
SSNNS - A Suite of Tools to Explore
Spiking Neural Networks

Heike Sichtig
Bioengineering Department

Binghamton University
Binghamton, NY 13902

hsichtig@binghamton.edu

J. David Schaffer
Philips Research North Am.

345 Scarborough Road
Briarcliff Manor, NY 10510

dave.schaffer@philips.com

Craig B. Laramee
Bioengineering Department

Binghamton University
Binghamton, NY 13902

claramee@binghamton.edu

ABSTRACT
We are interested in engineering smart machines that enable
backtracking of emergent behaviors. Our SSNNS simulator
consists of hand-picked tools to explore spiking neural net-
works in more depth with flexibility. SSNNS is based on
the Spike Response Model (SRM) with capabilities for short
and long term memory. A genetic algorithm, namely CHC,
is used independently to generate such example systems that
produce patterns of interest. Foundational work in the grow-
ing field of spiking neural networks has shown that precise
spike timing may be biologically more plausible and compu-
tationally powerful than traditional rate-based models[4][7].
We have been using evolution to discover neural configura-
tions that produce patterns of interest.

Categories and Subject Descriptors
G.3 [Mathematics of Computing]: Probability and Statis-
tics—Experimental Design, Time Series Analysis
; I.6.4 [Computing Methodologies]: Simulation and Mod-
eling—Model Validation and Analysis

General Terms
Algorithms, Design, Experimentation, Theory, Verification

Keywords
Spiking Neural Networks, Genetic Algorithms, Complexity,
Learning, Temporal Pattern Recognition, Machine Learning

1. INTRODUCTION
The McCulloch and Pitts publication in 1943 can be seen

as the beginning of artificial neural networks. In their pa-
per, a highly simplified model of basic brain cells, called
MCP neurons, is presented. Since then we have been at-
tempting to build machines using principles that are ab-
stracted from how the brain could produce highly complex
patterns. Those MCP neurons had limitations. You could
implement any boolean function, but had to design each one.
The original Perceptrons, introduced by Rosenblatt, went a
step further by including a learning capability, but were lim-
ited to linearly separable patterns. In fact, Perceptrons were
intended to be pattern recognition devices where their as-
sociation units correspond to a feature or pattern detector.

Copyright is held by the author/owner(s).
GECCO’08, July 12–16, 2008, Atlanta, Georgia,USA.
ACM 978-1-60558-131-6/08/07.

That was extended to non-linear patterns by Rumelhart et
al.[10] with the multi-layer perceptrons and the backprop
algorithm. Still, there were problems that seemed to defy
these networks, including time series patterns.

Complex systems, such as ourselves, financial markets,
weather, politics, dating and other areas present challeng-
ing issues connected to perception, analysis and prediction
of their spatial-temporal data. We hope to use our smart
machines for more precise time series prediction.

One of the most promising technologies to represent spatial-
temporal data is spiking neural networks (SNNs). The spike
response model (SRM) is a generalized leaky integrate and
fire model and well suited to simulate neuronal communi-
cation at the abstract level. The SRM model expresses the
membrane potential at time t as an integral part over the
past[4]. Synapses connect neurons via axons and dendrites.
The neuron connecting to the synapse is called the presynap-
tic neuron, whereas the neuron connected from the synapse
is the postsynaptic neuron. In theory, the synapse can be-
have in 3 ways: static, depressing or facilitating towards
the postsynaptic neuron. The dynamic synapse as proposed
by Markram allows for facilitating and depressing behavior
for transient dynamics[8][9]. In facilitating synapses the re-
sponse grows with successive presynaptic spikes, whereas de-
pressing synapses lower the response in a frequency-dependent
way. The reinforcement learning as proposed by Hebb in
1949 is the main hypothesis for a neural mechanism to ex-
plain long term learning[5]. Hebbian learning has been suc-
cessfully applied to spiking neural networks by Song et al.[12].

Mass et al.[7], have shown how the spiking model in gen-
eral can do everything that older style models could, and
often with many fewer neurons. Markram et al.[9], have
shown that the dynamic synapse enables at least the possi-
bility for networks that extract many different features from
the same spike train. This suggests network capabilities, but
doesn’t show either how to achieve them or what they might
be used for. Their work is all about a single synapse. Hebb
proposed a simple model for long term potentiation at the
synapse[5], and Kandel later showed that it was physiologi-
cally realistic[1]. But there still seems to be no real insight
into how this low level function can translate into network
behavior, with the exception of the simple idea that if initial
wiring provides an over abundance of synapses, that perhaps
Hebbian learning can prune away the excess and tune what’s
left to perform very accurately.

Our SNN simulator, called SSNNS, is coupled with a ge-
netic algorithm that independently evolves parameters to
predict spike patterns of interest, our smart machines. This

1787



hybrid SNN-GA architecture can be used to investigate pro-
cesses that lead to learning on an abstract level and can help
researchers to develop a more comprehensive understanding
of the intricate workings that govern pattern recognition and
learning. Our produced smart machines might reveal novel
insights that are usually black-boxed because we know what
is on the inside. The genetic algorithm, CHC [3], is an ex-
cellent tool to investigate unknown fitness landscapes. So-
lutions may be very scarce, hence, CHC is a good choice
for searching over complex landscapes. The restarts in CHC
allow us to jump to different places for searching.

Our research is an extension of COGANN-92 workshop on
Combinations of Genetic Algorithms and Neural Networks
that surveyed various schemes for combining genetic algo-
rithms with neural networks [11]. The presented smart ma-
chines are composed of spiking neural networks with specific
building blocks and a genetic algorithm is used to evolve net-
work parameters and learning rules. It is our hope to devise
a general learning rule for such systems.

2. CURRENT RESEARCH

2.1 SSNNS Simulator
The underlying mathematics of the synchronous simula-

tor is the general SRM model (see Equation 1), consisting
of a function for refractoriness η and its own spike response
ε. Information is kept at every time step according to a post
synaptic potential lookup table, using a spike response func-
tion that keeps track of the intensity of action potentials over
time. The length and intensity of action potentials can be
adjusted by tweaking either the membrane or synaptic time
constant. The spike response function is useful in modeling
a more biologically plausible process.

The SRM model in Equation 1 is a combination of η for
refractoriness and ε for spike response.

uj(t) =
X
tj

η(t− tj) +
X

i

X
ti

wji × ε(t− ti − dji) (1)

The computation time is t and ti are the spike times of
neuron i (pre-synaptic neuron), and tj are the spike times of
neuron j (post-synaptic neuron). The spike response func-
tion is weighted by wji, the weight of the connection from
pre-synaptic neuron i to post-synaptic neuron j. When
computing the spike response, the previous spikes might
be delayed; thus, dij is the delay of the connection from
pre-synaptic neuron i to post-synaptic neuron j. The post-
synaptic potential of neuron j is calculated at every time
step t, starting from the first input until maximum simula-
tion time.

2.1.1 Calculation of η in SSNNS
For every neuron the refractoriness is calculated by using

an exponential decay function at every time step. Equation
2 shows the calculation of η, ETA0 is the negative spike-
after potential and UR is the resting potential.

η = (ETA0 − UR)× exp
−(∆t)

Tr (2)

Tr is the refractory time constant. The refractoriness is
computed by repeatedly taking the time difference t from
last spike time of neuron j to current computation time.

The spike response function for the computation of PSP
using the SRM model is shown in Equation 3.

2.1.2 Calculation of ε in SSNNS

ε =
1

1− Ts
Tm

× exp
−(∆t)

Tm − exp
−(∆t)

Ts (3)

It is an exponential growth function with 2 parameters
for rise time and length of PSP adjustment. Rise time is
adjusted with the synaptic time constant Ts and length with
the membrane time constant Tm. The time difference ∆t is
from the spike times of the pre-synaptic neuron to current
computation time. The spike response function(ε) allows
for more flexibility in order to control time in history and
intensity simultaneously. Alternatively, the spike response
can be modeled using the synaptic time constant only (see
Equation 4).

εalt =
t

T 2
a

× exp
−(∆t)

Ta (4)

Figure 1: PSP Calculation Using Eq. 3 for ε (Alter-
ing Shape) and Eq. 4 for εalt (Same shape)

Although the alternative spike response model(Equation
4) can estimate the spike response model very closely using
only the synaptic time constant, as seen in the first graph
of Figure 1, certain PSP forms can only be simulated with
the spike response model(Equation 3), especially when the
potential has a long tail. The second and third graph of
Figure 1 show the rigidness of the alternative spike response
model. This motivated us to use Equation 3.

2.1.3 Dynamic Synapses
The spike response at the post-synaptic neuron is com-

puted by summing all synaptic responses. There are two
kinds of synapses that can be simulated, static or dynamic.
The latter synapse is computed using dynamic memory buffers
introduced by Markram. Markram et al.[8][9], developed
their synapse model in order to explain the property that
real neurons exhibit facilitation and inhibition (see Figure
2). Their model can make a synapse responsive to the
rate(frequency), the spacing(derivative) or the sum (inte-
gral) of the incoming spike train with suitable adjustments
of their parameters.

Figure 2 represents the postsynaptic potential of a neuron
over time. The lines are the actual spikes produced when
the threshold is crossed.

2.1.4 Hebbian Learning

F (∆t) = Apos × exp
∆t

τpos if ∆t < 0 (5)

Aneg × exp
∆t

τneg if ∆t > 0 (6)

1788



Figure 2: Facilitating and Depressing Synapse

F is the approximation of the dependence of synaptic
modification on spike timing in percent shown in Equation 6
and 7. A is the maximum amount of synaptic modification
when ∆t is close to 0. τ is the range of pre- to postsynaptic
interspike intervals over which synaptic strengthening and
weakening occurs. For example, weight can be modified over
the long term by adding F (∆t) to the weight[12].

2.2 SSNNS Limitations
The first assumption in SSNNS is that our selected SRM

neuron model exhibits accurate characteristics for abstract
modeling and understanding. Furthermore, the specific func-
tion for refractoriness and spike response reflects our desired
behavior for the artificial neuronal architecture. Second, we
presume that the PSP lookup table can be scaled infinitely
large using a cutoff criterion and dynamic memory alloca-
tion. Our heuristic limitation is that the last value of the
PSP lookup table must be less than 0.001; otherwise the
effect would be too big to ignore. Potentially, the PSP
could have an unlimited tail. This raises questions about
the history of spike trains. For example, what should be the
maximum time of impact a spike should have? And should
there be a cutoff? This simulator has built-in flexibility to
explore all directions. It is not limited by biological plausi-
bility. Hence, restrictions need to be implemented in order
to claim biological relevance. On average, physiological lim-
itations of the human brain categorize the PSP duration as
being about 1-2ms long. SSNNS has no such limitations
beside computer memory and cost.

Another important characteristic of SSNNS is the static
threshold, it always stays 1. This is motivated by simplifica-
tion and the assumption that a general threshold criterion
exists. Lastly, the step size and computation in SSNNS is
limited to certain step sizes. The smallest unit is one mi-
crosecond and the largest is one second.

2.3 Hybrid SNN-GA
The presented SSNNS simulator can be coupled with a

genetic algorithm to evolve parameter sets for any given
problem of interest. It is possible to evolve the neuron and
synapse structure and topology of the network. This is work
in progress.

The simulator is controlled by a set of parameters that
govern the activities of each of its elements (e.g. synapses,
refractory periods, time constants, etc.). These control pa-
rameters are tuned via a modified version of the CHC genetic
algorithm which enables the system to produce a desired
emergent pattern.

It is our hope to devise a general fitness function to eval-
uate the goodness of the fit. Figure 4 depicts our current

Figure 3: Hybrid SNN-GA Architecture

Figure 4: Fitness Function

fitness function. Here, solid lines represent spikes, dashed
lines show the error function and dashed horizontal lines de-
fine region boundaries between spikes. The error function is
simply a linear penalty.

Our system can possibly be applied to any desired prob-
lem that involves matching a given target spike pattern or
simply evaluating resulting behaviors such as in robotics.
Schaffer et. al[11], have given an overview of possible neu-
ral network and genetic algorithm combination applications,
such as neurocontrol and those that involve sparse reinforce-
ment as feedback.

3. RESULTS
Preliminary results indicate that our system is capable of

limited learning. Using target patterns that are known to
be in the domain of our system we achieved convergence to
multiple solutions fairly quickly (approximately 1000 gener-
ations with populations sizes of 50). Moreover, we find that
this convergence is preserved across multiple definitions of
fitness.

Figure 5 shows an example spike pattern that is known
to exist in our system. Solid black corresponds to neuron
1 spikes and dashed black to neuron 2 spikes. Our system
can find close solutions for this sample pattern. See Figure
6 for an illustration of an evolutionary learning curve for
our sample pattern. The solid line represents the average
and the dotted line the best individuals. Notice that the log
performance gets only close to zero. Preliminary results for
other hand crafted patterns show convergence in 4 out of 10
experiments.

However, Watt’s tonic buster[13] has been proven as a
challenge to our system. The GA can get close but often
has trouble getting the exactly right output pattern. Explo-
rations of limited parts of these particular fitness landscapes

1789



Figure 5: Spike Pattern

Figure 6: Learning Curve for Known Pattern

show they have a lot of problems. So, we are exploring vari-
ations on the chromosome representations and fitness func-
tions. Additionally, we are examining more complex target
patterns that may or may not be in the domain of our sim-
ulator.

4. CONCLUSIONS
Our preliminary results indicate that our system is ca-

pable of learning a limited set of dynamic neuronal spiking
patterns. Additionally, we find that in our system there are
multiple ways to generate similar emergent properties. As
we progress to include more complex patterns we hope to
identify a limiting set of the patterns that our system can
learn to generate, and develop an understanding of the nec-
essary conditions for engineering emergent behavior.

5. FUTURE RESEARCH
A major milestone will be the evaluation of our architec-

ture with known patterns, such as Bohte’s temporal XOR
benchmark[2], Watt’s tonic buster[13] and Jin’s spike se-
quence recognition[6]. Furthermore, our current results in-
dicate that it lies in the future to invent schemes for evolving
the topology as well. Applications of this technology may
include sound recognition or false intensive care unit alarm
detection.

6. REFERENCES
[1] I. Antonov, I. Antonova, E. R. Kandel, and R. D.

Hawkins. Activity-dependent presynaptic facilitation
and hebbian ltp are both required and interact during
classical conditioning in aplysia. Neuron, 37(1):135–47,
Jan 2003.

[2] S. M. Bohte and J. N. Kok. Applications of spiking
neural networks. Information Processing Letters,
95(6):519–520, September 2005.

[3] L. J. Eshelman. The CHC Adaptive Search
Algorithm: How to Have Safe Search When Engaging
in Nontraditional Genetic Recombination. Foundations
Of Genetic Algorithms, pages 265–283, 1990.

[4] W. Gerstner and W. Kistler. Spiking Neuron Models -
Single Neurons, Populations, Plasticity. Cambridge
University Press, August 2002.

[5] D. O. Hebb. Organization of behavior. New York:
Wiley, 1949.

[6] D. Z. Jin. Spiking neural network for recognizing
spatiotemporal sequences of spikes. Physical Review E,
69, 2004.

[7] W. Maas and C. M. Bishop. Pulsed Neural Networks.
MIT Press, Cambridge, MA, USA, March 2001.

[8] W. Maas and H. Markram. Synapses as dynamic
memory buffers. Neural Networks, 15:155–161, 2002.

[9] H. Markram, Y. Wang, and M. Tsodyks. Differential
signaling via the same axon of neocortical pyramidal
neurons. Neurobiology, 95:5323–5328, April 1998.

[10] D. E. Rumelhart, G. E. Hinton, and R. J. Williams.
Learning internal representations by error
propagation. In D. E. Rumelhart and J. L.
McClelland, editors, Parallel distributed processing:
Explorations in the microstructure of cognition,
volume 1, pages 318–362. MIT Press, 1986.

[11] J. D. Schaffer, L. D. Whitley, and L. J. Eshelman.
Combinations of genetic algorithms and neural
networks: A survey of the state of the art. In
Combinations of Genetic Algorithms and Neural
Networks, 1992., COGANN-92. International
Workshop on, pages 1–37, Philips Labs., Briarcliff
Manor, NY, 6 Jun 1992.

[12] S. Song, K. D. Miller, and L. F. Abbott. Competitive
hebbian learning through spike-timing-dependent
synaptic plasticity. Nature Neuroscience, 3(9):919–926,
2000.

[13] L. Watts. Event-driven simulation of networks of
spiking neurons. Advances in Neural Information
Processing Systems, 6:927Ů934, 1994.

1790


