
Avida-MDE: A Digital Evolution Approach to Generating
Models of Adaptive Software Behavior ∗

Heather J. Goldsby and Betty H.C. Cheng†

{hjg, chengb}@cse.msu.edu
Department of Computer Science and Engineering

Michigan State University
3115 Engineering Building

East Lansing, Michigan 48824 USA

ABSTRACT
Increasingly, high-assurance applications rely on autonomic
systems to respond to changes in their environment. The
inherent uncertainty present in the environment of auto-
nomic systems makes it difficult for developers to identify
and model resilient autonomic behavior prior to deployment.
In this paper, we propose Avida-MDE, a digital evolution
approach to the generation of behavioral models (i.e., a set
of interacting finite state machines) that capture autonomic
system behavior that is potentially resilient to a variety of
environmental conditions. We use an evolving population
of digital organisms to generate behavioral models, where
the organisms are subjected to natural selection and are
rewarded for generating behavioral models that meet de-
veloper requirements. To illustrate this approach, we suc-
cessfully applied it to the generation of behavioral models
describing the navigation behavior of an autonomous robot.
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1. INTRODUCTION
Increasingly, high-assurance applications rely on auto-

nomic systems to respond to changes in the support-
ing computing, communication infrastructure, and in the
physical environment, while maintaining acceptable behav-
ior [18]; examples include critical infrastructure protection
and transportation systems. In an effort to promote sep-
aration of concerns, we consider an autonomic system to
comprise a collection of (non-adaptive) target systems and a
set of adaptation transitions among target systems in re-
sponse to environmental changes. Within software engi-
neering communities and industry, there is interest in devel-
oping software, including autonomic systems, using model-
driven engineering (MDE) [23]. MDE enables developers
to “program” at a higher level of abstraction by support-
ing the systematic transformation of graphical models into
more detailed models or formal specifications, and the even-
tual generation of the corresponding code. In general, the
Unified Modeling Language (UML) [1] is frequently used to
specify the models that start the MDE process (i.e., ini-
tial requirements-level or early design models). Specifically,
system structure is captured in a class diagram. System be-
havior is captured in a behavioral model comprising a set of
communicating finite state machines (one per class), where
each state machine is depicted in a state diagram.

While MDE is an attractive development approach, the
efforts required to create or revise the behavioral model are
often error prone and difficult to automate. Autonomic sys-
tems potentially amplify this concern because a separate
behavioral model must be created/revised for each target
system. In this paper, we consider the development of be-
havioral models, abstractly speaking, to be the search for
an appropriate solution from a large space of possible be-
havioral models. Given the inherent uncertainty present in
the environment of autonomic systems, we propose a digi-
tal evolution approach to the generation of innovative be-
havioral models whose behavior may be more resilient than
those created manually or through a synthesis algorithm.

We characterize the search space and solution space of
generating behavioral models in terms of developer-specified
information. Specifically, the search space is the set of pos-
sible behavioral models that can be generated. It is con-
strained by the structural elements that define the alphabet
used to construct transitions and the existing state diagrams
(if any) to be extended. The solution space is the set of be-
havioral models that satisfy the developer’s requirements,
specified as scenarios and properties. A scenario specifies
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one path of behavior through a model and a property indi-
cates what all paths through a model must satisfy. Thus,
scenarios form a lower bound on the solution space by defin-
ing the minimal acceptable behavior, and properties form an
upper bound on the solution space by defining the maximum
acceptable behavior [26]. Although all of the behavioral
models within the solution space are guaranteed to support
the scenarios and satisfy the properties, their behavior is not
necessarily identical. Specifically, the unspecified properties
of a given model (e.g., fault-tolerance, obfuscation, readabil-
ity, size) will likely differ from others in the solution space
and make one model better suited for specific environmental
conditions. Our objective is to identify multiple behavioral
models within the solution space, each of which could rep-
resent the behavior of a target system for a particular set of
environmental conditions.

In recent years, significant progress has been achieved in
generating behavioral models by synthesizing finite state
machines from either properties (e.g., [9, 10, 27]), scenar-
ios (e.g., [6, 14, 26, 28]), or both (e.g., [25]). In general,
these algorithms identify a single behavioral model within
the solution space either using implicit information within
the algorithm (e.g., assumptions about naming conventions)
or explicit information provided by the user (e.g., state label-
ing, information regarding scenario interaction). These ap-
proaches limit the exploration of the solution space to those
envisioned by the developer who hand-crafted the model or
designed the synthesis algorithm. As we consider identifying
a suite of behavioral models that represent the behavior of
multiple target systems of an autonomic system, we see that
additional innovation is required.

In this paper, we describe a digital evolution approach to
discovering behavioral models that represent the behavior of
different target systems and, as such, different possible re-
sponses to different environmental conditions. Evolutionary
computation methods such as the genetic algorithm (GA)
and genetic programming (GP) have achieved considerable
success in the world of computing, in some cases produc-
ing human-competitive designs [13]. Digital evolution [20]
is a branch of evolutionary computation in which a popula-
tion of self-replicating computer programs exists in a user-
defined computational environment and is subject to muta-
tions and natural selection. These “digital organisms” com-
pete for available resources (e.g., virtual CPU cycles) that
enable the organism to survive and thrive; in addition, these
organisms are subject to instruction-level mutations during
replication. Organisms remain in the population until they
die of either old age or are overwritten by another organism.
Whereas GAs and GPs evaluate each individual in the pop-
ulation and explicitly select individuals to move to the next
generation, the evolution of digital organisms is more open-
ended. Specifically, organisms are asynchronously evalu-
ated; if an organism exhibits desirable behavior, then the
relative amount of resources that the organism receives is
increased. Because the evaluation is not used to explicitly
select organisms to survive, poorly performing organisms
may continue to exist in the population and could even-
tually produce a novel solution. Digital evolution provides
a means to harness the power of evolution and apply it to
problems in science and engineering [17]. Within software
engineering, digital evolution provides a means to explore
large search spaces and identify solutions that human de-
velopers may not discover using traditional techniques. For

this investigation, we have used and extended Avida [20],
the most widely used digital evolution platform for studying
evolution in biology.

In this paper, we present Avida for Model Driven Devel-
opment (Avida-MDE), which is a digital evolution-based
tool for generating behavioral models that adhere to devel-
oper requirements specified as scenarios and properties.1 To
create Avida-MDE, we extended Avida in three key ways:
First, we enabled a developer to define the search space by
providing instinctual knowledge, which is information avail-
able to an organism at birth. Second, we enabled Avida-
MDE organisms to generate behavioral models using their
instinctual knowledge. Third, Avida-MDE evaluates an or-
ganism based upon how well its generated behavioral model
satisfies the developer’s requirements.

Overall, Avida-MDE enables developers to automatically
generate behavioral models for autonomic systems that meet
their requirements and may include additional properties to
provide resiliency. We illustrate the Avida-MDE approach
by using it to generate behavioral models for an autonomous
robot navigation system [11]. The remainder of the paper is
organized as follows: Section 2 discusses related work. Sec-
tion 3 provides background on Avida. Section 4 describes
our approach, Avida-MDE. Section 5 applies Avida-MDE
to generate target systems for an autonomous robot naviga-
tion system. Finally, in Section 6, we conclude and discuss
future work.

2. RELATED WORK
A behavioral model comprises a set of interacting state

diagrams, where a state diagram is a type of finite state
machine. A state diagram depicts the states in which an
object can be found during its lifetime in response to events
and internal conditions. A change in state generally changes
the way an object behaves. Specifically, a change between
two states is represented as a transition that may have a
trigger (or event) that causes the transition to occur, a guard
that must be met for the transition to take place, and/or one
or more actions.

Although numerous techniques for generating finite state
machines (FSMs) have been proposed within software en-
gineering (e.g., [6, 9, 10, 14, 25, 26, 27, 28]) and evolu-
tionary computation (e.g., [2, 4, 8, 15, 16, 24]), a more
limited number [6, 9, 10, 14, 25, 26, 27, 28] address the
generation of state diagrams that represent the behavior of
software. These techniques synthesize one or more state di-
agrams from properties (e.g., [9, 10, 27]), scenarios (e.g.,
[6, 14, 26, 28]), or both (e.g., [25]). In general, scenario-
based synthesis techniques accept a set of scenarios as in-
put and produce a set of communicating FSMs as output.
Each scenario specifies a sequential set of messages passed
between objects within the system. These messages form
the alphabet. To compose scenarios, these algorithms rely
on implicit information assumed by the algorithm [14] or
explicit information provided by the user, such as state la-
beling [26], or more explicit representations of scenarios [6,
28]. In essence, property synthesis techniques establish a
one-to-one mapping between a formally specified property
and an FSM [9, 10, 27], where each FSM represents all pos-
sible behaviors that satisfy the property. These FSMs can

1In a companion paper, we further describe the possible soft-
ware engineering applications of this approach [5].
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then be executed in parallel to verify that all behaviors are
satisfied. Uchitel et al. describe an approach that synthe-
sizes modal transition systems (MTS) from both scenarios
and properties [25]. Modal transition systems differ from
FSMs in that they explicitly model behavior that may or
may not occur. Essentially, they capture the search space of
possible behavioral models.

These approaches differ from Avida-MDE in three key
ways: First, Avida-MDE uses an evolving alphabet that is
created by combining the triggers, guards, and actions in-
ferred from the class diagram (described in Section 4). One
ramification of this alphabet is that Avida-MDE generates
different transitions than those generated from the alphabets
of other approaches. As a result, the generated behavioral
model has the potential to be less intuitive and perhaps of-
fer more resiliency than those created with traditional tech-
niques. Second, this technique supports generating behav-
ioral models that include multiple, interacting FSMs, satisfy
both scenarios and properties, and can extend a previously
developed behavioral model. Third, Avida-MDE is a digital
evolution-based technique for generating behavioral models
for autonomic systems. In essence, we are harnessing digital
evolution by using mutations to generate behavioral models
that developers may not otherwise specify or even consider.

3. AVIDA
While evolutionary computation has been studied since

the 1960’s, the subfield of digital evolution is much younger.
The first experiments with populations of self-replicating
computer programs were performed in 1990 in a system
called Coreworld [21], and later improved upon in Tierra
[22]. In 1993, Ofria and colleagues began development of
Avida [20], in which self-replicating digital organisms evolve
in an open-ended fashion with more parallels to natural evo-
lution than other forms of evolutionary computation. In-
deed, until recently Avida has been used primarily by bi-
ologists: observing evolution in digital organisms enables
researchers to address questions that are difficult or impos-
sible to study with organic life forms.

AVIDA Operation. Figure 1 depicts an Avida popu-
lation and the structure of an individual organism. Each
digital organism consists of a circular list of instructions (its
genome) and a virtual CPU. Instructions are executed by
each organism’s virtual CPU. The standard Avida instruc-
tion set is designed so that random mutations will always
yield a syntactically correct program, albeit one that may
not perform any meaningful computation.

An Avida environment comprises a number of cells, where
a cell is a compartment in which an organism can live.
Each cell can contain at most one organism, and the size
of an Avida population is bounded by the number of cells
in the environment. Organisms are self-replicating, that is,
the genome itself must contain the instruction to create an
offspring. When an organism replicates, a cell to contain
the offspring is selected from the environment, and any pre-
vious inhabitant of the target cell is replaced (killed and
overwritten) by the offspring. Each population starts with
a single organism that is capable only of replication, and
different genomes are produced through random mutations
introduced during replication. Mutation types include: re-
placing the instruction with a different one, inserting an ad-
ditional, random instruction into the offspring’s genome, and
removing an instruction from the offspring’s genome.

organism
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Figure 1: Elements of AVIDA platform

Developers use tasks to describe desirable organism be-
havior. Generally, tasks are defined in terms of the exter-
nally visible behaviors of the organisms (their phenotype).
For example, a developer might define a task that rewards
an organism for outputting the correct result of a partic-
ular computation (e.g., bitwise AND of two input values).
In our study, tasks are defined in terms of application ex-
ecution scenarios, functional properties, and software engi-
neering metrics associated with the behavioral model con-
structed by an organism; see Section 4. Performing a task
increases an organism’s merit that determines how many in-
structions its virtual CPU is allowed to execute relative to
the other organisms in the population. For example, an or-
ganism with a merit of 2 will, on average, execute twice as
many instructions as an organism with a merit of 1. Since
digital organisms are self-replicating and compete for space,
a higher merit (all else being equal) results in an organ-
ism that replicates more frequently, spreading throughout
and eventually dominating the population. Hence, Avida
satisfies the three conditions necessary for evolution to oc-
cur [3]: replication, variation (mutation), and differential
fitness (competition). Avida does not simulate evolution, it
is an instance of evolution.

4. AVIDA-MDE
Avida-MDE extends Avida to harness the power of evo-

lution to search for behavioral models for autonomic systems
that satisfy developer requirements. Next, we discuss the
extensions and then overview the experimental process for
generating behavioral models.

4.1 Defining the Search Space
Avida-MDE enables developers to describe the search

space for behavioral models using three characteristics: (1)
The number of state diagrams present in the behavioral
model; (2) Any elements of existing state diagrams; (3) The
alphabet, defined on a per state diagram basis, for generat-
ing transitions. These three characteristics form the instinc-
tual knowledge that an organism is provided with at birth.
Because Avida-MDE is designed to be used in the context
of MDE, instinctual knowledge is primarily defined in terms
of the UML class diagram, which describes the structural
elements of the system.
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Instinctual knowledge is provided to the organisms in a
seed file that describes information about each class and its
accompanying state diagram (if one exists). Figures 2 (a)
and (b) depict an elided class diagram for the robot navi-
gation system and an elided portion of a seed file, respec-
tively. From this information, Avida-MDE infers the num-
ber of state diagrams that should be present in the behav-
ioral model. Specifically, a behavioral model should include
a state diagram for each class (e.g., three state diagrams
for the portion of the robot navigation system depicted in
Figure 2 (a)). If the class has a seed state diagram, an ex-
isting state diagram, then it is described in the seed file.
Additionally, a unique alphabet for each state diagram’s
transitions is described. For each class, a list of triggers
(operations of the class), a list of guards (expressions built
using the attributes of the class), and a list of actions (the
operations of classes related to the class via associations) is
provided. A null option is included as a member of each
of these lists, thus enabling an organism to create a tran-
sition without a trigger, guard, or action. The alphabet
for a given class’s state diagram is defined in terms of all
possible combinations of triggers, guards, and actions. For
example, the ObstacleAvoidanceTimer (for the robot naviga-
tion system) seed file information (depicted in Figure 2 (b))
can be inferred from the class diagram (Figure 2 (a)). The
triggers (i.e., sensorData(), wheelStopped(), timerEvent()) cor-
respond to the operations of class ObstacleAvoidanceTimer.
The guards (i.e., obstacle= 0 and obstacle= 1) are formed
using the attribute of class ObstacleAvoidanceTimer and its
values. The actions (i.e., SensorInterface.readSensor(), Sensor-
Interface.readObstacleSensor(), NavigationControl.suspend(), and
NavigationControl.restart()) are the operations of the classes
with which the ObstacleAvoidanceTimer is associated (i.e., the
SensorInterface and the NavigationControl classes).

4.2 Generating Models
We defined a new set of instructions to enable Avida-

MDE organisms to generate behavioral models. These in-
structions are general in that they can be used to generate
behavioral models for any autonomic system. The Avida-
MDE set of instructions are used to: (1) select instinctual
knowledge elements to manipulate, (2) construct new tran-
sitions, and (3) replicate the organism.

To add a transition to a state diagram, the organism se-
lects several items from its instinctual knowledge: First, the
organism must select the state diagram to be extended. Sec-
ond, the organism must identify the members of the state
diagram’s alphabet (i.e., a trigger, a guard, and an action)
that should be combined to create the transition’s label.
Third, the organism must identify the start and destination
state for the transition. To that end, the selection instruc-
tions are used to index the lists that make up the organism’s
instinctual knowledge. Specifically, each type of list has its
own set of instructions (one instruction per list item). The
name of an instruction includes the type of element it is
selecting (e.g., state diagram (sd), origin state (s-orig), des-
tination state (s-dest), trigger (trig), guard(guard), or action
(action)) and an integer representing a position in the list
of that type. When state diagram selection instruction is
executed, it changes the state diagram being manipulated
and thus the triggers, guards, actions, and states being se-
lected. When the other selection instructions are executed,
they change the index pointing to the selected element. The

addTrans instruction constructs the transition described by
the selection instructions.

For example, Figure 2 (c) depicts an elided portion of
an Avida-MDE organism’s genome. Instruction sd-2 se-
lects the ObstacleAvoidanceTimer state diagram. (The instinc-
tual knowledge for the ObstacleAvoidanceTimer is depicted in
Figure 2 (b).) Instruction trig-0 selects <null> as a trig-
ger, meaning there is no explicit event activating the tran-
sition. Instruction guard-2 selects the second guard in the
list, obstacle= 1, as a guard. Instructions s-dest-4 and s-orig-
1 select state 1 as the origin and state 4 as the destination.
Instruction action-3 selects the third action, NavigationCon-
trol.suspend(), as an action. Lastly, instruction addTrans con-
structs this transition and adds it to the ObstacleAvoidance-
Timer state diagram (depicted in Figure 2 (d)).

Similar to the original Avida instructions, only syntacti-
cally correct genomes can be constructed using the Avida-
MDE instructions. To that end, all of the instructions have
acceptable default behavior. For example, if the selection
instructions attempt to reference a list element that does
not exist, e.g., the 11th element of a 10 item list, after ex-
ecuting the instruction, by default, the index will point to
the last element of the list. Additionally, once the addTrans
instruction is executed, the selection indices are reset to 0
(the first element of the lists).

Each Avida-MDE organism maintains an internal, graph-
based representation of its behavioral model. However, we
enabled Avida-MDE to export models into XMI format
files to be used with XMI-based UML modeling tools, such
as Argo-UML for visualization and the Hydra translation
tool [19], which is subsequently described.

4.3 Evaluating Behavioral Models
We defined a set of tasks to reward Avida-MDE or-

ganisms for generating behavioral models that meet the
developer’s requirements, specified in terms of example
scenarios, safety properties, and software engineering
metrics (e.g., minimum number of transitions). Organisms
that perform these tasks will have higher merit, execute
their instructions faster, and have a better chance of repli-
cating more frequently, thereby dominating the population.
Specifically, if an organism receives a reward for a task,
then its merit is multiplied by 2reward. Because each task
is rewarded individually, Avida-MDE does not explicitly
arbitrate conflicts between rewards. However, because of
the compute time required to assess property tasks, we do
impose a partial order on these tasks in that an organism
must satisfy the scenario tasks, prior to attempting the
property tasks.

Scenarios. The scenario tasks (checkScenario) reward
organisms that generate behavioral models that include
developer-specified scenarios. For each scenario, the de-
veloper must specify the messages between objects and
may optionally include a start state for each object and
specify whether the scenario should iterate. The reward
for a checkScenario task is the percentage of the scenario
execution path included in the state diagrams. For example,
if the developer specifies a scenario with four messages, an
organism that generates a state diagram with two of the
messages would receive a reward of 0.5. To receive the
maximum reward for a scenario, an organism must generate
a state diagram for each object involved in the scenario that
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Figure 2: Class diagram, instinctual knowledge, genome, and generated behavioral model

includes a path specifying the messages sent and received
by the object.

Properties. We defined a set of tasks to reward organ-
isms that generate behavioral models that adhere to formal
properties specified by the developer. Evaluating whether a
UML model adheres to a formal property involves three key
steps: (1) Because UML lacks a formally defined semantics,
to analyze a UML model, it must first be translated to a
formal representation. (2) To ensure that properties are not
vacuously satisfied, the formal model must be analyzed to
ensure that at least one execution path through the model
satisfies the property. (3) The formal model is analyzed
(i.e., model checked) for adherence to the formally specified
property. To enable Avida-MDE to perform these steps we
defined three tasks and extended Avida to use correspond-
ing existing software engineering tools. Next, we describe
the three tasks and their respective tool support.

First, the checkSyntax task translates the UML class and
state diagrams into a formal specification language. For
this task, we use Hydra, an existing UML formalization
engine [19], to translate UML to Promela, the specification
language for the model checker Spin [7]. Next, the check-
Witness task uses Spin to verify that the Promela model
does not vacuously satisfy the property specified by the
developer in Linear Temporal Logic (LTL). We accomplish
this objective by negating the property and using Spin to
search for a counter-example [12]. Lastly, if the checkWitness
task passes, then the checkProperty task uses Spin to verify
that the Promela specification satisfies the same property.

SE Metrics. Additionally, we use software engineering
metric tasks to reward organisms for generating state dia-
grams that meet commonly advocated software engineering
metrics. Succeeding at these tasks makes it more likely that
the behavioral model will also satisfy the properties. Cur-
rently, we have defined the min-trans and determinism tasks.
The min-trans task rewards an organism for generating a be-
havioral model with fewer transitions, relative to the behav-
ioral models generated by the rest of the population. Specif-
ically, the task identifies the maximum number of transi-
tions used by an organism (max) and the number of transi-
tions used by the organism being evaluated (current). The
reward is computed by taking the difference between the
max and current and dividing it by the max. The determinism

task rewards an organism for generating behavioral mod-
els that are deterministic, that is at most one transition
can be taken from each state for a given event and guard
combination.2 This task calculates the percentage of non-
deterministic states per state diagram, and uses the sum of
these percentages as a reward. Other SE metric tasks could
reward organisms for minimizing coupling, etc.

4.4 Experimental Process
To provide intuition for how Avida-MDE organisms gen-

erate a behavioral model, consider a typical experiment. A
population starts with a single organism that is only capa-
ble of replication and a maximum population size of 3,600
organisms. As the organism and its offspring replicate, dif-
ferent genomes are produced through random mutations.
Organisms that generate behavioral models exhibiting de-
sired characteristics receive more merit and thus replicate
faster. Therefore, over time, the population progressively
comprises organisms that generate behavioral models that
exhibit more of the desired characteristics. If an organism
generates a behavioral model that supports all the key sce-
narios and satisfies all of the properties, then it has success-
fully, and automatically, generated a UML behavioral model
for a target system. We refer to such behavioral models as
compliant behavioral models.

In general, we run 100 parallel Avida-MDE experiments.
Multiple experiments are performed to account for the
stochastic nature of the evolutionary process. Each exper-
iment runs for 200,000 updates, where an update, on aver-
age, executes 30 instructions per organism (updates are the
standard unit of time in Avida experiments).

Now, let us consider the normal life cycle of an organ-
ism. When the organism is created through the replication
process, it is provided with instinctual knowledge of class di-
agram elements and any seed state diagrams. As the organ-
ism executes the instructions in its genome, different pieces
of instinctual knowledge are selected and used to create tran-
sitions. When the organism replicates, the behavioral model
it generated is evaluated according to the requirements pro-
vided by the developer, and its merit is calculated. As the
parent copies its genome to its offspring, mutations may be
introduced. These mutations may cause the offspring to gen-
erate a behavioral model that differs from that generated by

2Because our target application domain is high-assurance
systems, it is desirable for the models to be deterministic.
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its parent. The offspring is placed in a different cell, possibly
replacing another organism. Then both the parent and the
child begin execution at the start of their genome, each with
the same instinctual knowledge.

Once the experiments are complete, the developer may
use the compliant behavioral models in different ways. The
differing characteristics of the compliant behavioral mod-
els generated by Avida-MDE make them potentially more
amenable for different environmental conditions that were
not explicitly stated. In general, the developer can review
such solutions, each of which specify different ways of achiev-
ing the compliant behavior, or may adjust other properties
to further distinguish the solutions. One possibility is to use
these behavioral models to inspire human-created designs.
Another possibility is to select behavioral models, improve
them manually, and use them as the starting point for the
MDE of the autonomic system. Lastly, a developer may use
the behavioral models without modification. Feedback from
our industrial collaborators indicates that all three options
are attractive when looking for innovative solutions.

5. EXPERIMENTS
We illustrate our approach by generating target system

behavioral models for T-Rot, an intelligent, autonomous
robot developed by Kim et al. [11] (depicted in Figure 3
(a)). Currently, the world’s population is aging and the cost
of health care is increasing. As a result, the Korea Insti-
tute of Service and Technology (KIST) is developing T-Rot
to assist in the care and support of the elderly [11], e.g.,
by performing errands, such as retrieving medicine. Be-
cause T-Rot is resource constrained (both in battery life
and space), it autonomically adapts its behavior in response
to its environment (e.g., by removing and uploading new
software components at run time). One particularly chal-
lenging problem is to enable T-Rot to autonomously nav-
igate to a designated position in a variety of environments.
For example, T-Rot may navigate differently if the elderly
person is in peril, if there is a baby in the room, or if the
room has many obstacles.

The Robot Navigation System (RNS) comprises several
software objects (depicted in Figure 3 (b)). The Navigation-
Control receives a destination from the CommandLineInterface.
It plans a path (NavigationPath) from its current location,
identified using the Localizer, to the destination using its map
(NavigationMap). The NavigationControl then senses the envi-
ronment through the SensorInterface and controls the robot
wheels through the WheelActuatorInterface. The ObstacleAv-
oidanceTimer is responsible for detecting obstacles, stopping
the wheels, and suspending NavigationControl.

5.1 Experimental Setup
The objective of these experiments is to generate behav-

ioral models for RNS target systems that avoid obstacles
and may include additional resilient behavior. Specifically,
if T-Rot encounters an obstacle, then it should stop. Next,
we describe the application-specific instinctual knowledge
provided to the organisms and the behavioral requirements.

Instinctual Knowledge. We provided the Avida-MDE
organisms with instinctual knowledge that included the
UML class diagram for the RNS (depicted in Figure 3)
and the seed state diagrams for all the classes, except
the ObstacleAvoidanceTimer. KIST had previously created
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Figure 3: RNS elided class diagram

a state diagram for the NavigationControl class, which we
modified by removing the elements that corresponded to
avoiding obstacles to create the NavigationControl seed state
diagram (since the objective of the experiment was to have
Avida-MDE generate behavioral models that capture this
behavior given properties and scenarios). Therefore, the
initial behavior captured by the seed state diagrams is that
the RNS is able to navigate to a destination, but does not
avoid obstacles.

Requirements. We used several tasks as requirements
for the generated behavioral models. Specifically, we de-
fined two new scenarios (with an obstacle and without an
obstacle), two properties (that T-Rot must avoid obstacles
and that T-Rot must reach its destination), and two soft-
ware engineering metrics (minimum number of transitions
and deterministic states).

Specifically, we defined two checkScenario tasks based upon
a collaboration diagram specified by KIST [11]. The first
task, checkScenario-obstacle, rewards organisms for generat-
ing behavioral models that stop T-Rot when it encoun-
ters an obstacle. In this execution path, the ObstacleAvoid-
anceTimer detects an obstacle, suspends the NavigationCon-
trol, and stops the WheelActuatorInterface. The second task,
checkScenario-no-obstacle, rewards organisms for generating
behavioral models that restart T-Rot when the obstacle is
no longer present. In this execution path, the ObstacleAvoid-
anceTimer does not detect an obstacle and thus restarts the
NavigationControl. The execution path for the SensorInterface
is the same in both scenarios.

Next, we specified two properties that the behavioral mod-
els generated by the Avida-MDE organisms should satisfy:

1. Globally, it is always the case that eventually T-Rot’s
current position will be its destination.

2. Globally, it is always the case that if the ObstacleAv-
oidanceTimer detects an obstacle, then eventually the
NavigationControl will be suspended.

The first property specifies the desirable general behavior
of the RNS. This property was satisfied by the seed state
diagrams and should be satisfied by all the compliant be-
havioral models. The second property specifies the new be-
havior: that the ObstacleAvoidanceTimer should stop T-Rot
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if it detects an obstacle. These properties are used as check-
Property tasks.

5.2 Experimental Results
We ran 100 instances of Avida-MDE, each with a

maximum population size of 3,600 organisms, for 200,000
updates. The performance of an Avida-MDE experiment
is dependent upon the complexity of the tasks, seed state
diagrams, and available computational resources. These
experiments ran for under 24 hours on a high performance
computing cluster. By the end of the experiment, seven
behavioral models were generated. Although all seven of
the generated behavioral models include the key scenarios
and adhere to the properties, their overall behavior is not
identical. In Figure 4, we present the topology of the
seven compliant behavioral models to give a flavor for the
variation between models. Although the transition labels
used by these models also differ, they have been elided
due to space constraints. Seed state diagram elements
are depicted as solid lines and shaded states; generated
transitions are depicted as dotted lines; states used by the
generated transitions, but not the seed state diagrams are
depicted as non-shaded states.

Post-Evolution Analysis. To identify compliant be-
havioral models to use for target systems, we performed
some post-evolution analysis. Specifically, we evaluated the
behavioral models using five additional criteria: minimum
states (the number of generated states used), minimum tran-
sitions (the number of generated transitions used), fault
tolerance (whether any redundancy is present), readability
(how easily a developer could understand the model), and
safety (whether the model satisfied two additional properties
specified in the following). The safety properties are:

1. Globally, it is never the case that the ObstacleAvoidance-
Timer does not detect an obstacle and the NavigationCon-
trol is suspended. (preventing spurious suspensions)

2. Globally, it is always the case that if the NavigationCon-
trol is suspended, then eventually the NavigationControl
receives a message confirming that the wheels have been
stopped. (ensuring that T-Rot actually stops)

The analysis results are presented in Figure 4, where a plus
(+) indicates the model partially met the criteria, a double
plus (++) indicates the model fully met the criteria, a minus
(−) indicates the model did not meet the criteria, and a
double minus (−−) indicates the model exhibited the inverse
of the criteria.

In prioritizing the additional criteria, we opted to focus
on safety and fault tolerance, since T-Rot must reliably op-
erate in the presence of an elderly person. Depending on
the developer’s specific concerns, different criteria could be
both selected and prioritized. Three models, models 1, 4,
and 7 met both of the safety properties and thus fully met
the safety criteria. Additionally, models 1 and 4 exhibited
some degree of fault tolerance. Model 1 partially minimizes
the number of states used, but does not minimize transitions
and is difficult to read. In contrast, model 4 is more fault
tolerant (it has a greater amount of redundancy) and mini-
mizes the number of transitions used, but does not minimize
states used and is difficult to read. Beyond simply satisfying
the properties of avoiding obstacles and reaching a destina-
tion, these models might represent implicit behavior that
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Figure 4: AVIDA-MDE Generated Compliant Be-
havioral Models

makes them better suited to responding to the uncertainty
present in the environment of the RNS.
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6. CONCLUSIONS AND FUTURE WORK
In this paper, we presented Avida-MDE, a digital

evolution-based tool for generating behavioral models that
support scenarios, satisfy properties, and extend an exist-
ing behavioral model. We formulated the generation of be-
havioral models as a search problem. Specifically, the class
diagram is used to specify the alphabet for the behavioral
model and thus constrain the search space. Additionally,
the developer-specified requirements are used to constrain
the solution space. Avida-MDE improves the productivity
of developers by enabling target systems to be automati-
cally generated from requirements specified as scenarios and
properties. Additionally, Avida-MDE has the potential to
improve the quality of the autonomic system by generating
target systems that may be better able to react and respond
to a variety of environmental conditions. We have success-
fully applied this method to generating target systems for
an autonomic system.

There are several possible directions for future work. One
possibility is to use Avida-MDE to explore solution spaces
for other software engineering problems, such as generating
UML behavioral models for members of a software product
line or detecting and mitigating feature interaction. An-
other possibility is to extend Avida-MDE to make use of
additional behavioral diagrams, e.g., activity diagrams, to
further improve the generated solution. Additionally, we are
interested in using a variant of Avida-MDE to explore exist-
ing models to generate properties capturing their additional
behavior (i.e., latent properties). Lastly, we envision com-
bining these two approaches into an iterative development
approach in which Avida-MDE is used to: (1) generate be-
havioral models; (2) identify the latent properties satisfied
by the various behavioral models; and (3) refine the behav-
ioral models by explicitly either disallowing or requiring the
identified latent properties.
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