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ABSTRACT

One of the major difficulties when applying Multiobjective
Evolutionary Algorithms (MOEA) to real world problems is
the large number of objective function evaluations. Approxi-
mate (or surrogate) methods offer the possibility of reducing
the number of evaluations, without reducing solution qual-
ity. Artificial Neural Network (ANN) based models are one
approach that have been utilized to approximate the future
front from the current available fronts with acceptable ac-
curacy levels. However, the associated computational costs
limit their effectiveness. In this research project, we have
developed a simple approximation technique with compara-
tively smaller computational cost. Our model, has been de-
veloped as a variation operator that can be utilized in any
kind of multiobjective optimizer. Initial simulation experi-
ments have produced encouraging results in comparison to
other existing sequential algorithms (i.e. NSGA-II, SPEA-
IT). In the next phase of the project, this model will be in-
tegrated into other existing parallel MOEA’s to solve more
complex and time intensive bench mark problems.

Categories and Subject Descriptors: 1.2.m [Artificial
Intelligence]: Miscellaneous—Evolutionary computing and
genetic algorithms ; 1.2.8 [Artificial Intelligence]: Problem
Solving, Control Methods, and Search—Heuristic methods

General Terms: Algorithms

Keywords: Evolutionary Multiobjective Optimization, Vari-
ation Operator, Dynamic System Identification, Function
Evaluation

1. INTRODUCTION

A major computational bottleneck in many MOEA ap-
plications (as well as in other numerical or real-world de-
sign/optimization problems) is the evaluation of complex
non-linear multiobjective functions, implying algorithmic par-
allelization may improve computational efficiency. Just as in
single-objective optimization, “expensive” objective function
evaluations (in terms of CPU time) are often completed in
less wall clock time by decomposing the computational load
across two or more processors. Such models typically require
a large number of networked computers (scaling in size from
local clusters to full Grid deployment) and an adequate par-
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allelization of the numerical code [6]. However, a parallel
approach per se does not necessarily reduce the number of
function evaluations. Experimentations and analysis of some
possible Grid deployment models for parallel MOEA can be
found in [10].

The development of techniques enabling a reduction in
the number of function evaluations, without reducing solu-
tion quality (without parallelization) is an important goal of
MOEA research. An on-going challenge, therefore, is to de-
velop good approximate methods that can be used to solve
multi-objective problems while considering the number of
objectives and the possible interaction between them.

In the MOEA domain, there have been relatively few pa-
pers reporting the use of surrogate models. For example, [2]
and [7] have incorporated a Gaussian Random Field Meta-
model into the algorithm. Artificial Neural Networks (ANN)
based approximate models have also been used with some
success [3, 1]. Typically, the ANN model approximates the
design variables from the current front of the objective space
by treating the objective vectors as inputs to the ANN and
the design variables as output. Determining the best net-
work structure (specifically, the number of hidden layers)
and the total learning costs must be factored into the com-
putational costs of the model.

In our study, we propose a novel approximation model for
MOEA, which has a comparatively smaller computational
cost than other surrogate models. We have developed this
model as a variation operator that can be used in any multi-
objective optimizer to speed up the search process by reduc-
ing the number of function evaluations and thus encourage
the evolving population to follow the right trajectory to-
wards a range of good trade-off solutions.

2. PROJECT OVERVIEW

This research project is made up of three phases: (1) the
design and development of a fast converging MOEA; (2) the
integration of the this Pareto-following variation operator
into other parallel MOEA to solve more time intensive prob-
lems; and (3) investigating the efficacy of the model using
real-world applications (i.e. Grid Workflow Scheduling, Dy-
namic Filter Coefficient Optimization, Circuit Sizing etc).
Due to space constraints, we limit the discussion to a brief
overview of the proposed model and preliminary simulation
analysis. More detailed explanations and experimental re-
sults of our model can be found in [12] and [13].
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Figure 1: After nondominated sorting, individuals
in each front are sorted with respect to one objec-
tive. Individual (o) is the same individual moving
from front ¢ — 2 to front ¢

2.1 The Pareto-Following Variation Operator

When designing and analyzing the Pareto-following varia-
tion operator (PFVO), we have considered the whole search
procedure as a dynamic system [8], which takes the avail-
able objective values in the current nondominated front as
inputs and generates approximated design variables for the
next front as the output. As such, this approach could be
thought of as a form of “Response Surface Approximation”
[5]. The ANN techniques described in section 1 are represen-
tative examples of this technique. However, in our approach
we have replaced the ANN with a simple Linear Time In-
variant system (LTT) [9, 8].

In the initial design, we have attempted to model the dy-
namic system using frequency domain analysis. In a subse-
quent design, the linear least square method was used. Such
approaches are widely used in dynamic system identifica-
tion. We use the corresponding model to approximate the
next front from the current front and create the so called
“Mirage Solutions” [1]. The Mirage Solutions are then used
as input to the dynamic system to approximate the corre-
sponding design variables. The resulting solutions (individ-
uals) are then added to the current population of the hosting
optimizer. Although this sort of naive technique does not
guarantee a 100% correct mapping from objective space to
design variable space, this technique is capable of approx-
imating the solutions that resides in close vicinity of the
Pareto-front relatively quickly.

2.2 Modeling Using Frequency Domain
Analysis

During our initial model development, we have applied
Frequency domain analysis for the dynamic system identi-
fication. In this case, data from the design variable space
{X(¢), X(¢—1),...} and objective space { F'(¢), F(¢p—1),...}
are transformed to spatial domain (objective values and de-
sign variables in X-Y coordinate) to Fourier domain. Here
X (¢) and F(¢) denote design variables and objective values
in front ¢ respectively (refer to Figure 1). After that, we
apply Fast Fourier Transform to find the transfer function
H(f) of the system as indicated below -

{F(9),F(¢—1),F(¢—2).

{X(¢), X(¢—1),X(¢—-2). (2

H(f) = F(H)/xX(f) 3)

Once after calculating H(f) of the dynamic system, the in-

verse function H(f) " can easily be calculated. Next we ap-
proximate the objective values of the next front {F (¢ + 1)}

F(f)
X (/)

R (1)
-
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Figure 2: The forward and inverse dynamic system

from the existing values {F(¢), F(¢ — 1),...} as -

Fle+1)={F(@) = Af,F(¢-1)£Af,...} (4

and next, we inverse map the design variables of the next
front -

{F(¢+1)7F(¢)7F(¢_1)7‘”} -
Xapproz(f) = H(f) - Fapprox(f)

and applying inverse Fourier transform,

{X(p+1),X(6),X(¢p—1)...} & Xapproz([) (7)

Here, X (¢ + 1) is the approximated design variables of the

next front. The value Af is different for different problem
we have decided its value using empirical experiments. From
the on going discussion, the formulated model is now capable
of approximating the future Pareto-front from the existing
fronts and thus can be used as a surrogate model. Figure
2 represents the idea behind this approach. The detailed
implementation and analysis of this approach can be found
in [12].

Fapproz(f) ()

(6)

2.2.1 Experimental Results

To test the efficacy of this approach, we applied our model
to solve benchmark dynamic Multiobjective Optimization
(MOP) problems, such as FDA2, FDA3 and FDA5. All of
them are converted into type-III problems. The detailed def-
initions of these bench mark dynamic MOP’s can be found
in [4]. Since in the case of dynamic MOP’s, the Pareto-front
changes with time and hence, if an algorithm is capable to
converge to the Pareto-front within smaller function evalu-
ations, we can infer that the algorithm will also be capable
of following a changing front more efficiently. Our model
proves the claim in the same sense. As a proof we illustrate
the experimental results with FDA2 and FDA5 in Figure 3
and 4 respectively.

2.3 Modeling Using Linear Least Square

The second formulation is similar to the previous one.
However, we have used the linear least square method in the
time domain (front domain) to find the transfer function of
the dynamic system. Although the page constraints do not
allow us to elaborate description of this approach, the details
can be found in [13]. However, Figure 5 may be helpful to
understand the model.

First, we construct a simple dynamic system with ¢
variable and j** objective:

zi(¢) + aozi(p — 1) = bofi(P) + bifi(p — 1) + (o)

Here, f; are input and x; are considered as output.

th design

(8)
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Figure 3: Tracking Time-Varying Pareto-Front in
Problem FDA2

Figure 4: Tracking Time-Varying Pareto-Front in
Problem FDA5(Type III)

Therefore,
ao
zi(¢) = [ —wi(¢—1) fi(¢) file—1)] Zo + €(¢)
1
9)
Now, we can construct a matrix formation as:
z;(¢) zi(¢p — 1) fi(e) fi(e—1)
zi(¢ — 1) zi(p—2) fi(¢—1) fi(¢—2)
wi(¢=2) | _ | #(6=3) fi(6—2) fi(¢—3) be
. . : : by
wi(2) w()  H@ o )T
y (o]
(9)
e(p—1)
4 e(¢ — 2) (10)
«(2)
Or we can rewrite
y=2-Bij +e (11)

Here, (;; denotes parameter of the dynamic system for ith

design variable and j* objective. Bi; can be approximated
using least squares. After calculating (;;, we will approx-
imate objective values of the next fronts from the existing
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Figure 5: Working steps of the Pareto following vari-
ation operator
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Figure 6: ZDT1: Hypervolume vs. Exact Function
Evaluations by NSGA-II and NSGA-II with PFVO

ones (similar as the previous case) and then apply (;; to
inverse map these approximated objective values to design
variable space.

2.3.1 Experimental Results

To test the efficiency of the second approach (Dynamic
System Identification using Linear Least Square), we inte-
grated our model into NSGA-II and SPEA-II to solve some
benchmark static MOP’s, such as ZDT1, ZDT2, ZDT3, ZDT4
and ZDT6. Since the space constraints does not allow us to
include all experimental results, we are providing the results
of ZDT1 by both algorithms in Figure 6 and 7.

From the figures, we can see that, when our Pareto-following
Variation Operator (PFVO) is applied to NSGA-II and SPEA-
II, the convergence speed is drastically changed. NSGA-II
converges within 15000 function evaluations approximately,
on the other hand, our model can reach the same Hypervol-
ume within only 6000 function evaluations. The details of
running time analysis can be found in [13].

3. FUTURE WORK: THE NEXT PHASE OF

THE PROJECT

In recent years, there have been several investigations into
the parallelization of MOEA’s [14]. Our next target, is to
extend our model and introduce parallel versions based on
models such as in The Island Model, Master-Slave model and
Diffusion Model [11]. In recent study [10], an enumerative
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Figure 7: ZDT1: Hypervolume vs. Exact Function
Evaluations by SPEA-II and SPEA-II with PFVO

MOEA has been implemented in Global Grid environment
where Osyczka2 and Golinski problems were solved within
90.2 and 775.4 days respectively. Our motivation is to reduce
the convergence time to solve similar problems.

4. CONCLUSION

An important contribution of this research, was the design
and evaluation of a novel Pareto following variation operator
for MOEA. A key component of our first approach was to
approximate the next expected Pareto-front and from this
expected front, generate an approximated set of design (or
decision) variables. Here, we have adopted the concept of
integral transformation as the approximation and mapping
method. Experimental results show that by using an “in-
verse mapping” of the Pareto-set from the Pareto-front, the
algorithm was able to track/follow the search trajectory for
a given MOP.

In the second approach, we have designed and evaluated
the efficacy of another novel approximation model for MOEA,
which has a comparatively smaller computational cost than
other surrogate models. An important contribution of this
work was that our Pareto following variation operator can be
used in conjunction with any nondominated sorting MOEA.
There is obviously scope to investigate the relative worth of
a non-linear dynamic system model such as the nonlinear
ARX and Hammerstein-Wiener models [8]. This particu-
lar line of research is currently underway. Recursive System
Identification may also be a useful approach to investigate.
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