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ABSTRACT

There has been little attention to search based test data gen-
eration in the presence of pointer inputs and dynamic data
structures, an area in which recent concolic methods have
excelled. This paper introduces a search based testing ap-
proach which is able to handle pointers and dynamic data
structures. It combines an alternating variable hill climb
with a set of constraint solving rules for pointer inputs. The
result is a lightweight and efficient method, as shown in the
results from a case study, which compares the method to
CUTE, a concolic unit testing tool.

Categories and Subject Descriptors: D.2.5 [Software Engi-

neering]: Testing and Debugging

General Terms: Algorithms, Experimentation, Measurement,

Performance.

Keywords: Automated test data generation, concolic testing,

symbolic execution

1. INTRODUCTION
Search Based Testing (SBT) [15] uses search based opti-

mization techniques [6] to formulate the test data generation
problem as a search problem. The search space is the space
of possible inputs to the program under test. The search
is guided by a fitness function that captures the particular
test adequacy criterion of interest. SBT has proved to be
effective partly because it has a wealth of optimization tech-
niques upon which to draw and because the generic nature
of the approach allows it to be adapted to a wide range of
test data generation problems; in principle, all that is re-
quired to adapt a search based technique to a different test
adequacy criterion is a new fitness function. This paper is
concerned with search based structural testing [21].

Previous work on search based test data generation has
generally considered the input to the program under test
to be a fixed–length vector of input values, making it a
well–defined and fixed–size search space, or has been based
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on data-flow-analysis and backtracking [13]. However, such
analysis is non–trivial in the presence of pointers and points–
to analysis is computationally expensive. The approach pre-
sented in this paper incorporates elements from symbolic
execution. Symbolic execution is a source code analysis
technique in which program inputs are represented as sym-
bols and program outputs are expressed as mathematical ex-
pressions involving these symbols [12]. Symbolic execution
mainly suffers from two problems: 1. the path explosion
problem; 2. limited ability to reason about certain code
constructs such as system objects, external function calls,
etc. The first of these obstacles can be partially overcome
by a lazy initialization technique [11] in the presence of dy-
namic data structures. During lazy initialization, pointers
or data structures are non–randomly assigned NULL, and
only initialized when required during the symbolic execu-
tion. Concolic testing [19, 5, 2] can serve as a means to
alleviate the second problem.

The search algorithm chosen in this paper is based on the
alternating variable hill climb algorithm introduced by Ko-
rel [13]. Hill climbing has been shown to outperform other
search algorithms for structural test adequacy criteria [7], in
particular branch coverage, which is the criteria of interest
in this paper. A hill climb algorithm requires the definition
of a neighbourhood for any solution and the search can only
be effective if this neighbourhood is kept relatively small.
However, this is not guaranteed in the case of pointers and
dynamic data structures, which can potentially cause an ex-
plosion in size.

This paper addresses this issue. It presents an algorithm
that combines a lazy initialization technique adapted from
symbolic execution with search based testing.

The primary contributions of the paper are as follows:

• The introduction of an algorithm that combines search
based testing and symbolic execution.

• The adaption of a lazy initialization approach for dy-
namic data structures within search based testing, thereby
extending the applicability of these techniques.

• An experimental study, the results of which demon-
strate the effectiveness of the algorithm in terms of
branch coverage achieved, both for synthetic examples
and for several real world test data generation prob-
lems drawn from open source and industry.

The rest of the paper is organized as follows. Section 2
provides the background information for the work in this pa-
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per. It contains a description of the hill climb algorithm on
which our approach is based, the principles of symbolic exe-
cution and a brief section on concolic testing. The extended
hill climb algorithm proposed is described in Section 3. An
example and details of input representation and generation,
as well as the symbolic execution performed are discussed.
We validated a prototype implementation of our algorithm
with a set of case studies. These are presented and dis-
cussed in Section 4. Section 5 describes related work, while
Section 6 concludes and presents an outlook on future work.

2. BACKGROUND

2.1 Hill Climb
A hill climb is a metaheuristic search technique, also classed

as local search [13]. An input vector to a function is con-
structed with random values. For each element in the vector
a set of exploratory moves are made. If one of these moves
results in an improved value for the objective function, the
search continues in its current direction with ever increas-
ing step sizes. When no further improvements can be found
for an element, the search continues exploring the next ele-
ment in the vector. Once the entire input vector has been
exhausted, the search recommences with the first element if
necessary. In case the search stagnates, i.e. no move leads
to an improvement, the search restarts at another randomly
chosen location in the search space. This is designed to
overcome local optima and enable the hill climb to explore
a wider region of the search space.

The speed with which the search navigates around the
search space is determined by the step size taken to explore
the neighbourhood of an input. For this paper, the following
formula was used to calculate the size of the move: mi =
sit ∗ dir ∗ acci, where dir ∈ {−1, 1}, mi is the move for the
ith input variable, s the repeat base (2 by default) and it the
repeat iteration of the current move, and acci the accuracy
of the ith input variable. Choosing a high accuracy for real
types (i.e. floats, doubles) can significantly slow down
the search, thus it is usually kept at 1 to 2 decimal places.

2.2 Symbolic Execution
Symbolic execution can be viewed as a mix between test-

ing and formal methods; a testing technique that provides
the ability to reason about its results, either formally or
informally [12].

During symbolic execution, a program is executed stat-
ically using a set of symbols instead of dynamically with
instantiations of input parameters. The execution can be
based on forward or backward analysis. During backward
analysis, the execution starts at the exit node of a Control
Flow Graph (CFG), whereas forward analysis begins at the
start node of a CFG. Both type of analyses produce the
same execution tree, however forward analysis allows faster
detection of infeasible paths, which is a common application
of symbolic execution [10].

Symbolic execution uses a path condition (pc) to describe
the interdependency of program variables and input param-
eters along a path through a program. It consists of a com-
bination of algebraic expressions and conditional operators.
Any instantiation of input parameters that satisfies the pc
will thus follow the path described by the pc. In the absence
of preconditions, pc is always initialized to true, i.e. no as-
sumptions about the execution flow are made.

Two types of statements are key during symbolic execu-
tion: assignment and branching statements. Assignments
to variables are expressed as polynomial expressions of the
symbols used. During assignment statements, the symbolic
execution needs to evaluate the semantics of computational
operators such as +,−, ∗, /. Branching statements, also
known as forking statements, cause symbolic execution to
generate two path constraints: one where the condition c in
a branch statement is assumed true and one where it is as-
sumed false, thus generating pc : c and pc : ¬c. Note that
if the pc implies that the condition (or negated condition
respectively) in the branching statement is true, symbolic
execution can proceed without forking into two paths. If a
pc is unsolvable, the path described by pc can be considered
infeasible.

However, theorem provers are also the Achilles heels of
symbolic execution, because they either poorly scale or are
limited to linear constraints to name but a few problems.
Without theorem provers, able to handle any kind of path
constraint symbolic execution is useless for testing. Some-
times the nature of a program inherently prevents reasoning
about path constraints, e.g. when it contains library calls
to system functions or the program performs certain kinds
of machine dependent operations [4]. Indeed certain func-
tions (like the hash function described in [4]) are inherently
designed to prevent reasoning about them.

2.3 Concolic Testing
Some of these limitations are addressed in concolic test-

ing. Concolic testing is a technique that combines concrete
execution of a program with symbolic execution [19, 5, 2].
The idea of concolic testing originates from Godefroid et al.’s
Directed Automated Random Testing approach, DART [5].
DART is aimed at unit testing. First, a unit is executed with
a randomly generated input vector. Symbolic constraints
are collected along the path taken by the concrete execu-
tion, in effect executing a program both, symbolically and
concretely in parallel. Once the program halts, e.g. by reach-
ing the return statement of a unit, the last condition in a
symbolic path constraint is inverted. If this new constraint
is satisfiable, solving it with concrete inputs provides the
input vector for the next execution of the unit, driving the
program down a different path.

One of the principle strengths of concolic testing is the
way in which concrete values are used to overcome many of
the problems associated with symbolic execution. When
symbolic constraints become too complex to solve, sym-
bolic expressions are simply replaced by concrete values.
In the case of DART, the tool developed is able to use a
light weight linear constraint solver [1]. However, the limi-
tations of many constraint solvers, especially in the presence
of floating point arithmetic, means that concolic testing as
performed by DART or CUTE [19] often deteriorates to a
random search. This is also true for programs involving
state variables [14].

The literature has compared the effectiveness of random
testing with a search based testing approach with respect to
structural test adequacy criteria [7, 9, 18, 22]. The results
from these studies suggest that a search based approach such
as hill climb is able to outperform simple random testing.
However, due to the lack of support for dynamic input pa-
rameters such as pointers, a lot of this work is sometimes
overshadowed by other forms of test data generation, such as
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typedef struct node {
int key;
struct node *left;
struct node *right;

}node;

int compare(node *current,int key)
{

(1) if(current != NULL){
[1T ]
(2) if(key == current→key){
[2T ] return 0;

}else {
[2F ]
(3) if(key < current→key){
[3T ] return -1;

}else{
[3F ] return 1;

}
}

}
[1F ] return 1;

}

//Test target: [3T ]

iteration 1:

iteration 2:

. . .

Figure 1: Example C code snippet. The numbers in the square brackets indicate the true and false branches
of a predicate. The right column shows an example input map being constructed for the target branch [3T ].

concolic testing. While a comprehensive empirical investi-
gation of the two different techniques is beyond the scope of
this paper, the motivation was to take a step in this direction
by advancing the capabilities of the current state-of-the-art
search techniques, extending them so they can provide bet-
ter support for dynamic data structures.

3. EXTENDED HILL CLIMB
The extended hill climb algorithm proposed in this paper

augments the hill climb described in Section 2.1 with a set
of simple constraint solving rules. We have implemented the
proposed algorithm in a prototype tool (SYCON).

The proposed algorithm is best described with a small
example before providing details of the different operations
performed. Assume node [3T ] in Figure 1 is selected as the
target.

SYCON first constructs a CFG of the program, with each
branching node (e.g. if statement) being labelled. Further,
each branch contains a list of critical branching nodes and
their required outcome. Traversing an undesired edge of a
critical node signals that the execution has taken a path
which cannot lead to the target node.

The search starts by executing a randomly generated so-
lution. Note that only primitive types are assigned random
values, while pointer types are non–randomly set to NULL.
The corresponding input vector is < NULL, 15368 >, with
current = NULL, key = 15368. SYCON records the execu-
tion path taken by the solution (< 1F >). During evalua-
tion, the objective function iterates over the execution trace.
If the execution reached the target branch, the search stops.
Else, SYCON retrieves the id of the critical branch where
execution diverged away from the target, in this case node
(1). SYCON performs a backward symbolic analysis from

this node to first check that the variables appearing in the
predicate can be expressed in terms of input symbols, and
second, if the input symbols involved represent primitive or
pointer types. Depending on the outcome of this analysis,
the objective function either calculates a branch distance,
or applies the constraint solving algorithm shown in Fig-
ure 4. The instrumentation used (described in Section 3.1)
ensures that conditions only contain either pointer or primi-
tive types but not both. Note that the constraint algorithm
is not applied to pointers to primitive types. These pointers
are dereferenced instead, so they can be used in the branch
distance calculations.

Proceeding with the example, SYCON allocates sufficient
memory (via malloc) to hold a variable of type node struc-
ture. The corresponding input vector (flattened) looks like
< 44332, NULL, NULL, 15368 >, with current → key =
44332, current → left = NULL, current → right =
NULL, key = 15368. This input will follow the path <
1T, 2F, 3F >. At this point the search will start with the
exploratory moves described in Section 2.1, while leaving
any pointer inputs fixed:
< 44333, NULL, NULL, 15368 >
< 44331, NULL, NULL, 15368 >
< 44330, NULL, NULL, 15368 >
. . .
< 11565, NULL, NULL, 15368 >

3.1 Instrumentation
CIL [17] is used to first simplify (using various CIL-options)

and then instrument the program under test. Achieving
branch coverage on the CIL transformed code is equivalent
to achieving MC/DC (Modified Condition/Decision Cover-
age) on the original code.
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/*inputs:
* v = concrete input variable
* m = &v
* id = unique identifier for v
* offset = pointer to successor index for pointers
* typeOf(v) returns the type of v
*/
generateInput(m,id,offset,typeOf(v)):

if id ≥ inputMap.size() then
if typeOf(v) = pointerType then
*m := NULL;

else
*m := random(LBv ,UBv);
updateHCVector(m,id);

end if
inputMap.push back(new obj(m,id,offset,typeOf(v)));

else
v := getObject(&inputMap,id,offset,typeOf(v));
if v = NULL then
v := updateInputMap(&inputMap,id,offset,typeOf(v));

end if
if typeOf(v) = pointerType then
if v→pointToNull = true then
*m := NULL;

else
if v→targetNodeId = 0 then
n := sizeOf(typeOf(v));
{m1, . . . , mn} := malloc(n);
*m := m1;
for j:=1 to n
generateInput(mj ,id,(j-1),typeOf(*m j));

else
*m := getTargetNode(v→targetNodeId)→value;

end if
else
*m := getValue(v);

end if
end if
S→add(m,typeOf(v));

Figure 2: Algorithm for input initialization.
inputMap is a vector storing node objects represent-
ing all formal parameters to the function under test.
LBv,UBv are the lower and upper bounds of the data
type returned by typeOf(v) respectively. S is a sym-
bolic map (see Section 3.3 for details).

3.2 Input Representation and Generation
All formal parameters of a unit under test are stored as

node objects in an input vector called inputMap. Each
node object contains a unique node identifier (id), which
is kept throughout consecutive iterations, the symbolic vari-
able associated with the input parameter, its data type and
a pointer to a vector of successor nodes. Successor nodes
represent members of a data structure, union, or fields of
an enum type respectively. The data type associated with
a node object can either be a primitive type or a pointer.
The function typeOf(v) returns the given type for an input
(the CIL-API is used to obtain the correct types). Primi-
tive types have no successors, while pointers can have zero
or more. The input vector also provides a mapping between
logical addresses (i.e. position within the input vector) and
concrete addresses. An illustration of an input vector can
be seen in the right column of Figure 1, while the algorithm
used to initialize inputs is shown in Figure 2.

The remainder of this Section describes in detail how in-
puts are initialized. This is done in two stages. First primi-

tive types are discussed, before moving on to pointer inputs.
Note that arrays are treated as pointers.

Primitive Inputs:

Whenever an input needs to be instantiated, SYCON first
checks to see if inputMap already contains the correspond-
ing identifier of the variable (provided as part of the instru-
mentation process). Generally, during the first iteration of
a search, or after a random restart, the input vector will
be empty. In this case the input parameter is assigned a
randomly generated value (within the bounds of the input
type). A node object representing the parameter is added
to inputMap. Further, a reference to the input parame-
ter is added to a hill climb vector via the function call
updateHCV ector. The use of this vector is described in
more detail in Section 5.

If inputMap already contains a node object for the cur-
rent parameter, the tool either retrieves the value stored
from the previous iteration, or it returns the result of a hill
climb move for this variable (via the getV alue function call).

Pointer Inputs:

Pointer inputs are always initialized to NULL. The deci-
sion to assign a memory location (either new or existing)
to a pointer is governed by the outcome of symbolic exe-
cution and the constraint handling algorithm shown in Fig-
ure 4, and described in more detail in Sections 3.3 and 3.4.
Memory is only ever allocated if the pointToNull flag for
a node object is set to false by the constraint handling al-
gorithm. The remainder of this sub–section discusses the
scenario where this flag has been set to false.

The node object for pointer inputs contains a field to store
the id of the node pointed at (targetNodeId). Whenever
this field is updated during the course of a search (by the
algorithm in Figure 4), the target node id’s of each pointee
are recursively traversed.

If a constraint requires a pointer to be non-NULL, SYCON
first examines the pointer type. If typeOf(v) is a pointer to
a primitive type, then it simply allocates sufficient physi-
cal memory (via malloc) to hold an object of the appro-
priate type. The content of the newly allocated memory
location will be initialized by the algorithm for handling
primitive inputs as previously described. However, instead
of being added as an element to inputMap, the function
updateInputMap is used to insert the node object into the
list of successors for the parent pointer instead (see right
column, iteration 2 in Figure 1 for an example layout of
inputMap).

If typeOf(v) is a pointer to another pointer, data struc-
ture, union, or enum type, SYCON has two choices. Either
allocate a new block of memory large enough to hold an ob-
ject of typeOf(∗v), or assign an existing memory location
to the input parameter. The decision depends on the ob-
ject’s targetNodeId, which can either be 0 or an identifier
of another node. If it is 0, a new physical block of memory
is allocated. For enumerated or composite types, members
are recursively initialized, either following the procedure for
primitive or pointer inputs. Note that any new pointers
introduced in the process of allocating memory are again
initialized to NULL. In case the targetNodeId points to
an existing object, either in inputMap or reachable from an
element in inputMap, the value stored in the target object
(in effect another memory location) is assigned instead.
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3.3 Symbolic Execution
This section describes the symbolic execution performed

by SYCON alongside concrete execution of an input vector.
Symbols are represented via the physical address of each
variable involved in the computation of a program. The
code is instrumented such that at the start of each function
the addresses of all local variables are added to a symbol map
S. In order to allow interprocedural tracking of constraints,
SYCON uses a symbolic stack. Whenever a function call is
made to a function whose source is available during the in-
strumentation process, the symbols of the variables passed
as parameters are added onto a call stack. At the start
of each function, SYCON then pops each formal parame-
ter from the stack and adds the corresponding symbol to
S. The type of the variables represented by the symbols is
also recorded, so SYCON can distinguish between pointer
or primitive constraints later on.

Concretely, SYCON uses the call stack to add “dummy”
assignments for each formal parameter of a function. Sym-
bols are pushed onto the call stack in the order they appear
in the list of formals of the function called. Then, after S
has been updated with the list of formals for that function,
SYCON pops as many items from the stack as appear in
the function’s list of formals. For each formal parameter,
the “dummy” assignment assigns the last item popped to
the corresponding symbol for that parameter (see Figure 3
for an example). Note that variable–argument list functions
are currently not handled.

SYCON distinguishes between four types of symbols: prim-

itive, pointer, constant and unknown. The first three types
are self–explanatory. The last type is used in case a symbolic
variable is defined via an external function or system call, or
in the process of bitwise operations currently not handled by
SYCON. Whenever SYCON encounters an unknown symbol
during its backward analysis it stops and tries to compute
a branch distance instead.

In addition to a stack for interprocedural tracking of sym-
bolic constraints, SYCON maintains a stack describing the
symbolic expressions along the path taken by an input, i.e. the
path condition for that input. Note that SYCON delays
evaluation of the symbolic expressions in the stack until re-
quested to do so by the fitness function, described in Sec-
tion 3.4. Hence, SYCON only needs to evaluate expressions
describing a sub–path as opposed to a complete path.

3.4 Fitness Function
During the fitness evaluation of a solution, the fitness

function iterates over the execution trace produced by the
solution. At each branching node, the function first checks
if the node is critical with respect to the current target. If
the node appears in the critical path, the function queries
the symbolic stack whether to obtain a branch distance, or
whether to pass the node to the constraint solving algorithm.

Due to the simplifications performed before and during
the instrumentation, all variables used in predicates are of
primitive type, either representing a memory location, or a
primitive. Therefore, it is insufficient to examine the type of
these variables only. In order to determine if a predicate in-
volves a pointer comparison (either = or 6=), SYCON has to
perform a backward analysis. During this analysis, SYCON
performs a substitution of expressions. Because we are not
interested in constraints involving primitives or pointers to
primitive types, SYCON does not need to perform a full

void foo(int x){ /*function Id = 1*/
/*implicit assignment X = X1 added by SYCON
*X, X1 represent the symbolic values for x, x1*/
pop_symbol(&x,typeOf(x),1);

}
void main(){

int x1;
addLocalSymbol(&x1,typeOf(x1));
push_symbol(&x1);
foo(x);

}

Figure 3: Illustration of symbolic stack

evaluation of all symbolic expressions, e.g. handle expres-
sions involving ×,÷ etc. The only expressions of interest are
simple assignment statements without any arithmetic oper-
ator, except + or −. Whenever SYCON encounters addition
of two symbolic expressions, it checks to see if the result is
another memory location. It is able to do so because the
concrete value of expressions appearing on the right hand
side of an assignment is recorded during execution. This
makes the analysis very lightweight.

The substitution continues until either the corresponding
expression involving input symbols only is found, or no more
substitutions can be made. In the latter case the algorithm
indicates to use a branch distance. If both symbols ap-
pearing in the predicate can be expressed in terms of input
symbols, the predicate is passed to the constraint handling
algorithm shown in Figure 4. This algorithm returns either
0 or 1 depending on if the constraint was satisfied or not re-
spectively. These values correspond to the ideal and worst
branch distance values. The branch distance is combined
with the approximation level to form the overall fitness of a
solution [21].

A special case are conditionals checking for NULL, or
non-NULL. If these predicates can be expressed in terms
of input symbols, one of the symbols for the expression will
be NULL, to indicate the special variable NULL. Note
that whenever a pointer input is assigned a value by the
constraint handling algorithm, a flag (fixed) is set in the
corresponding node object for the input.

3.5 The Algorithm
This section describes the top level algorithm for the ex-

tended hill climb (shown in Figure 5). Recall that the search
starts with a (semi) randomly generated input vector. The
termination criteria for a search is a solution whose fitness is
0, or, the budget of fitness evaluations has been exhausted.
Fitness values are assigned to solutions at the end of the
evaluateSolution function. This function performs the fit-
ness calculations described in Section 3.4. If the constraint
algorithm from Figure 4 is used to obtain a fitness value,
the global flag solveConstraint is set. This indicates that
the algorithm needs to check if the constraint was success-
fully satisfied in the next iteration. In case it was not, the
search will repeatedly attempt to solve the constraint until
it is either satisfied, or the number of fitness evaluations has
exceeded the allowed maximum.

Recall that all primitive inputs and primitive types reach-
able from a pointer to a primitive type are also added to a
separate vector. The exploratory moves made by the func-
tion exploreNeighbourhood (described in Section 2.1) are
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/*op is a relational operator, with op ∈ {=, 6=}
*mem1 is the address stored in the pointer to the left of op
*mem2 is the address stored in the pointer to the right of op
*c is a predicate of the form mem1 op mem2

*/
if c is satisfied then
return 0;

end if
if mem ⊲⊳ NULL then //mem ∈ {mem1,mem2}, ⊲⊳∈ {=, 6=}
set mem ⊲⊳ NULL;

else
if op = “=” then
if mem1 is free then
set mem1 to mem2;

else if mem2 is free then
set mem2 to mem1;

else
set mem1 to mem2;
set mem2 to mem1;

end if
else if op = “!” then
if mem1 is free then
set mem1 to NULL or new memory location; //via malloc

else if mem2 is free then
set mem2 to NULL or new memory location; //via malloc

else
toss = random()
if(toss = 0)
set mem1 to NULL or new memory location; //via malloc

else
set mem2 to NULL or new memory location; //via malloc

end if
end if

end if
return 1;

Figure 4: Pseudo code describing the set of rules for
handling pointer constraints. mem1 and mem2 rep-
resent the memory addresses stored in the pointer
variables appearing in a predicate. Whenever an in-
put pointer is assigned via the constraint algorithm,
a flag is set to indicate that the input is no longer
‘free’, and the algorithm will try and set free pointer
variables first, before reassigning values to previ-
ously handled input pointers. The value returned
by the rules is equal to the ideal and worst branch
distance for a predicate, 0 and 1 respectively.

performed on this vector. During these moves, the search
moves to the first neighbour that achieves a better fitness
value. Once such a move is made, the algorithm tries to
speed up the search by performing a series of consecutive
moves with ever increasing step size, until the search either
reaches the target, or overshoots it. In the latter case, the
search needs to backtrack, leading to a homing–in effect on
the target.

4. EXPERIMENTAL EVALUATION
We conducted a set of case studies to gain insight into how

effective SYCON is compared to CUTE in achieving branch
coverage. The experiments were conducted on a total of
116 branches drawn from code used in industry (f2), open
source (space,cpplib) as well as a synthetically constructed
program. Details of the test objects and the results can be
seen in Table 1. The industrial code example was provided
by DaimlerChrysler, while the other examples were specifi-

improvedMove := true;
*solveConstraint := false;
*solution := random();
while !terminate() do
improvedMove := evaluateSolution(solution,solveConstraint);
while improvedMove && !terminate() do
*solution := exploreNeighbourhood();
improvedMove := evaluateSolution(solution,solveConstraint);
if solveConstraint then
while improvedMove && !terminate() do
*solution = handleConstraint();
improvedMove := evaluateSolution(solution,solveConstraint);

end while
else if improvedMove then
makeMove();
consequtiveImprovement := true;
while consequtiveImprovement && !terminate() do
consequtiveImprovement := tryConsecutiveMoves(solution);

end while
end if

end while
solution := random();

end while

Figure 5: Extended hill climb algorithm

cally chosen to accommodate the constraint solver used by
CUTE, which cannot handle non–linear constraints and only
has a very limited ability to deal with floats and doubles.

In order to facilitate comparison between SYCON and
CUTE we defined the following framework. SYCON was
allowed a maximum of 1000 fitness evaluations per branch.
The maximum number of iterations for CUTE was set to
1000 × branches per program. CUTE can be run in two
modes. During one, all primitive inputs are non–randomly
initialized to 0, while in the second, primitive types are ran-
domly initialized. We adapted our tool to also run in these
two modes. Pointers are always initialized to NULL in both
SYCON and CUTE. For CUTE we set the bounded depth–
first search parameter to infinite.

All experiments were carried out on a laptop running
Linux, with an AMD Turion64 dual core processor. GCC
version 4.1.220070925 (Red Hat 4.1.2 27) was used by CUTE
and SYCON to compile the code under test. Due to the
stochastic nature of our algorithm, we executed each test
object 30 times, averaging the coverage achieved in each
run and the respective number of iterations taken.

The f2 program provided by DaimlerChrysler is part of
an engine control system used in the cars of their S-class
series. The code is machine generated from design models.
As a result the code is not in human–readable form, placing
extra burden on a tester, and making automated test data
generation all the more desirable.

The examples from the cpplib library and from the Eu-
ropean Space Agency program space were chosen because
they take pointers to data structures as input. In the case
of space these are often very complex, with members cross
referencing other data structures. This makes the task of
generating test data again more.

Finally the synthetic example illustrates how search based
approaches are inherently interprocedural and thus not in-
hibited by internal function calls, providing the fitness func-
tion is able to compute a smooth fitness landscape for pred-
icates dependent on the outcome of such a function call.
The example contains a predicate which compares a value
returned from a function call with an input parameter. The
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Test Object CUTE SYCON
primitives init to 0 primitives init to 0

avg. coverage avg. iterations avg. coverage avg. fitness evaluations
f2 69.56% 32 72.72% 12124
cpplib:

reverse_token_list 100% 8000 100% 114
compare_token_lists 75% 2000 87.5% 1120
space:

addscan 62.10% 58000 85.71% 8430
synthetic 100% 5 100% 117

primitives init to random primitives init to random
f2 69.92% 32.8 68.18% 15179.6
cpplib:

reverse_token_list 100% 8000 100% 114
compare_token_lists 33.33% 1.83 75% 115

addscan N/A (infinite loop) 53.57% 27014.8
synthetic 100% 5 100% 308

Table 1: Results from an experimental study comparing SYCON and CUTE.

example also contains a predicate that checks for a self refer-
encing pointer. SYCON is able to find instantiations of the
input parameters satisfying both these conditions; the first
by calculating a branch distance based on the return value
of the function, and the second by using the constraint al-
gorithm from Figure 4.

On average, the results suggest that SYCON is better at
achieving branch coverage for the example programs from
industry and open source. Interestingly the search based
algorithm performed better when primitive inputs were ini-
tialized to 0 instead of being assigned random values. We
believe this can be explained by the fact that the solution
space for the open source and industry programs is very
small, while the search space is very large. Especially in f2

a lot of branches depend on small constant values. Hence
the search is inherently closer to the optimal solution when
primitives are initialized to 0.

SYCON was able to raise two internal errors when testing
the addscan function from the space program. These were
signalled by interror(‘‘addscan() -1- ’’) and
interror(‘‘sgrrot - 1 ’’). CUTE was unable to cover
any of the branches raising these errors. When applied to
space, the level of coverage achieved by SYCON dropped
dramatically without the restrictions on initializing primi-
tive inputs. Most of the branches in the addscan function
are hard to cover. Having input parameters similar to each
other (e.g. when initializing primitives to 0) can potentially
make the search much more efficient and effective because
it saves unnecessary moves. Without these restrictions, the
search is likely to waste a significant proportion of its fitness
allowance before making real progress.

CUTE also struggled with the addscan function in “ran-
dom mode” and got stuck in an infinite loop at every at-
tempt, forcing the search to be abandoned. Note, for pro-
grams where CUTE can in theory traverse infinitely many
paths during its symbolic execution, the search will run
until the maximum number of allowed iterations has been
reached, even if CUTE is unable to cover any more branches.
This is often the case when testing tree–like structures with
an unbounded depth–first search, and explains the large

number of iterations for addscan, reverse_token_list and
compare_token_lists.

5. RELATED WORK
One of the first authors to address the problem of branch

coverage using a search based technique was Korel [13]. Ko-
rel’s approach used a local search procedure; the alternating
hill climb method also adopted in this paper. Xanthakis
et al. [22] were the first to apply a global search algorithm
to the problem of test data generation. They used evolu-
tionary algorithms, in particular genetic algorithms. Since
then, many authors have applied evolutionary algorithms to
unit testing and branch coverage, for many different testing
criteria [9, 16, 18, 21].

Independent of the work on dynamic test data generation,
symbolic execution and constraint solving have also been
developed as techniques for automated software test data
generation [12, 3] since the 1970’s.

More recently these two strands of research have been
combined in what is known as concolic testing. Concolic
testing overcomes many problems associated with both sym-
bolic execution and random search. Cadar and Engler [2]
adopt a similar approach to that of CUTE. Their approach
starts at the opposite end to CUTE. Initially a program
is executed symbolically. When the execution encounters
constraints it cannot handle (e.g. at a point P (c)), the path
constraint is solved to generate a concrete input vector lead-
ing up to P (c). From P (c) onwards, they proceed with both,
symbolic as well as concrete values. Once a path has fully
been traversed, test cases are generated by concrete instan-
tiations of the symbolic constraints.

The majority of literature on concolic testing has aug-
mented static analysis techniques, primarily symbolic execu-
tion, with dynamic test data generation techniques, specif-
ically random testing. Inkumsah and Xie [8] are the first
authors to propose a framework (EVACON) combining evo-
lutionary testing with concolic testing. Their framework
targets test data generation for object oriented code written
in JAVA. They use two existing tools, eToc [20], an evo-
lutionary test data generation tool for JAVA, and jCUTE,
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an explicit path model checker [19]. The first is used to
construct method sequences to test a JAVA method, while
the second is used to optimize the coverage for the method
under test. eToc uses a genetic algorithm to evolve method
sequences along with their parameters as a means to achieve
unit testing. The parameters used in the sequence of method
calls are randomly initialized. One drawback of eToc is that
new parameter values are only introduced into the popula-
tion via the mutation operator, which randomly changes a
parameter value within given bounds. This may make the
search inefficient and even ineffective for certain branches
because genetic operators need to share their effort between
evolving sequences and evolving their parameters. However,
eToc provides an interface allowing customized input param-
eter generation. The EVACON framework uses this feature
to combine jCUTE with eToc. Unlike eToc, jCUTE pro-
vides a systematic approach to achieving branch coverage
based on a combination of symbolic execution and random
testing.

First, method call sequences (test cases) are constructed
by eToc. These test cases are then passed to jCUTE, which
will try and generate parameter values to cover all feasi-
ble branches for a particular sequence call construct. The
sequences with their modified parameter values are then re-
turned to eToc, to further evolve the order and number of
method calls in a sequence.

The approach introduced in the present paper is only tar-
geted at procedural programming languages and aims to
extend an existing search based testing technique rather
than provide a framework integrating existing tools. The
EVACON framework essentially relies on jCUTE’s ability to
achieve branch coverage. It is our belief that search based
testing is applicable to a wider range of programs, and there-
fore the motivation was to extend its applicability by filling
the gaps with respect to dynamic data structures.

6. CONCLUSION AND FUTURE WORK
This paper introduced a new approach to handling dy-

namic data structures in search based test data generation,
inspired by work on directed random testing (also known as
concolic testing). It combines a lazy initialization approach
for pointer variables with an alternating variable hill climb
method, similar to that introduced by Korel. The paper
thus improves the effectiveness of a commonly used local
search method in search based testing and extends its ap-
plicability to include dynamic data structures. The paper
reports the results of experiments on real world as well as a
synthetic program, comparing a fully automatic prototype
implementation of the proposed algorithm with CUTE, a
concolic unit test engine.

While the results of the experimental case study look
promising, there remains scope for future work. This will
include examining the use of a constraint solver for linear
constraints in order to improve the efficiency of the search
by saving hill climb moves. The intention is to use a hill
climb algorithm only in the presence of floating point cal-
culations, non–linear expression, or generally in cases which
are too complex to be handled by a lightweight constraint
solver.
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