
Empirical Analysis of a Genetic Algorithm-based Stress
Test Technique

Vahid Garousi
Software Quality Engineering Research Group (SoftQual)

 http://www.softqual.ucalgary.ca
Department of Electrical and Computer Engineering, University of Calgary

2500 University Drive NW, Calgary, AB Canada T2N 1N4
vgarousi@ucalgary.ca

ABSTRACT
Evolutionary testing denotes the use of evolutionary algorithms,
e.g., Genetic Algorithms (GAs), to support various test
automation tasks. Since evolutionary algorithms are heuristics,
their performance and output efficiency can vary across multiple
runs. Therefore, there is a strong need to empirically investigate
the capacity of evolutionary test techniques to achieve the desired
objectives (e.g., generate stress test cases) and their scalability in
terms of the complexity of the System Under Test (SUT), the
inputs, and the control parameters of the search algorithms. In a
previous work, we presented a GA-based UML-driven, stress test
technique aimed at increasing chances of discovering faults
related to network traffic in distributed real-time software. This
paper reports a carefully-designed empirical study which was
conducted to analyze and improve the applicability, efficiency
and effectiveness of the above GA-based stress test technique.
Detailed stages and objectives of the empirical analysis are
reported. The findings of the study are furthermore used to better
calibrate the parameters of the GA-based stress test technique.

Categories and Subject Descriptors
D.2.5 [Software Engineering] Testing and Debugging - Testing
tools

General Terms
Algorithms, Experimentation, Reliability

Keywords
Empirical Analysis, Genetic Algorithms, Stress Testing

1. INTRODUCTION
Distributed Real-Time Systems (DRTS) are becoming more
important to our everyday life. Examples include command and
control systems, aircraft aviation systems, robotics, and nuclear
power plant systems [1]. However, the development and testing of
such systems is difficult and takes more time than for systems
without real-time constraints or distribution [1]. Based on an
analysis of sources of failures in the United States Public

Switched Telephone Network (PSTN) [2], it is reported that in the
1992-1994 time period, although only 6% of the outages were
overloads, they led to 44% of the PSTN’s service downtime. In
the system under study, overload was defined as the situation in
which service demand exceeds the designed system capacity. So
it is evident that although overloads do not happen frequently, the
failure resulting from them can be quite expensive.

Distributed nodes of a DRTS regularly need to communicate with
each other to perform system functionality. Network
communications are not always successful and on time as
problems such as congestion, transmission errors, or delays might
occur. On the other hand, many Real-Time (RT) and safety-
critical systems have hard deadlines for many of their operations,
where if the deadlines are not met, serious or even catastrophic
consequences will happen (e.g., explosion in a nuclear power
plant).

Proposing that the UML [3] design model of a DRTS is in the
form of Sequence Diagrams (SD) annotated with precise timing
information, and the system’s network topology is given in a
specific modeling format, we presented in [4] a stress test
technique, referred to as Genetic Algorithm-based Stress Test
Technique (GASTT), to derive test requirements to stress the
DRTS with maximizing the network traffic in a way that will
likely reveal RT faults. The GASTT technique itself was an
extension to another earlier technique referred to as Time-Shifting
Stress Test Methodology (TSSTM) [5]. The difference between the
two techniques was that GASTT considered the complex timing
constraints of RT tasks in DRTSs (such as arrival patterns) when
deriving stress test requirements, while TSSTM was only
applicable to DRTSs without timing constraints for RT tasks. That
mentioned, GASTT was shown [4] to be successful for deriving
strenuous but valid (legal) test requirements that respect the
timing constraints of RT tasks in a System Under Test (SUT). s

The GASTT methodology [4] was designed by making use of a
specifically-tailored Genetic Algorithm (GA) to automatically
generate test requirements which comply with task timing
constraints and lead to high traffic-aware stress. Since GAs are
heuristics, their performance and output efficiency can vary
across multiple runs, and the GASTT methodology [4] is no
exception. Calibration of different GA parameters (e.g., crossover
ratio) is also very important in achieving a reliable performance
for a GA-based software testing technique. Therefore, the
efficiency and effectiveness of a GA and also its parameter
calibration should be validated through empirical means.

From a broader perspective, evolutionary testing denotes the use
of evolutionary algorithms (e.g., GAs) to support various test

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
GECCO’08, July 12–16, 2008, Atlanta, Georgia, USA.
Copyright 2008 ACM 978-1-60558-130-9/08/07...$5.00.

1743

automation tasks [6]. In the context of evolutionary testing, as
Briand recommended recently [7]: “it is important to empirically
investigate their [evolutionary test techniques’] capacity to
achieve the desired objectives (e.g., generate stress test cases)
and their scalability in terms of the complexity of the SUT, the
inputs, and the control parameters of the search algorithms”.

As an effort in the above direction, this paper presents a carefully-
designed empirical study to validate the design choices of the GA
underlying GASTT [4]. The empirical study’s methodology,
objectives and findings are reported. The findings are used to
better calibrate the parameters of GASTT. It is hoped that the
current work emphasizes yet again the importance of empirical
studies in Search-Based Software Engineering (SBSE).
Furthermore, the author hopes that the findings of this empirical
study can help other SBSE researchers with the empirical analysis
of their own techniques.

The remainder of this article is structured as follows. Related
works are discussed in Section 2. An overview of GASTT [4]
crucial for the presentation of this paper is described in Section 3.
The empirical analysis and its results are presented in Section 4.
Section 5 concludes the article and discusses some of the future
research directions.

2. RELATED WORKS
There are many works in the operations research community (for
instance, [8-10]) which empirically study the performance of GAs
and other Evolutionary Optimization Techniques (EOT), e.g., the
work in [8] empirically evaluates spatial (a type of parallel) GAs
whose population is distributed on different types of networks.

Focusing on the state-of-the-art in the SBSE community, although
a few works in the area have performed empirical studies to
evaluate the performance of the EOTs used in their SBSE
techniques, however it seems that the importance of EOT
empirical studies in SBSE is still somewhat under-estimated. To
the best of the author’s knowledge, the works in [11-14] are the
major works in this direction which present empirical evaluations
of EOTs when applied in software testing [12-14] and project
planning [11].

Antoniol et al. [11] empirically evaluated the use of three
different search–based techniques, namely GAs, hill climbing and
simulated annealing, for planning resource allocation in large-
scale maintenance projects. Results of the study showed that a GA
with an ordering-based genome encoding and a tailored cross-
over operator appears to provide the most robust solution.
The study in [12] by Harman et al. theoretically and empirically
evaluated the impact of input domain (search space) reduction on
the performance of search–based test techniques, presenting
results from the application of local and global search algorithms
to real-world examples. The theoretical analysis predicted that
search space reduction would not have a significant effect on
random testing, but could enhance the performance of more
intelligent search techniques, such as hill climbing and GAs. An
empirical study, performed on 360 branches from an open source
code and another embedded controller production code, supplied
by DaimlerChrysler, was found to support these claims.

Harman and McMinn presented in [13] a theoretical and empirical
analysis of evolutionary testing and hill climbing for structural
(white-box) test data generation. A new theoretical framework

was constructed as a generalization of the theories of schemata
and Royal Roads from the literature of evolutionary computation.
The theory is used to predict the situations in which EOT will
perform well, i.e.., how good (close to the optimum) the outputs
are, and to explain why. These predictions are validated by an
empirical observation. The empirical study then goes on to
explore the impact of the choice of search technique providing
some important and perhaps counter-intuitive findings. The
findings of the study are surprising because they indicate that
sophisticated search techniques, such as EOT can often be
outperformed by far simpler search techniques. However, as the
theory indicates, the findings also show that there do exist test
data generation scenarios for which the evolutionary approach is
ideally suited.

Xiao et al. [14] presented an empirical evaluation of five types of
EOTs when used to generate test case data: (1) Genetic
Algorithms, (2) Simulated Annealing, (3) Genetic Simulated
Annealing, (4) Simulated Annealing with Advanced Adaptive
Neighborhood, and (5) a random-search optimization technique.
The authors of [14] believed that a number of papers dedicated to
approaches and methods providing suggestions regarding
selection of the best values of control parameters for a given EOT
have been published (e.g., [15, 16]). However, there is no
universal recipe that can be used for calculating the values of
control parameters in all contexts and applications. In many cases,
the values have to be adjusted for a given problem at hand and
algorithm. A set of optimization experiments was conducted in
[14] for different values of parameters for each algorithm, and the
parameters that led to the best performance of that algorithm for a
given problem (i.e., a SUT) were identified. Among the GA
parameters analyzed and calibrated through experiments in [14]
were: population size, crossover probability, mutation probability,
and termination criterion (number of generations).

Although the works in [11-14] are interesting contributions, they
did not evaluate EOTs’ operating performance and efficiency
w.r.t. the following three criteria: (1) repeatability of results
across multiple runs of an algorithm (this is important for
heuristic-based EOTs since they have notions of randomness), (2)
convergence efficiency across generations towards a stable
maximum plateau, and (3) scalability of the EOT at hand, i.e.,
impacts of variations in the SUT size and complexity. The current
empirical study takes into account the above criteria.

From a higher-level perspective, in a keynote speech at the
International Symposium on Empirical Software Engineering and
Measurement (ESEM) 2007, Briand presented a critical analysis
[7] of empirical research in software testing. As he mentioned,
empirical studies of software testing should go beyond assessing
the cost-effectiveness of test techniques. He stated [7] that, as
evolutionary test techniques are heuristics, it is important to
empirically investigate their capacity and scalability when used in
test automation tasks.

Furthermore, in a road-map paper, Harman [6] mentioned that
scalability of results generated by SBSE techniques, robustness of
results, and insight into how those techniques work are among the
important cross-cutting issues which need to be carefully
investigated for the evolutionary testing to be adapted in large-
scale industrial settings.

1744

The work reported in this paper is taking into account the above
operating performance criteria of GAs when applied to stress test
requirement generation using GASTT [4], and is an investigation
along the lines as suggested by Briand’s critical analysis [7] and
Harman’s road-map on SBSE [6].

3. AN OVERVIEW OF THE GASTT
The Genetic Algorithm-based Stress Test Technique (GASTT) [4]
is a stress test technique to derive test requirements to stress test a
DRTS with maximizing the network traffic in a way that will
most likely reveal RT faults. Due to space constraints, we only
present an overview of GASTT [4] crucial for the presentation of
the current paper. For comprehensive details on GASTT, readers
are referred to [4].
Based on a comparative analysis in [4], we showed that the
solution space of stress test requirements for DRTSs is uneven,
characterized by multiple peaks and valleys. A Non-Linear
Programming (NLP) technique was thus needed that alleviates the
above problem by exploring multiple parts of the non-linear
problem space. Among existing meta-heuristic optimization
methods, we adopted GAs for our test requirement generation
problem. This decision was based on a few rationale including the
high scalability and flexibility of GAs.
Two of the design details of GASTT [4] which are crucial for the
understanding of the empirical analysis in this paper are: Arrival
Patterns (APs) of RT tasks, and the maximum search time for the
GA designed for GASTT.
Task APs are common to DRTSs as they impose constraints on
when RT tasks are released (available to start execution), e.g.,
periodic, and bounded [1]. Without considering those APs in the
generation of stress test requirements, stress testing would derive
strenuous but they would be invalid (illegal) execution scenarios
w.r.t. task arrival times. To support automation of APs analysis
and incorporating them in stress test case generation, the notion of
Accepted Time Set (ATS) was defined in [4] for each RT task. The
ATS of each task is the set of time instances or time intervals
when the task is allowed to be triggered (started), according to its
AP. For example the ATS of a task with a bounded AP is
illustrated in Figure 1. In a bounded AP, the inter-arrival time of
two consecutive arrivals of a task is bounded by a minimum and a
maximum time value. The type and the parameters of the AP
illustrated in Figure 1 are (‘bounded’, (4, ms), (5, ms)). In this AP,
the minimum and maximum inter-arrival times of two consecutive
arrivals are specified as 4 and 5 ms, respectively. The gray
eclipses in Figure 1 depict the ATS of the above task, i.e., the
time intervals where the task AP is satisfied

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 time (ms)

...

Figure 1- Accepted Time Set (ATS) of a RT task.

On the other hand, one important issue in the GA design in [4]
was the range of the random time values chosen from the ATSs of
tasks with APs. As discussed in [4], the ATSs of some types of
APs (e.g. periodic, bounded) can be infinite. Therefore, choosing
a random value from such an ATS can yield very large values,
thus creating implementation problems.

As another direct impact of such unboundedness on our GA [4] is
that if the maximum range when generating a set of random
numbers is infinite, the probability that all (or a subset) of the

generated time values are relatively close to each other is very
small. Thus, to eliminate such problems, we introduced in [4] a
parameter referred to as the Maximum Search Time for our GA.
This maximum search time is essentially an integer value (in time
units) which enforces an upper bound on the selection of random
values for start times of tasks, chosen from their ATSs. The GA
maximum search time was used in the GA operators to limit the
maximum ranges of generated random time values.

One of the criteria used in our empirical analysis (Section 4) will
be to assess the impacts of variations in task APs and the GA
maximum search time on the GA performance and repeatability.

4. EMPIRICAL ANALYSIS
To support the application of the GASTT methodology, we
implemented a prototype tool called GARUS (Genetic Algorithm-
based test Requirement tool for real-time distribUted Systems)
[17]. This section presents a carefully designed empirical study,
using this tool, to validate the design choices of the GA
underlying GASTT. A short functional overview for the tool is
provided below (Figure 2) but technical details about the tool can
be found in [18]. The tool was implemented in C++ and the
source code is available from the World Wide Web [17]. The
library used to implement the GA-based tool was GAlib [19].
The (stress) test model of a SUT is given in an input file. Such a
test model is built from the UML design models of a SUT. The
test model, for example, captures different Control Flow Paths
(CFPs), and different APs of RT tasks. The tool reads the test
model from the input file and creates an object named tm of type
TestModel, initialized with the values from the input test model.
Then, an object named ga of type GAlib::SteadyStateGA is
created, such that tm is used in the creation of ga’s initial
population (details in [18]). Note that object ga has a collection of
chromosomes of type GARUSGenome, and each object of type
GARUSGenome has an ordered set of genes of type GARUSGene
(these are classes in the tool’s class diagram [18]). Furthermore,
appropriate values for the ga’s parameters (e.g., crossover rate)
are set according to the empirical analysis reported in this work.
GARUS then evolves ga using the defined mutation and
crossover operators. When the evolution of ga finishes, i.e., after
a predefined number of generations, the best individual is saved in
an output file.

GARUS (GA-based test Requirement generator for real-time distribUted Systems)

Input File

Test Model of a
SUT

Output File

Stress Test
Requirements

Initialize an object
of type

GASteadyStateGA
Evolve ga

ga:GASteadyStateGA

Read the input file
into an object of
type TestModel

tm:TestModel

ga.statistics()
.bestIndividual()

Figure 2-A high-level activity diagram of GARUS tool [17].

Along with the output stress test requirement (i.e., the most
stressing control flow paths of the RT tasks), GARUS also
generates a maximum traffic value (for that test requirement) and
a maximum traffic time (when the maximum traffic occurs). The
maximum traffic value is in fact the objective function value of
the GA’s best individual at the completion of the evolution
process. The objective function is described in [4] and is referred
to as Instant Stress Test Objective Function (ISTOF).

1745

4.1 Evaluation Criteria
In our empirical analysis, we evaluate the GASTT’s operating
performance and efficiency according to four criteria:

1. Repeatability of GA results across multiple runs (Section
4.3): It is important to assess how stable and reliable the
results of the GA are across multiple runs. To do so, the GA
was executed a large number of times and we assessed the
variability of the best chromosome’s fitness value.

2. Convergence efficiency across generations towards a stable
maximum plateau (Section 4.4): In order to assess the design
of the selected mutation and cross-over operators in GASTT,
as well as the chosen chromosome representation, it is useful
to look at the speed of convergence towards a stable
maximum fitness plateau [20]. This can be easily computed
as, for each generation, GAlib [19] statistics provide min,
max, mean, and standard deviation values.

3. Scalability of the GA (i.e., impacts of variations in size and
complexity of a test model) - (Section 4.5): Assessing how
the GA performance and repeatability are affected with
SUTs of different size and complexity.

4. Impacts of variations in parameters other than SUT size and
complexity (Section 4.6-4.7): Assessing how the GA is
affected when it is applied to different SUTs with different
properties. In our analysis, we investigated the impacts of
variations in AP types, arrival pattern parameters (e.g.,
periodic arrival pattern period and deviation values), and the
GA maximum search time (Section 3). Due to space
constraints, the impacts of variations in task arrival pattern
parameters are not presented in this paper, but can be found
in [18].

Note that the items 1-3 above are generic cross-cutting concerns
which heuristics-based SBSE techniques should, in general, be
empirically evaluated to. However, the 4th item is specific to the
technique at hand (stress testing).

4.2 Experimental Test Models
Using the above four criteria (Section 4.1), we analyzed GASTT’s
operating performance and efficiency by running GARUS on a set
of 20 hypothetical experimental test models (described below),
which were used as a test-bed for our experiments.
Note that we chose to use experimental test models in our
analysis, since there are not many publicly-available real or
prototype DRTS design models or source codes. Furthermore, the
use of experimental test models enabled us to conveniently
change different empirical parameters (e.g., the SUT complexity)
and to accordingly study their impacts on the GA. The set of 20
experimental Test Models (TMs) were designed based on the
following three variation criteria:
1. Variations in test model (SUT) size and complexity
2. Variations in AP types and parameters
3. Variations in the GA’s maximum search time
We devised a set of variability parameters, and used them in our
experiments to incorporate variability in different TMs based on
the above criteria. Eight of those variability parameters are shown
in Table 1 which correspond to the above “SUT size and
complexity” criterion (#1). Each parameter in this group
corresponds to a size/complexity perspective of a SUT, e.g.,

number of Independent SD Sets (ISDSs)1, number of SDs (each
corresponding to a RT task), and minimum/maximum numbers of
Distributed Concurrent Control Flow Path (DCCFPs)2 per SD. A
DTUPP (Distributed Traffic Usage Pattern Point) is the predicted
traffic usage value of a RT task (when executed) at each time
instant. A large SUT might have many ISDSs (by setting large
values for nISDSs), while another large SUT can have many
DCCFPs per SD (by setting large values for minnDCCFPs and
maxnDCCFPs). Parameters prefixed with min and max serve as
statistical means, which enable us to incorporate statistically-
controlled randomness into the sizes of our experimental TMs.
For example, we can control the minimum and maximum number
of DCCFPs per SD in a SUT by minnDCCFPs and maxnDCCFPs
parameters. Such a statistical range for number of SDs per ISDSs,
DCCFPs per SD, and DTUPPs per DCCFP also conforms to real-
world models, where for example, there are variant numbers of
DCCFPs per SDs.
Six TMs (tm1…tm6) of different size and complexity were
generated based on the statistical information in Table 1 and using
a random test model generator (RandTMGen) developed in C++.
For example, tm1 (Table 1) has 2 ISDSs, 5 SDs (i.e., RT tasks),
has min/max ISDS size of 3 and 4 SDs, respectively, and so on.

Test Models

Parameters

tm1

tm2 tm3 tm4 tm5 tm6

nISDSs 2 100 10 10 10 2
nSDs 5 50 200 50 10 5
minISDSsize 3 2 2 20 2 2
maxISDSsize 4 5 5 30 5 5
minnDCCFPs 1 1 2 1 10 1
maxnDCCFPs 5 3 5 3 50 5
minnDTUPPs 2 1 1 1 1 50
maxnDTUPPs 6 10 10 10 10 100

Table 1-Six experimental test models.
12 other TMs (tm7…tm18) were generated using RandTMGen
based on the variation criterion #2, and the following sub-criteria:
 Different-AP-Types (resulted in tm7…tm11): TMs in which

tasks had either no, same or different AP types, e.g., none of
the RT tasks in tm7 had specific APs. In tm8, tm9 and tm10,
all tasks had periodic, bounded, and irregular APs,
respectively. tm11 had tasks with different APs.

 Same-AP-Different-Parameters (resulted in tm12…tm18):
Each TM group in this set of TMs had a same AP type, but
different AP parameters (e.g., period values of a periodic
AP).

All tm7…tm18 had the same size and complexity parameters. To
incorporate the variation criteria #3, two other TMs (tm19 and
tm20) were generated whose size and complexity were the same
as tm1 but their GA maximum search times were 5 and 150 time
units, respectively.

1 As defined in [4], an ISDS is a largest (maximal) set of SDs, in

which any two SDs are independent, thus enabling all the SDs
in the set to run concurrently.

2 A DCCFP is a Concurrent Control Flow Path (CCFP) where all
messages are distributed [4]. A CCFP is a generalized form of
conventional Control Flow Path in which messages can be
triggered concurrently.

1746

4.3 Repeatability of the GA Results
We investigated the repeatability of GA results by analyzing the
variation in maximum objective function (ISTOF) values and
maximum-traffic times of the best GA individual (chromosome)
after the GASTT execution was finished, and then assessing the
extent to which those values were repeatable.
Figure 3-(a) depicts the distributions of maximum ISTOF and
stress time values for 1000 runs of tm1 (Section 4.2). From the
ISTOF distribution, we can see that the maximum fitness values
for most of the runs are between 60 and 72 units of traffic (e.g.,
KB). Descriptive statistics of the distributions in Figure 3 and
other figures in this paper can be found in [18].
Such a variation in fitness values across runs is expected when
using GAs on complex optimization problems such as GASTT.
However, though the variation above is not negligible, one would
expect based on Figure 3-(a) that, with a few runs, a chromosome
with a fitness value close to the observed maximum would likely
be identified. Since each run lasts a few seconds (Section 4.5),
relying on multiple runs to generate a stress test requirement
should perhaps take a few minutes for very large SUTs and
should not lead to practical problems.

ISTOF Max stress time
Max. stress times for

ISTOF=72

50

60

70

80

90

10

20

30

40

50

10

20

30

40

50

60

(a) (b)

Figure 3-Empirical data for repeatability of the GA results.
Corresponding portions of max stress time values for the most
frequent maximum ISTOF value (72 units of traffic) are shown in
Figure 3-(b). As we can see, these maximum stress time values
are scattered across the time scale (e.g., from 10 to 60 units of
time). This highlights that a single ISTOF value (maximum stress
traffic) can happen in different time instances, thus suggesting the
search landscape for the GA is rather complex for this type of
problem. Thus, a testing strategy to further explore would be to
cover all (or a subset of) such test requirements with maximum
ISTOF values in different time instances. Indeed, although their
ISTOF values are the same, a SUT’s reaction to different test
requirements might vary, since different DCCFPs (and hence set
of messages) in different time instances may be triggered. This
might in turn lead to uncovering different RT faults in the SUT.

4.4 Convergence Efficiency of the GA
Another interesting property of the GA is the number of
generations required to reach a stable maximum fitness plateau.
We empirically analyzed the GA’s convergence efficiency w.r.t.
various GA configuration parameters (e.g., crossover rate,
mutation rate, and population size) [18], but due to space
constraint, we only report the results w.r.t. the GA’s crossover
rate.

The distributions of these generation numbers over 1000 runs of
tm1 for two different GA crossover rates of %70 and %50 are
shown in Figure 4, where the x-axis is the generation number and
the y-axis is the probability of reaching a stable maximum fitness
plateau for a given generation number. We discuss next how this
part of our empirical analysis was used to better calibrate the
parameters of the GASTT (in specific, its crossover rate) to
generate efficient and reliable results.

Selecting an appropriate crossover rate for every GA is critical
[21]. If the crossover rates are too high, desirable genes will not
be able to accumulate within a single chromosome whereas if the
rates are too low, the search space will not be fully explored [21].
The work by Grefenstette et al. [22] recommends that crossover
rates should range between %45 and %95. Consistent with the
findings of Grefenstette, we applied several choices in the above
range (%50 and %70 were two of them) and used our empirical
analysis to choose the most appropriate one as described below.

Note that, in both the above cases, the number of GA generations
(stopping criteria) was fixed to 100 which was itself calibrated
through another empirical analysis [18]. According to Figure 4,
for the crossover rate=%50, we can see that in 100th generations,
the GA does not converge in all 1000 runs, i.e., the probability of
achieving a stable maximum fitness plateau after 100 generations
is %0.129. Although this is a small probability, but it can
undermine the GA’s performance in producing reliable and
repeatable test requirements.

0

0.01

0.02

0.03

0.04

0.05

0.06

20 30 40 50 60 70 80 90 100

Generation number

Pr
ob

ab
ilit

y
of

 a
ch

ie
vi

ng
 a

 m
ax

im
um

fit
ne

ss
 p

la
te

au

Crossover rate=%70

Crossover rate=%50

Figure 4-Histogram of the generation numbers when a stable

maximum fitness plateau is reached.
On the other hand, for the crossover rate=%70, no more than 100
generations was required to efficiently converge to a maximum
fitness plateau. In this case, the minimum, maximum and average
values are 20, 91, and 52, respectively. Therefore, we can state
that in this case, on the average, 52 generations of the GA are
required to converge to the final result (stress test requirement). In
this case, the variation around this average is limited and no more
than 100 generations will be required (even for our large
experimental models). This number is in conformance with the
experiments reported in the GA literature (e.g., [9]) but is
however likely to be dependent on the number and complexity of
SDs as well as their ATSs.

We thus decided to choose crossover rate=%70 for the GA at
hand. But note that this rate might need to be revised depending
on the different parameters (e.g., number of GA generations).
After setting crossover rate=%70, we further observed in our
experiments that, from the initial to the final populations, the
maximum fitness values typically increase by about 80%, which

1747

can be considered a large improvement. So, though we cannot
guarantee that a GA does find the global maximum, it clearly
generates test requirements that is close to the global maximum
and will significantly stress the SUT.

4.5 Scalability of the GA
The GA’s scalability was evaluated by analyzing the impact of
variations in TM size and complexity using the following four
empirical objectives:

a) GA execution time
b) Repeatability of maximum ISTOF values
c) Repeatability of maximum stress time values
d) Convergence efficiency across generations

It should be noted that the goals of the empirical objectives (b)-(d)
above differ from our empirical analyses in Sections 4.3 and 4.4
in that the objectives (b)-(d) aim at analyzing the repeatability and
convergence efficiency aspects of the GA w.r.t. its scalability
aspect, i.e., how are the repeatability and convergence efficiency
of the GA affected for TMs of different size and complexity?
While, the analyses in Sections 4.3 and 4.4 investigated the
repeatability and convergence efficiency for multiple runs of a
single TM (i.e., tm1).

Due to space constraints, we report next only the results of the
above empirical objective (a). The empirical outcomes of the
other three objectives are reported in [18]. To investigate the
impact of TM size and complexity on the execution time of the
GA, the average execution times over 1000 runs, by running
GARUS with tm1…tm6 on an 863MHz Intel Pentium III
processor with 512MB DRAM memory are depicted in Figure 5.
Since minimums and maximums of the statistics for each TM
were relatively close to the corresponding average value, we use
the average values to discuss next the impacts of TM size on the
GA execution time.

tm1

0

tm6tm4
tm2 tm3tm5

duration (ms)

100 300 800 1000 1300

Figure 5-The average GA execution times of experimental test

models tm1…tm6.
Average duration of the GA run of tm1 (58 ms) is the smallest
among all. This is expected since tm1 has the smallest size in
terms of TM components (ISDSs, SDs, and DCCFPs). tm3 has the
highest average execution time among the six TM runs. Durations
of tm2, tm6, tm4, and tm5 are next in decreasing order. Based on
the above order of execution values, we can make the following
observations:

 The execution time of the GA is strongly sensitive to an
increase in number of SDs in a TM. The more SDs in a TM,
the longer a single run of the GA takes (e.g., tm3). This can
be explained as the number of genes per chromosome in the
GA is the same as the number of SDs in a TM. Thus, as the
execution results indicate, the execution time of our GA
sharply increases when the number of genes per chromosome
increases. Such an increase impacts all functional
components of the GA, including its operators and the fitness
evaluator [4].

 As expected, the execution time of our GA is also highly
dependent on the number of ISDSs (e.g. tm2). As the number

of ISDSs increases, the size of initial population grows, and
so does the number of the mutations and crossovers applied
in each generation. The number of times the operators are
applied is determined by the mutation and crossover rates
and the size of initial population.

 The execution time of the GA is also dependent on an
increase in number of SDs per ISDS (e.g., tm4), as well as an
increase in number of DTUPPs per DCCFP (e.g., tm6). As
the number of SDs per ISDS increases, the number of non-
null genes per chromosome will increase. This will, in turn,
lead to more mutations and crossovers and an increase in
computation for the fitness evaluator. Similarly, an increase
in number of DTUPPs per DCCFP will lead to an increase in
fitness function’s computation time.

 The execution time of the GA is not as dependent on an
increase in number of DCCFPs per SD (e.g., tm5), when
compared to other TM components. This can be explained as
there will not be any change in chromosome size, nor in the
initial population in that case. Even the frequency of
mutations and crossovers will not change. For example, as
the mutation operator chooses a random DCCFP among all
DCCFPs of a SD, there will be no effect in terms of
execution time if the number of DCCFPs per SD increases.
The small difference between average durations of tm5 and
tm1 in Figure 5 is due to the fact that tm5’s number of SDs is
slightly more than that of tm1.

In summary, the following are three high-level observations from
our experiments on the scalability analysis of the GA:
1. As the size of the test model gets larger, the variation in

maximum ISTOF values (objective function) across
executions remains constant.

2. The GA can reach a stable maximum plateau even when the
size of a specific component (SD, ISDS, DCCFP, etc) of a
given model is large (up to 100 ISDSs in a SUT, 200 SDs, 30
SDs (RT tasks) in an ISDS, and 50 DCCFPs in a SD).

3. Test model size does not have an impact on the convergence
efficiency across generations, and the GA is able to reach a
stable maximum fitness plateau after about 50 generations on
average, independent of test model size.

4.6 Impacts of Arrival Pattern Types
Similar to the GA scalability empirical analysis (Section 4.5), we
analyzed the impacts of different arrival pattern types on the GA
w.r.t. the following four empirical objectives:

a) GA execution time
b) Repeatability of maximum ISTOF values
c) Repeatability of maximum stress time values
d) Convergence efficiency across generations

Due to space constraints, we report next only the results of the
above empirical objective (a).

We measured the average, minimum and maximum execution
times over all the 1000 runs, by running GARUS with test models
tm7…tm11 on a PC with the same specifications as described in
Section 4.5. According to our empirical results, minimums and
maximums of the above statistics for each test model run were
relatively close to the corresponding average value. Therefore, we
use the average values next to discuss the impacts of variations in

1748

arrival patterns on GA execution time. To better illustrate the
differences, the average values are depicted in Figure 6.

0 500
tm9tm10 tm8

tm7

duration (ms)

tm11

Figure 6-Average values of GA execution times for five

experimental test models.
Recall from Section 4.2 that test models tm7…tm11 were
designed in a way that they all had the same size and complexity
parameters, but different arrival patterns for their RT tasks.
Referring to Figure 6, the average execution times of tm7…tm11
are relatively close to each other (within 110 ms). This indicates
that execution time is not strongly dependent on task arrival
pattern “types” in a SUT. Furthermore, as we discuss below, the
difference in execution times are mainly due to the
implementation details of a method of class AP in GARUS.
The execution times of two of these test models (tm8 and tm9),
are slightly higher than those of tm7 and tm10. The difference
between the two TM groups (tm8 and tm9 versus tm7 and tm10)
can be explained by an implementation detail of GARUS (the
source code is available in [17]). Function
getARandomArrivalTime, a member function of class AP, is
overridden in each of AP’s subclasses (e.g., periodicAP, and
boundedAP). The time complexity of this function in noAP and
irregularAP classes is O(1), i.e., choosing a random value from a
range or an array, respectively. However, the implementation of
the function in periodicAP and boundedAP classes required some
extra considerations (related to the ATSs of periodic and bounded
APs), and thus the time complexities of the function are not
constant anymore, but dependent on the specific arrival pattern
parameters.

The execution time of tm11, in which each task can have an
arbitrary arrival pattern, is placed somehow close to the average
value of the other four TMs (tm7, tm8, tm9, and tm10). This is as
predicted since the APs of RT tasks in tm11 are a mix of APs in
the other four, thus leading to such an impact in its average
execution time.

4.7 Impacts of Maximum Search Time
We report in this section the impact of variations in GA maximum
search time on execution time, repeatability of outputs (maximum
ISTOF values), and also the number of generations to reach a
stable maximum plateau. Recall from Section 3 that the GA
maximum search time is a GA parameter that limits the range of
the random time values chosen from the ATSs of RT tasks with
arrival pattern in the SUT.
We compare the GA results w.r.t the above three criteria for tm1,
tm19 and tm20 in Figure 7. As described in Section 4.2, tm19 and
tm20 have the same size and complexity as tm1, but the maximum
search time values for tm19 and tm20 are 5 and 150 time units,
respectively, instead of 50 in tm1. Therefore, comparing GA
results for these three TMs should reveal the impact of variations
in maximum search time. There are 9 graphs (3 rows in 3
columns) in Figure 7, where rows and columns correspond to
different maximum search times, and GA performance variables.
In terms of execution time, it seems that variations in maximum
search time do not have a considerable impact. Across 1000 runs,
all three TMs (tm1, tm19 and tm20) show execution times in the

range [45 ms, 130 ms]. Since a change in maximum search time
only changes the range in which a random time from an ATS (of a
task) is selected, it is not surprising that there is no effect on the
workload of different GA components (in the GARUS tool [17]).

 Execution time ISTOF values Generation #

5
(tm19)

50

60

70

80

90

100

110

120

130

.10.20 .40.50

Probability

60

70

80

.05.10.15 .25

Probability

20

30

40

50

60

70

80

90

.05 .10 .15 .20 .25

Probability

50
(tm1)

50

60

70

80

90

100

110

120

130

.10 .30 .50

Probability

50

60

70

80

90

.10 .20 .30 .40

Probability

30

40

50

60

70

80

90

100

.05 .10 .15 .20

Probability

G
A

 M
ax

im
um

 S
ea

rc
h

Ti
m

e
(ti

m
e

un
its

)

150
(tm20)

50

60

70

80

90

100

110

120

130

.10 .30 .50

Probability

40

50

60

70

80

90

100

110

.10 .20 .30 .40

Probability

20

30

40

50

60

70

80

90

100

.05 .10 .15 .20

Probability

Figure 7- Impact of variations in maximum search time.
As the maximum search time increases across the three test
models (5 in tm19 to 50 in tm1 and 150 in tm20), the maximum of
maximum ISTOF values across 1000 runs of a TM increases, i.e.
82 traffic units for tm19, 91 traffic units for tm1 and 110 traffic
units for tm20. This can be explained by an increase in the size of
GA’s time search range from tm19 to tm1 and tm20: a larger time
search range allows the GA to search a more broad time range to
find the best chromosome (i.e., stress test requirement). From
another perspective, the difference between the maximum and
minimum of maximum ISTOF values also increases with the
maximum search time. The differences between the maximum
and minimum of maximum ISTOF values for tm19, tm1 and tm20
are 20 (82-62), 41 (91-50), and 69 (110-41) respectively. This can
also be explained by the increase in the size of time search range.
In terms of number of generations to reach a stable maximum
plateau, we can see that the increase in maximum search time
slightly delays convergence across generations, i.e., the maximum
plateau generation number in tm19 runs is reached at 91, while it
is 99 for both tm1 and tm20 runs.

1749

5. CONCLUSIONS AND FUTURE WORKS
We presented in [4] a GA-based UML-driven, stress test
technique aimed at increasing chances of discovering faults
related to network traffic in distributed real-time software. This
paper reported a carefully-designed empirical study which was
conducted to analyze and improve the applicability, efficiency
and effectiveness of the above GA-based stress test technique
when applied to distributed real-time software.

In this empirical analysis, we evaluated the above GA’s operating
performance and efficiency according to four criteria: (1)
Repeatability of GA results across multiple, (2) Convergence
efficiency across generations towards a stable maximum plateau,
(3) Impacts of variations in size and complexity of a SUT
(Scalability of the GA), and (4) Impacts of variations in
parameters other than SUT size and complexity.
We presented in Section 4.4 one example scenario of how the
findings of this study can be used to better calibrate a parameter
(i.e., crossover rate) of the GA-based stress test technique in [4].
Other findings from our analysis were also used to calibrate other
parameters of the GA, such as the population size, and mutation
rate. More comprehensive details can be found in [18].

As a future work direction, we plan to perform similar empirical
analyses for other evolutionary test techniques. We also plan to
adopt and use more sophisticated ideas for empirical analysis
form the operations research community (e.g., [8-10]).

6. ACKNOWLEDGMENTS
This work was supported in part by the Alberta Ingenuity New
Faculty Award no. 200600673 and also by the Discovery Grant
no. 341511-07 from the Natural Sciences and Engineering
Research Council of Canada (NSERC).

7. REFERENCES
[1] J. J. P. Tsai, Y. Bi, S. J. H. Yang, and R. A. W. Smith,

Distributed Real-Time Systems: Monitoring, Visualization,
Debugging, and Analysis: John Wiley & Sons, 1996.

[2] R. Kuhn, "Sources of Failure in the Public Switched
Telephone Network," IEEE Computer, vol. 30, no. 4, pp. 31-
36, 1997.

[3] Object Management Group (OMG), "UML 2.1.1
Superstructure Specification," 2007.

[4] V. Garousi, L. Briand, and Y. Labiche, "Traffic-aware Stress
Testing of Distributed Real-Time Systems Based on UML
Models using Genetic Algorithms," Elsevier Journal of
Systems and Software, Special Issue on Model-Based
Software Testing, vol. 81, no. 2, pp. 161-185, 2008.

[5] V. Garousi, L. Briand, and Y. Labiche, "Traffic-aware Stress
Testing of Distributed Systems based on UML Models,"
Proc. of Int. Conf. on Software Engineering, pp. 391-400,
2006.

[6] M. Harman, "The current State and Future of Search-Based
Software Engineering," Proc. of Int. Conf. on Software
Engineering, Future of Software Engineering, pp. 342-357,
2007.

[7] L. Briand, "A Critical Analysis of Empirical Research in
Software Testing," Keynote address, Int. Symp. on Empirical
Software Engineering and Measurement, 2007.

[8] Y. Min, X. Jin, X. Su, and B. Peng, "Empirical Analysis of
the Spatial Genetic Algorithm on Small-World Networks,"
Proc. of Int. Conf. on Computational Science, pp. 1032-
1039, 2006.

[9] G. Rudolph, "Convergence Analysis of Canonical Genetic
Algorithms," IEEE Transactions on Neural Networks, vol. 5,
no. 1, pp. 96-101, 1994.

[10] K. Sastry, M. Pelikan, and D. E. Goldberg, "Empirical
Analysis of Ideal Recombination on Random Decomposable
Problems," Genetic and Evolutionary Computation
Conference, pp. 1388-1395, 2007.

[11] G. Antoniol, M. Di Penta, and M. Harman, "Search-Based
Techniques Applied to Optimization of Project Planning for
a Massive Maintenance Project," Proc. of Int. Conf. on
Software Maintenance, pp. 240-249, 2005.

[12] M. Harman, Y. Hassoun, K. Lakhotia, P. McMinn, and J.
Wegener, "The Impact of Input Domain Reduction on
Search-Based Test Data Generation," Proc. of Int. Symp. on
the Foundations of Software Engineering, pp. 155-164, 2007

[13] M. Harman and P. McMinn, "A Theoretical & Empirical
Analysis of Evolutionary Testing and Hill Climbing for
Structural Test Data Generation " Proc. of Int. Symp. on
Software Testing and Analysis pp. 73-83, 2007.

[14] M. Xiao, M. E. M. Reformat, and J. Miller, "Empirical
Evaluation of Optimization Algorithms when used in Goal-
Oriented Automated Test Data Generation Techniques,"
Empirical Software Engineering, vol. 12, no. 2, pp. 183-239,
2007

[15] K. De Jong, "The Analysis of the Behavior of a Class of
Genetic Adaptive Systems," Ph.D. Dissertation, Dept. of
Computer Science, University of Michigan, Ann Arbor,
1975.

[16] J. J. Greffenstette, "Optimization of Control Parameters for
Genetic Algorithms," IEEE Trans. on Systems, Man, and
Cybernetics, vol. 16, no. 1, pp. 122-128, 1986.

[17] V. Garousi, "GARUS (Genetic Algorithm-based test
Requirement tool for real-time distribUted Systems),"
http://www.enel.ucalgary.ca/~vgarousi/tools/GARUS, 2006.

[18] V. Garousi, "Traffic-aware Stress Testing of Distributed
Real-Time Systems Based on UML Models using Genetic
Algorithms," Ph.D. Thesis, Department of Systems and
Computer Engineering, Carleton University, 2006.

[19] M. Wall, "GAlib: A C++ Library of Genetic Algorithm
Components," Documentation version 2.4, Massachusetts
Institute of Technology 1996.

[20] S. J. Louis and G. J. E. Rawlins, "Predicting Convergence
Time for Genetic Algorithms," Technical Report 370,
Computer Science Department, Indiana University 1993.

[21] R. L. Haupt and S. E. Haupt, Practical Genetic Algorithms:
Wiley-Interscience, 1998.

[22] J. J. Grefenstette and H. G. Cobb, "Genetic Algorithms for
Tracking Changing Environments," Proceeding of
International Conference on Genetic Algorithms, pp. 523-
530, 1993.

1750

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

