiple 
runs. Therefore, there is a strong need to empirically investigate 
the capacity of evolutionary test techniques to achieve the desired 
objectives (e.g., generate stress test cases) and their scalability in 
terms of the complexity of the System Under Test (SUT), the 
inputs, and the control parameters of the search algorithms. In a 
previous work, we presented a GA-based UML-driven, stress test 
technique aimed at increasing chances of discovering faults 
related to network traffic in distributed real-time software. This 
paper reports a carefully-designed empirical study which was 
conducted to analyze and improve the applicability, efficiency 
and effectiveness of the above GA-based stress test technique. 
Detailed stages and objectives of the empirical analysis are 
reported. The findings of the study are furthermore used to better 
calibrate the parameters of the GA-based stress test technique.  

Categories and Subject Descriptors 
D.2.5 [Software Engineering] Testing and Debugging - Testing 
tools 

General Terms 
Algorithms, Experimentation, Reliability 

Keywords 
Empirical Analysis, Genetic Algorithms, Stress Testing 

1. INTRODUCTION 
Distributed Real-Time Systems (DRTS) are becoming more 
important to our everyday life. Examples include command and 
control systems, aircraft aviation systems, robotics, and nuclear 
power plant systems [1]. However, the development and testing of 
such systems is difficult and takes more time than for systems 
without real-time constraints or distribution [1]. Based on an 
analysis of sources of failures in the United States Public 

Switched Telephone Network (PSTN) [2], it is reported that in the 
1992-1994 time period, although only 6% of the outages were 
overloads, they led to 44% of the PSTN’s service downtime. In 
the system under study, overload was defined as the situation in 
which service demand exceeds the designed system capacity. So 
it is evident that although overloads do not happen frequently, the 
failure resulting from them can be quite expensive. 

Distributed nodes of a DRTS regularly need to communicate with 
each other to perform system functionality. Network 
communications are not always successful and on time as 
problems such as congestion, transmission errors, or delays might 
occur. On the other hand, many Real-Time (RT) and safety-
critical systems have hard deadlines for many of their operations, 
where if the deadlines are not met, serious or even catastrophic 
consequences will happen (e.g., explosion in a nuclear power 
plant).  

Proposing that the UML [3] design model of a DRTS is in the 
form of Sequence Diagrams (SD) annotated with precise timing 
information, and the system’s network topology is given in a 
specific modeling format, we presented in [4] a stress test 
technique, referred to as Genetic Algorithm-based Stress Test 
Technique (GASTT), to derive test requirements to stress the 
DRTS with maximizing the network traffic in a way that will 
likely reveal RT faults. The GASTT technique itself was an 
extension to another earlier technique referred to as Time-Shifting 
Stress Test Methodology (TSSTM) [5]. The difference between the 
two techniques was that GASTT considered the complex timing 
constraints of RT tasks in DRTSs (such as arrival patterns) when 
deriving stress test requirements, while TSSTM was only 
applicable to DRTSs without timing constraints for RT tasks. That 
mentioned, GASTT was shown [4] to be successful for deriving 
strenuous but valid (legal) test requirements that respect the 
timing constraints of RT tasks in a System Under Test (SUT). s 

The GASTT methodology [4] was designed by making use of a 
specifically-tailored Genetic Algorithm (GA) to automatically 
generate test requirements which comply with task timing 
constraints and lead to high traffic-aware stress. Since GAs are 
heuristics, their performance and output efficiency can vary 
across multiple runs, and the GASTT methodology [4] is no 
exception. Calibration of different GA parameters (e.g., crossover 
ratio) is also very important in achieving a reliable performance 
for a GA-based software testing technique. Therefore, the 
efficiency and effectiveness of a GA and also its parameter 
calibration should be validated through empirical means.  

From a broader perspective, evolutionary testing denotes the use 
of evolutionary algorithms (e.g., GAs) to support various test 

 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
GECCO’08, July 12–16, 2008, Atlanta, Georgia, USA. 
Copyright 2008 ACM  978-1-60558-130-9/08/07...$5.00. 

1743



automation tasks [6]. In the context of evolutionary testing, as 
Briand recommended recently [7]: “it is important to empirically 
investigate their [evolutionary test techniques’] capacity to 
achieve the desired objectives (e.g., generate stress test cases) 
and their scalability in terms of the complexity of the SUT, the 
inputs, and the control parameters of the search algorithms”. 

As an effort in the above direction, this paper presents a carefully-
designed empirical study to validate the design choices of the GA 
underlying GASTT [4]. The empirical study’s methodology, 
objectives and findings are reported. The findings are used to 
better calibrate the parameters of GASTT. It is hoped that the 
current work emphasizes yet again the importance of empirical 
studies in Search-Based Software Engineering (SBSE). 
Furthermore, the author hopes that the findings of this empirical 
study can help other SBSE researchers with the empirical analysis 
of their own techniques. 

The remainder of this article is structured as follows. Related 
works are discussed in Section 2. An overview of GASTT [4] 
crucial for the presentation of this paper is described in Section 3. 
The empirical analysis and its results are presented in Section 4. 
Section 5 concludes the article and discusses some of the future 
research directions.  

2. RELATED WORKS 
There are many works in the operations research community (for 
instance, [8-10]) which empirically study the performance of GAs 
and other Evolutionary Optimization Techniques (EOT), e.g., the 
work in [8] empirically evaluates spatial (a type of parallel) GAs 
whose population is distributed on different types of networks.  

Focusing on the state-of-the-art in the SBSE community, although 
a few works in the area have performed empirical studies to 
evaluate the performance of the EOTs used in their SBSE 
techniques, however it seems that the importance of EOT 
empirical studies in SBSE is still somewhat under-estimated. To 
the best of the author’s knowledge, the works in [11-14] are the 
major works in this direction which present empirical evaluations 
of EOTs when applied in software testing [12-14] and project 
planning [11]. 

Antoniol et al. [11] empirically evaluated the use of three 
different search–based techniques, namely GAs, hill climbing and 
simulated annealing, for planning resource allocation in large-
scale maintenance projects. Results of the study showed that a GA 
with an ordering-based genome encoding and a tailored cross-
over operator appears to provide the most robust solution. 
The study in [12] by Harman et al. theoretically and empirically 
evaluated the impact of input domain (search space) reduction on 
the performance of search–based test techniques, presenting 
results from the application of local and global search algorithms 
to real-world examples. The theoretical analysis predicted that 
search space reduction would not have a significant effect on 
random testing, but could enhance the performance of more 
intelligent search techniques, such as hill climbing and GAs. An 
empirical study, performed on 360 branches from an open source 
code and another embedded controller production code, supplied 
by DaimlerChrysler, was found to support these claims. 

Harman and McMinn presented in [13] a theoretical and empirical 
analysis of evolutionary testing and hill climbing for structural 
(white-box) test data generation. A new theoretical framework 

was constructed as a generalization of the theories of schemata 
and Royal Roads from the literature of evolutionary computation. 
The theory is used to predict the situations in which EOT will 
perform well, i.e.., how good (close to the optimum) the outputs 
are, and to explain why. These predictions are validated by an 
empirical observation. The empirical study then goes on to 
explore the impact of the choice of search technique providing 
some important and perhaps counter-intuitive findings. The 
findings of the study are surprising because they indicate that 
sophisticated search techniques, such as EOT can often be 
outperformed by far simpler search techniques. However, as the 
theory indicates, the findings also show that there do exist test 
data generation scenarios for which the evolutionary approach is 
ideally suited. 

Xiao et al. [14] presented an empirical evaluation of five types of 
EOTs when used to generate test case data: (1) Genetic 
Algorithms, (2) Simulated Annealing, (3) Genetic Simulated 
Annealing, (4) Simulated Annealing with Advanced Adaptive 
Neighborhood, and (5) a random-search optimization technique. 
The authors of [14] believed that a number of papers dedicated to 
approaches and methods providing suggestions regarding 
selection of the best values of control parameters for a given EOT 
have been published (e.g., [15, 16]). However, there is no 
universal recipe that can be used for calculating the values of 
control parameters in all contexts and applications. In many cases, 
the values have to be adjusted for a given problem at hand and 
algorithm. A set of optimization experiments was conducted in 
[14] for different values of parameters for each algorithm, and the 
parameters that led to the best performance of that algorithm for a 
given problem (i.e., a SUT) were identified. Among the GA 
parameters analyzed and calibrated through experiments in [14] 
were: population size, crossover probability, mutation probability, 
and termination criterion (number of generations). 

Although the works in [11-14] are interesting contributions, they 
did not evaluate EOTs’ operating performance and efficiency 
w.r.t. the following three criteria: (1) repeatability of results 
across multiple runs of an algorithm (this is important for 
heuristic-based EOTs since they have notions of randomness), (2) 
convergence efficiency across generations towards a stable 
maximum plateau, and (3) scalability of the EOT at hand, i.e., 
impacts of variations in the SUT size and complexity. The current 
empirical study takes into account the above criteria. 

From a higher-level perspective, in a keynote speech at the 
International Symposium on Empirical Software Engineering and 
Measurement (ESEM) 2007, Briand presented a critical analysis 
[7] of empirical research in software testing. As he mentioned, 
empirical studies of software testing should go beyond assessing 
the cost-effectiveness of test techniques. He stated [7] that, as 
evolutionary test techniques are heuristics, it is important to 
empirically investigate their capacity and scalability when used in 
test automation tasks. 

Furthermore, in a road-map paper, Harman [6] mentioned that 
scalability of results generated by SBSE techniques, robustness of 
results, and insight into how those techniques work are among the 
important cross-cutting issues which need to be carefully 
investigated for the evolutionary testing to be adapted in large-
scale industrial settings. 
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The work reported in this paper is taking into account the above 
operating performance criteria of GAs when applied to stress test 
requirement generation using GASTT [4], and is an investigation 
along the lines as suggested by Briand’s critical analysis [7] and 
Harman’s road-map on SBSE [6]. 

3. AN OVERVIEW OF THE GASTT 
The Genetic Algorithm-based Stress Test Technique (GASTT) [4] 
is a stress test technique to derive test requirements to stress test a 
DRTS with maximizing the network traffic in a way that will 
most likely reveal RT faults. Due to space constraints, we only 
present an overview of GASTT [4] crucial for the presentation of 
the current paper. For comprehensive details on GASTT, readers 
are referred to [4]. 
Based on a comparative analysis in [4], we showed  that the 
solution space of stress test requirements for DRTSs is uneven, 
characterized by multiple peaks and valleys. A Non-Linear 
Programming (NLP) technique was thus needed that alleviates the 
above problem by exploring multiple parts of the non-linear 
problem space. Among existing meta-heuristic optimization 
methods, we adopted GAs for our test requirement generation 
problem. This decision was based on a few rationale including the 
high scalability and flexibility of GAs.  
Two of the design details of GASTT [4] which are crucial for the 
understanding of the empirical analysis in this paper are: Arrival 
Patterns (APs) of RT tasks, and the maximum search time for the 
GA designed for GASTT. 
Task APs are common to DRTSs as they impose constraints on 
when RT tasks are released (available to start execution), e.g., 
periodic, and bounded [1]. Without considering those APs in the 
generation of stress test requirements, stress testing would derive 
strenuous but they would be invalid (illegal) execution scenarios 
w.r.t. task arrival times. To support automation of APs analysis 
and incorporating them in stress test case generation, the notion of 
Accepted Time Set (ATS) was defined in [4] for each RT task. The 
ATS of each task is the set of time instances or time intervals 
when the task is allowed to be triggered (started), according to its 
AP. For example the ATS of a task with a bounded AP is 
illustrated in Figure 1. In a bounded AP, the inter-arrival time of 
two consecutive arrivals of a task is bounded by a minimum and a 
maximum time value. The type and the parameters of the AP 
illustrated in Figure 1 are (‘bounded’, (4, ms), (5, ms)). In this AP, 
the minimum and maximum inter-arrival times of two consecutive 
arrivals are specified as 4 and 5 ms, respectively. The gray 
eclipses in Figure 1 depict the ATS of the above task, i.e., the 
time intervals where the task AP is satisfied 

0    1     2    3     4    5    6     7    8     9   10   11  12  13   14  15   16  17   18  19  20  21  22   23  24   time (ms)

...

 
Figure 1- Accepted Time Set (ATS) of a RT task. 

On the other hand, one important issue in the GA design in [4] 
was the range of the random time values chosen from the ATSs of 
tasks with APs. As discussed in [4], the ATSs of some types of 
APs (e.g. periodic, bounded) can be infinite. Therefore, choosing 
a random value from such an ATS can yield very large values, 
thus creating implementation problems.  

As another direct impact of such unboundedness on our GA [4] is 
that if the maximum range when generating a set of random 
numbers is infinite, the probability that all (or a subset) of the 

generated time values are relatively close to each other is very 
small. Thus, to eliminate such problems, we introduced in [4] a 
parameter referred to as the Maximum Search Time for our GA. 
This maximum search time is essentially an integer value (in time 
units) which enforces an upper bound on the selection of random 
values for start times of tasks, chosen from their ATSs. The GA 
maximum search time was used in the GA operators to limit the 
maximum ranges of generated random time values. 

One of the criteria used in our empirical analysis (Section 4) will 
be to assess the impacts of variations in task APs and the GA 
maximum search time on the GA performance and repeatability. 

4. EMPIRICAL ANALYSIS 
To support the application of the GASTT methodology, we 
implemented a prototype tool called GARUS (Genetic Algorithm-
based test Requirement tool for real-time distribUted Systems) 
[17]. This section presents a carefully designed empirical study, 
using this tool, to validate the design choices of the GA 
underlying GASTT. A short functional overview for the tool is 
provided below (Figure 2) but technical details about the tool can 
be found in [18]. The tool was implemented in C++ and the 
source code is available from the World Wide Web [17]. The 
library used to implement the GA-based tool was GAlib [19]. 
The (stress) test model of a SUT is given in an input file. Such a 
test model is built from the UML design models of a SUT. The 
test model, for example, captures different Control Flow Paths 
(CFPs), and different APs of RT tasks. The tool reads the test 
model from the input file and creates an object named tm of type 
TestModel, initialized with the values from the input test model. 
Then, an object named ga of type GAlib::SteadyStateGA is 
created, such that tm is used in the creation of ga’s initial 
population (details in [18]). Note that object ga has a collection of 
chromosomes of type GARUSGenome, and each object of type 
GARUSGenome has an ordered set of genes of type GARUSGene 
(these are classes in the tool’s class diagram [18]). Furthermore, 
appropriate values for the ga’s parameters (e.g., crossover rate) 
are set according to the empirical analysis reported in this work. 
GARUS then evolves ga using the defined mutation and 
crossover operators. When the evolution of ga finishes, i.e., after 
a predefined number of generations, the best individual is saved in 
an output file. 

GARUS (GA-based test Requirement generator for real-time distribUted Systems)

Input File

Test Model of a 
SUT

Output File

Stress Test 
Requirements

Initialize an object 
of type 

GASteadyStateGA
Evolve ga

ga:GASteadyStateGA

Read the input file 
into an object of 
type TestModel

tm:TestModel

ga.statistics()
.bestIndividual()

 
Figure 2-A high-level activity diagram of GARUS tool [17]. 

Along with the output stress test requirement (i.e., the most 
stressing control flow paths of the RT tasks), GARUS also 
generates a maximum traffic value (for that test requirement) and 
a maximum traffic time (when the maximum traffic occurs). The 
maximum traffic value is in fact the objective function value of 
the GA’s best individual at the completion of the evolution 
process. The objective function is described in [4] and is referred 
to as Instant Stress Test Objective Function (ISTOF).  
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4.1 Evaluation Criteria 
In our empirical analysis, we evaluate the GASTT’s operating 
performance and efficiency according to four criteria: 

1. Repeatability of GA results across multiple runs (Section 
4.3): It is important to assess how stable and reliable the 
results of the GA are across multiple runs. To do so, the GA 
was executed a large number of times and we assessed the 
variability of the best chromosome’s fitness value. 

2. Convergence efficiency across generations towards a stable 
maximum plateau (Section 4.4): In order to assess the design 
of the selected mutation and cross-over operators in GASTT, 
as well as the chosen chromosome representation, it is useful 
to look at the speed of convergence towards a stable 
maximum fitness plateau [20]. This can be easily computed 
as, for each generation, GAlib [19] statistics provide min, 
max, mean, and standard deviation values. 

3. Scalability of the GA (i.e., impacts of variations in size and 
complexity of a test model) - (Section 4.5): Assessing how 
the GA performance and repeatability are affected with 
SUTs of different size and complexity. 

4. Impacts of variations in parameters other than SUT size and 
complexity (Section 4.6-4.7): Assessing how the GA is 
affected when it is applied to different SUTs with different 
properties. In our analysis, we investigated the impacts of 
variations in AP types, arrival pattern parameters (e.g., 
periodic arrival pattern period and deviation values), and the 
GA maximum search time (Section 3). Due to space 
constraints, the impacts of variations in task arrival pattern 
parameters are not presented in this paper, but can be found 
in [18]. 

Note that the items 1-3 above are generic cross-cutting concerns 
which heuristics-based SBSE techniques should, in general, be 
empirically evaluated to. However, the 4th item is specific to the 
technique at hand (stress testing). 

4.2 Experimental Test Models 
Using the above four criteria (Section 4.1), we analyzed GASTT’s 
operating performance and efficiency by running GARUS on a set 
of 20 hypothetical experimental test models (described below), 
which were used as a test-bed for our experiments.  
Note that we chose to use experimental test models in our 
analysis, since there are not many publicly-available real or 
prototype DRTS design models or source codes. Furthermore, the 
use of experimental test models enabled us to conveniently 
change different empirical parameters (e.g., the SUT complexity) 
and to accordingly study their impacts on the GA. The set of 20 
experimental Test Models (TMs) were designed based on the 
following three variation criteria: 
1. Variations in test model (SUT) size and complexity 
2. Variations in AP types and parameters 
3. Variations in the GA’s maximum search time 
We devised a set of variability parameters, and used them in our 
experiments to incorporate variability in different TMs based on 
the above criteria. Eight of those variability parameters are shown 
in Table 1 which correspond to the above “SUT size and 
complexity” criterion (#1). Each parameter in this group 
corresponds to a size/complexity perspective of a SUT, e.g., 

number of Independent SD Sets (ISDSs)1, number of SDs (each 
corresponding to a RT task), and minimum/maximum numbers of 
Distributed Concurrent Control Flow Path (DCCFPs)2 per SD. A 
DTUPP (Distributed Traffic Usage Pattern Point) is the predicted 
traffic usage value of a RT task (when executed) at each time 
instant. A large SUT might have many ISDSs (by setting large 
values for nISDSs), while another large SUT can have many 
DCCFPs per SD (by setting large values for minnDCCFPs and 
maxnDCCFPs). Parameters prefixed with min and max serve as 
statistical means, which enable us to incorporate statistically-
controlled randomness into the sizes of our experimental TMs. 
For example, we can control the minimum and maximum number 
of DCCFPs per SD in a SUT by minnDCCFPs and maxnDCCFPs 
parameters. Such a statistical range for number of SDs per ISDSs, 
DCCFPs per SD, and DTUPPs per DCCFP also conforms to real-
world models, where for example, there are variant numbers of 
DCCFPs per SDs.  
Six TMs (tm1…tm6) of different size and complexity were 
generated based on the statistical information in Table 1 and using 
a random test model generator (RandTMGen) developed in C++. 
For example, tm1 (Table 1) has 2 ISDSs, 5 SDs (i.e., RT tasks), 
has min/max ISDS size of 3 and 4 SDs, respectively, and so on.  

Test Models 
 
Parameters 

tm1 
 

tm2 tm3 tm4 tm5 tm6 

nISDSs 2 100 10 10 10 2 
nSDs 5 50 200 50 10 5 
minISDSsize 3 2 2 20 2 2 
maxISDSsize 4 5 5 30 5 5 
minnDCCFPs 1 1 2 1 10 1 
maxnDCCFPs 5 3 5 3 50 5 
minnDTUPPs 2 1 1 1 1 50 
maxnDTUPPs 6 10 10 10 10 100 

Table 1-Six experimental test models. 
12 other TMs (tm7…tm18) were generated using RandTMGen 
based on the variation criterion #2, and the following sub-criteria: 
 Different-AP-Types (resulted in tm7…tm11): TMs in which 

tasks had either no, same or different AP types, e.g., none of 
the RT tasks in tm7 had specific APs. In tm8, tm9 and tm10, 
all tasks had periodic, bounded, and irregular APs, 
respectively. tm11 had tasks with different APs.  

 Same-AP-Different-Parameters (resulted in tm12…tm18): 
Each TM group in this set of TMs had a same AP type, but 
different AP parameters (e.g., period values of a periodic 
AP). 

All tm7…tm18 had the same size and complexity parameters. To 
incorporate the variation criteria #3, two other TMs (tm19 and 
tm20) were generated whose size and complexity were the same 
as tm1 but their GA maximum search times were 5 and 150 time 
units, respectively.  

                                                                 
1 As defined in [4], an ISDS is a largest (maximal) set of SDs, in 

which any two SDs are independent, thus enabling all the SDs 
in the set to run concurrently. 

2 A DCCFP is a Concurrent Control Flow Path (CCFP) where all 
messages are distributed [4]. A CCFP is a generalized form of 
conventional Control Flow Path in which messages can be 
triggered concurrently. 
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4.3 Repeatability of the GA Results  
We investigated the repeatability of GA results by analyzing the 
variation in maximum objective function (ISTOF) values and 
maximum-traffic times of the best GA individual (chromosome) 
after the GASTT execution was finished, and then assessing the 
extent to which those values were repeatable.  
Figure 3-(a) depicts the distributions of maximum ISTOF and 
stress time values for 1000 runs of tm1 (Section 4.2). From the 
ISTOF distribution, we can see that the maximum fitness values 
for most of the runs are between 60 and 72 units of traffic (e.g., 
KB). Descriptive statistics of the distributions in Figure 3 and 
other figures in this paper can be found in [18].  
Such a variation in fitness values across runs is expected when 
using GAs on complex optimization problems such as GASTT. 
However, though the variation above is not negligible, one would 
expect based on Figure 3-(a) that, with a few runs, a chromosome 
with a fitness value close to the observed maximum would likely 
be identified. Since each run lasts a few seconds (Section 4.5), 
relying on multiple runs to generate a stress test requirement 
should perhaps take a few minutes for very large SUTs and 
should not lead to practical problems. 

ISTOF Max stress time 
Max. stress times for 

ISTOF=72 

50

60

70

80

90

 

10

20

30

40

50

 

10

20

30

40

50

60

 
(a) (b) 

Figure 3-Empirical data for repeatability of the GA results. 
Corresponding portions of max stress time values for the most 
frequent maximum ISTOF value (72 units of traffic) are shown in 
Figure 3-(b). As we can see, these maximum stress time values 
are scattered across the time scale (e.g., from 10 to 60 units of 
time). This highlights that a single ISTOF value (maximum stress 
traffic) can happen in different time instances, thus suggesting the 
search landscape for the GA is rather complex for this type of 
problem. Thus, a testing strategy to further explore would be to 
cover all (or a subset of) such test requirements with maximum 
ISTOF values in different time instances. Indeed, although their 
ISTOF values are the same, a SUT’s reaction to different test 
requirements might vary, since different DCCFPs (and hence set 
of messages) in different time instances may be triggered. This 
might in turn lead to uncovering different RT faults in the SUT. 

4.4 Convergence Efficiency of the GA  
Another interesting property of the GA is the number of 
generations required to reach a stable maximum fitness plateau. 
We empirically analyzed the GA’s convergence efficiency w.r.t. 
various GA configuration parameters (e.g., crossover rate, 
mutation rate, and population size) [18], but due to space 
constraint, we only report the results w.r.t. the GA’s crossover 
rate.  

The distributions of these generation numbers over 1000 runs of 
tm1 for two different GA crossover rates of %70 and %50 are 
shown in Figure 4, where the x-axis is the generation number and 
the y-axis is the probability of reaching a stable maximum fitness 
plateau for a given generation number. We discuss next how this 
part of our empirical analysis was used to better calibrate the 
parameters of the GASTT (in specific, its crossover rate) to 
generate efficient and reliable results. 

Selecting an appropriate crossover rate for every GA is critical 
[21]. If the crossover rates are too high, desirable genes will not 
be able to accumulate within a single chromosome whereas if the 
rates are too low, the search space will not be fully explored [21]. 
The work by Grefenstette et al. [22] recommends that crossover 
rates should range between %45 and %95. Consistent with the 
findings of Grefenstette, we applied several choices in the above 
range (%50 and %70 were two of them) and used our empirical 
analysis to choose the most appropriate one as described below. 

Note that, in both the above cases, the number of GA generations 
(stopping criteria) was fixed to 100 which was itself calibrated 
through another empirical analysis [18]. According to Figure 4, 
for the crossover rate=%50, we can see that in 100th generations, 
the GA does not converge in all 1000 runs, i.e., the probability of 
achieving a stable maximum fitness plateau after 100 generations 
is %0.129. Although this is a small probability, but it can 
undermine the GA’s performance in producing reliable and 
repeatable test requirements. 
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Figure 4-Histogram of the generation numbers when a stable 

maximum fitness plateau is reached. 
On the other hand, for the crossover rate=%70, no more than 100 
generations was required to efficiently converge to a maximum 
fitness plateau. In this case, the minimum, maximum and average 
values are 20, 91, and 52, respectively. Therefore, we can state 
that in this case, on the average, 52 generations of the GA are 
required to converge to the final result (stress test requirement). In 
this case, the variation around this average is limited and no more 
than 100 generations will be required (even for our large 
experimental models). This number is in conformance with the 
experiments reported in the GA literature (e.g., [9]) but is 
however likely to be dependent on the number and complexity of 
SDs as well as their ATSs. 

We thus decided to choose crossover rate=%70 for the GA at 
hand. But note that this rate might need to be revised depending 
on the different parameters (e.g., number of GA generations). 
After setting crossover rate=%70, we further observed in our 
experiments that, from the initial to the final populations, the 
maximum fitness values typically increase by about 80%, which 
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can be considered a large improvement. So, though we cannot 
guarantee that a GA does find the global maximum, it clearly 
generates test requirements that is close to the global maximum 
and will significantly stress the SUT. 

4.5 Scalability of the GA 
The GA’s scalability was evaluated by analyzing the impact of 
variations in TM size and complexity using the following four 
empirical objectives:  

a) GA execution time 
b) Repeatability of maximum ISTOF values 
c) Repeatability of maximum stress time values  
d) Convergence efficiency across generations 

It should be noted that the goals of the empirical objectives (b)-(d) 
above differ from our empirical analyses in Sections 4.3 and 4.4 
in that the objectives (b)-(d) aim at analyzing the repeatability and 
convergence efficiency aspects of the GA w.r.t. its scalability 
aspect, i.e., how are the repeatability and convergence efficiency 
of the GA affected for TMs of different size and complexity? 
While, the analyses in Sections 4.3 and 4.4 investigated the 
repeatability and convergence efficiency for multiple runs of a 
single TM (i.e., tm1). 

Due to space constraints, we report next only the results of the 
above empirical objective (a). The empirical outcomes of the 
other three objectives are reported in [18]. To investigate the 
impact of TM size and complexity on the execution time of the 
GA, the average execution times over 1000 runs, by running 
GARUS with tm1…tm6 on an 863MHz Intel Pentium III 
processor with 512MB DRAM memory are depicted in Figure 5. 
Since minimums and maximums of the statistics for each TM 
were relatively close to the corresponding average value, we use 
the average values to discuss next the impacts of TM size on the 
GA execution time. 

tm1

0

tm6tm4
tm2 tm3tm5

duration (ms)

100 300 800 1000 1300

 
Figure 5-The average GA execution times of experimental test 

models tm1…tm6. 
Average duration of the GA run of tm1 (58 ms) is the smallest 
among all. This is expected since tm1 has the smallest size in 
terms of TM components (ISDSs, SDs, and DCCFPs). tm3 has the 
highest average execution time among the six TM runs. Durations 
of tm2, tm6, tm4, and tm5 are next in decreasing order. Based on 
the above order of execution values, we can make the following 
observations: 

 The execution time of the GA is strongly sensitive to an 
increase in number of SDs in a TM.  The more SDs in a TM, 
the longer a single run of the GA takes (e.g., tm3). This can 
be explained as the number of genes per chromosome in the 
GA is the same as the number of SDs in a TM. Thus, as the 
execution results indicate, the execution time of our GA 
sharply increases when the number of genes per chromosome 
increases. Such an increase impacts all functional 
components of the GA, including its operators and the fitness 
evaluator [4]. 

 As expected, the execution time of our GA is also highly 
dependent on the number of ISDSs (e.g. tm2). As the number 

of ISDSs increases, the size of initial population grows, and 
so does the number of the mutations and crossovers applied 
in each generation. The number of times the operators are 
applied is determined by the mutation and crossover rates 
and the size of initial population.  

 The execution time of the GA is also dependent on an 
increase in number of SDs per ISDS (e.g., tm4), as well as an 
increase in number of DTUPPs per DCCFP (e.g., tm6). As 
the number of SDs per ISDS increases, the number of non-
null genes per chromosome will increase. This will, in turn, 
lead to more mutations and crossovers and an increase in 
computation for the fitness evaluator. Similarly, an increase 
in number of DTUPPs per DCCFP will lead to an increase in 
fitness function’s computation time. 

 The execution time of the GA is not as dependent on an 
increase in number of DCCFPs per SD (e.g., tm5), when 
compared to other TM components. This can be explained as 
there will not be any change in chromosome size, nor in the 
initial population in that case. Even the frequency of 
mutations and crossovers will not change. For example, as 
the mutation operator chooses a random DCCFP among all 
DCCFPs of a SD, there will be no effect in terms of 
execution time if the number of DCCFPs per SD increases. 
The small difference between average durations of tm5 and 
tm1 in Figure 5 is due to the fact that tm5’s number of SDs is 
slightly more than that of tm1. 

In summary, the following are three high-level observations from 
our experiments on the scalability analysis of the GA: 
1. As the size of the test model gets larger, the variation in 

maximum ISTOF values (objective function) across 
executions remains constant. 

2. The GA can reach a stable maximum plateau even when the 
size of a specific component (SD, ISDS, DCCFP, etc) of a 
given model is large (up to 100 ISDSs in a SUT, 200 SDs, 30 
SDs (RT tasks) in an ISDS, and 50 DCCFPs in a SD). 

3. Test model size does not have an impact on the convergence 
efficiency across generations, and the GA is able to reach a 
stable maximum fitness plateau after about 50 generations on 
average, independent of test model size. 

4.6 Impacts of Arrival Pattern Types 
Similar to the GA scalability empirical analysis (Section 4.5), we 
analyzed the impacts of different arrival pattern types on the GA 
w.r.t. the following four empirical objectives:  

a) GA execution time 
b) Repeatability of maximum ISTOF values 
c) Repeatability of maximum stress time values  
d) Convergence efficiency across generations 

Due to space constraints, we report next only the results of the 
above empirical objective (a).  

We measured the average, minimum and maximum execution 
times over all the 1000 runs, by running GARUS with test models 
tm7…tm11 on a PC with the same specifications as described in 
Section 4.5. According to our empirical results, minimums and 
maximums of the above statistics for each test model run were 
relatively close to the corresponding average value. Therefore, we 
use the average values next to discuss the impacts of variations in 
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arrival patterns on GA execution time. To better illustrate the 
differences, the average values are depicted in Figure 6.  

0                                                           500
tm9tm10 tm8

tm7

duration (ms)

tm11

 
Figure 6-Average values of GA execution times for five 

experimental test models. 
Recall from Section 4.2 that test models tm7…tm11 were 
designed in a way that they all had the same size and complexity 
parameters, but different arrival patterns for their RT tasks. 
Referring to Figure 6, the average execution times of tm7…tm11 
are relatively close to each other (within 110 ms). This indicates 
that execution time is not strongly dependent on task arrival 
pattern “types” in a SUT. Furthermore, as we discuss below, the 
difference in execution times are mainly due to the 
implementation details of a method of class AP in GARUS. 
The execution times of two of these test models (tm8 and tm9), 
are slightly higher than those of tm7 and tm10. The difference 
between the two TM groups (tm8 and tm9 versus tm7 and tm10) 
can be explained by an implementation detail of GARUS (the 
source code is available in [17]). Function 
getARandomArrivalTime, a member function of class AP, is 
overridden in each of AP’s subclasses (e.g., periodicAP, and 
boundedAP). The time complexity of this function in noAP and 
irregularAP classes is O(1), i.e., choosing a random value from a 
range or an array, respectively. However, the implementation of 
the function in periodicAP and boundedAP classes required some 
extra considerations (related to the ATSs of periodic and bounded 
APs), and thus the time complexities of the function are not 
constant anymore, but dependent on the specific arrival pattern 
parameters.  

The execution time of tm11, in which each task can have an 
arbitrary arrival pattern, is placed somehow close to the average 
value of the other four TMs (tm7, tm8, tm9, and tm10). This is as 
predicted since the APs of RT tasks in tm11 are a mix of APs in 
the other four, thus leading to such an impact in its average 
execution time. 

4.7 Impacts of Maximum Search Time 
We report in this section the impact of variations in GA maximum 
search time on execution time, repeatability of outputs (maximum 
ISTOF values), and also the number of generations to reach a 
stable maximum plateau. Recall from Section 3 that the GA 
maximum search time is a GA parameter that limits the range of 
the random time values chosen from the ATSs of RT tasks with 
arrival pattern in the SUT. 
We compare the GA results w.r.t the above three criteria for tm1, 
tm19 and tm20 in Figure 7. As described in Section 4.2, tm19 and 
tm20 have the same size and complexity as tm1, but the maximum 
search time values for tm19 and tm20 are 5 and 150 time units, 
respectively, instead of 50 in tm1. Therefore, comparing GA 
results for these three TMs should reveal the impact of variations 
in maximum search time. There are 9 graphs (3 rows in 3 
columns) in Figure 7, where rows and columns correspond to 
different maximum search times, and GA performance variables.  
In terms of execution time, it seems that variations in maximum 
search time do not have a considerable impact. Across 1000 runs, 
all three TMs (tm1, tm19 and tm20) show execution times in the 

range [45 ms, 130 ms]. Since a change in maximum search time 
only changes the range in which a random time from an ATS (of a 
task) is selected, it is not surprising that there is no effect on the 
workload of different GA components (in the GARUS tool [17]).  

  Execution time ISTOF values Generation # 

5 
(tm19)

50

60

70

80

90

100

110

120

130

.10.20 .40.50

Probability
 

60

70

80

.05.10.15 .25

Probability

20

30

40

50

60

70

80

90

.05 .10 .15 .20 .25

Probability

50 
(tm1)

50

60

70

80

90

100

110

120

130

.10 .30 .50

Probability
 

50

60

70

80

90

.10 .20 .30 .40

Probability

30

40

50

60

70

80

90

100

.05 .10 .15 .20

Probability

G
A

 M
ax

im
um

 S
ea

rc
h 

Ti
m

e 
(ti

m
e 

un
its

) 

150 
(tm20)

50

60

70

80

90

100

110

120

130

.10 .30 .50

Probability
 

40

50

60

70

80

90

100

110

.10 .20 .30 .40

Probability

20

30

40

50

60

70

80

90

100

.05 .10 .15 .20

Probability

Figure 7- Impact of variations in maximum search time. 
As the maximum search time increases across the three test 
models (5 in tm19 to 50 in tm1 and 150 in tm20), the maximum of 
maximum ISTOF values across 1000 runs of a TM increases, i.e. 
82 traffic units for tm19, 91 traffic units for tm1 and 110 traffic 
units for tm20. This can be explained by an increase in the size of 
GA’s time search range from tm19 to tm1 and tm20: a larger time 
search range allows the GA to search a more broad time range to 
find the best chromosome (i.e., stress test requirement). From 
another perspective, the difference between the maximum and 
minimum of maximum ISTOF values also increases with the 
maximum search time. The differences between the maximum 
and minimum of maximum ISTOF values for tm19, tm1 and tm20 
are 20 (82-62), 41 (91-50), and 69 (110-41) respectively. This can 
also be explained by the increase in the size of time search range. 
In terms of number of generations to reach a stable maximum 
plateau, we can see that the increase in maximum search time 
slightly delays convergence across generations, i.e., the maximum 
plateau generation number in tm19 runs is reached at 91, while it 
is 99 for both tm1 and tm20 runs. 
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5. CONCLUSIONS AND FUTURE WORKS  
We presented in [4] a GA-based UML-driven, stress test 
technique aimed at increasing chances of discovering faults 
related to network traffic in distributed real-time software. This 
paper reported a carefully-designed empirical study which was 
conducted to analyze and improve the applicability, efficiency 
and effectiveness of the above GA-based stress test technique 
when applied to distributed real-time software.  

In this empirical analysis, we evaluated the above GA’s operating 
performance and efficiency according to four criteria: (1) 
Repeatability of GA results across multiple, (2) Convergence 
efficiency across generations towards a stable maximum plateau, 
(3) Impacts of variations in size and complexity of a SUT 
(Scalability of the GA), and (4) Impacts of variations in 
parameters other than SUT size and complexity. 
We presented in Section 4.4 one example scenario of how the 
findings of this study can be used to better calibrate a parameter 
(i.e., crossover rate) of the GA-based stress test technique in [4]. 
Other findings from our analysis were also used to calibrate other 
parameters of the GA, such as the population size, and mutation 
rate. More comprehensive details can be found in [18]. 

As a future work direction, we plan to perform similar empirical 
analyses for other evolutionary test techniques. We also plan to 
adopt and use more sophisticated ideas for empirical analysis 
form the operations research community (e.g., [8-10]). 
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