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ABSTRACT
Search-based test case generation for object-oriented soft-
ware is hindered by the size of the search space, which en-
compasses the arguments to the implicit and explicit param-
eters of the test object’s public methods. The performance
of this type of search problems can be enhanced by the def-
inition of adequate Input Domain Reduction strategies.

The focus of our on-going work is on employing evolu-
tionary algorithms for generating test data for the struc-
tural unit-testing of Java programs. Test cases are repre-
sented and evolved using the Strongly-Typed Genetic Pro-
gramming paradigm; Purity Analysis is particularly useful
in this situation because it provides a means to automati-
cally identify and remove Function Set entries that do not
contribute to the definition of interesting test scenarios.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
Testing tools (e.g., data generators, coverage testing)

General Terms
Verification

Keywords
Search-Based Test Case Generation, Strongly-Typed Ge-
netic Programming, Input Domain Reduction

1. INTRODUCTION
Test data generation deals with locating good test data for

a particular test criterion; the application of evolutionary al-
gorithms to this process is often referred to as evolutionary
testing (ET) or search-based test case generation (SBTCG).
Unit-test cases for object-oriented (OO) software consist of
method call sequences (MCS), which define the test scenario.
Each test case focuses on the execution of one particular
public method – the method under test (MUT). One of the
most pressing challenges faced by researchers in the ET area
is the state problem, which occurs with objects that exhibit
state-like qualities by storing information in private fields
requiring all interaction to be performed through its pub-
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lic methods – a fundamental principle of OO programming
known as data encapsulation.

The goal of the evolutionary search is to find MCS that
define interesting state scenarios for the variables which will
be passed, as arguments, in the call to the MUT. The input
domain thus encompasses the parameters of the test object’s
public methods – including the implicit (i.e. the this object)
and explicit parameters. Recent surveys indicate that Input
Domain Reduction (IDR) strategies can greatly increase the
performance of SBTCG problems [1].

2. PURITY ANALYSIS
Methods in OO languages often modify the objects that

they access, including their parameters. However, some
methods have no externally visible side effects when exe-
cuted; these are called pure methods. A pure method is one
which does not: perform input/output operations; write to
any pre-existing objects; or invoke any impure methods [4].
More interestingly, important purity properties can be iden-
tified even when a method is not pure, such as safe and read-
only parameters: a parameter is read-only if the method
does not write the parameter or any objects reachable from
the parameter; a parameter is safe if it is read-only, and the
method does not create any new externally visible paths in
the heap to objects reachable from the parameter. Purity
Analysis is especially useful in the context of SBTCG, as it
provides a means to automatically identify and remove en-
tries that are irrelevant to the search problem, reducing the
size of the set of method calls from which the algorithm can
choose when constructing the MCS that compose test cases.
Also, it improves the potential quality of test cases by ensur-
ing that no runtime exceptions are thrown by instructions
that do not contribute to the definition of test scenarios.

3. TECHNICAL APPROACH
With our approach, test cases are represented and evolved

using the Strongly-Typed Genetic Programming (STGP)
paradigm. STGP was proposed with the intention of ad-
dressing the “closure” limitation of the Genetic Program-
ming technique [2]. STGP allows the definition of types for
the variables, constants, arguments and returned values; the
only restriction is that the data type for each element must
be specified beforehand. The STGP search space is the set
of all legal parse trees – i.e. all of the functions have the
correct number of parameters of the correct type. It is thus
particularly suited for representing MCS for strongly-typed
programming languages such as Java, as it enables the re-
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Data: class under test
Result: purified function set

compute public methods list;
compute test cluster;
foreach public method do

foreach parameter do
annotate parameter purity;

compute data types required table;
compute data types provided table;

initialize EMCDG with data type nodes;
connect EMCDG nodes with call dependence edges;
remove irrelevant EMCDG edges;
create purified EMCDG;
create purified function set;

Figure 1: Input Domain Reduction algorithm.

duction of the search space to the set of compilable sequences
by allowing the definition of constraints that eliminate in-
valid combinations of operations.

Our methodology involves encoding potential solutions
(i.e. test cases) as STGP individuals, and MCS as STGP
trees. Each tree subscribes to a Function Set, which is spec-
ified in correspondence to the constraints of the test cluster
classes and defines the STGP nodes legally permitted in the
tree. The Function Set contains the initially defined set of
entries from which the STGP algorithm can choose when
evolving test programs; our IDR strategy thus involves re-
stricting the set of available functions to those that are ef-
fectively relevant to the search – i.e., those that are impure
and thus contribute to the definition of state scenarios.

For modelling call dependences and defining the Function
Set, an Extended Method Call Dependence Graph (EM-
CDG) [6] is employed. Our IDR strategy involves the re-
moval of irrelevant edges from the EMCDG; this is per-
formed by annotating the purity of parameters with the aid
of the Soot Java Optimization Framework [5], and using
this information to build the purified EMCDG. The puri-
fied Function Set is computed with basis on the purified
EMCDG. The algorithm for the purified Function Set gen-
eration procedure is outlined in Figure 1.

4. EXPERIMENTAL STUDIES
Our IDR strategy was empirically evaluated with encour-

aging results. For the JDK 1.4.2 classes employed in the
IDR experiment (Table 1), the statistics show a clear im-
provement; the number of Function Set entries when Purity
Analysis is used is, on average, 31.6% lower than that ob-
tained when no Purity Analysis is employed.

The impact of IDR on the test case generation process was
also visible on the case studies performed with the Stack and
BitSet classes (Table 2) using our test case generation tool
– eCrash [3]. For the Stack class, the number of generations
required to attain full coverage (gens) using Purity Analysis
was, on average, only 34% of that required without Purity
Analysis. For the BitSet class the improvement is not as
clear; still, the average percentage of test cases that accom-
plished full coverage within a maximum of 100 generations
(full) increased approximatelly 6%.

Table 1: Input Domain Size Experiment Results.
Function Set Entries
No Purity Purity

Stack 12 7
BitSet 54 36
BoolStack 27 22
ObjectVector 43 28

Table 2: Test Case Generation Experiment Results.
No Purity Purity

gens full gens full

Stack 4.4 80.0% 1.5 80.0%
BitSet 29.4 52.9% 30.9 58.7%

5. CONCLUSIONS
The search space of evolutionary testing problems can be

significantly reduced by means of Purity Analysis. With our
approach, test cases are represented using the STGP tech-
nique; Purity Analysis is particularly useful in this context,
as it provides a means to automatically discard Function Set
entries that do not contribute to the definition of interesting
state scenarios, trimming down the set of method calls from
which the algorithm can choose to those that are relevant to
the test case generation process.
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