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ABSTRACT
This paper introduces GLOCSA as a new scoring function to
rate multiple sequence alignments. It is intended to be sim-
ple, considering the whole alignment at once and reflecting
the parsimony of an alignment. Then, a GLOCSA Guided
Genetic Algorithm is proposed in order to refine alignments
previously generated by MUSCLE. The results so far are
depicted in this paper.

Categories and Subject Descriptors
J.3 [Life and Medical Sciences]: Biology and genetics

General Terms
Algorithms

Keywords
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1. INTRODUCTION

1.1 Sequence Alignment
DNA sequences, RNA sequences and the protein sequences

encoded change through time, evolving, mainly under the
action of mutation. The simplest types of mutation are
point mutations, which are substitutions of nucleotides or
aminoacids, and insertions/deletions, also known as indels.
To align two or more sequences, the sequences are put to-
gether in a matrix. With a sequence in each line of the
matrix, the process of aligning them, represents the inser-
tion of “−” instances in the sequences (see table 2). In order
to choose the best alignment, it is considered that, in biologi-
cal terms, the process of alignment has the objective to align
homologous residues (having the same evolutionary origin).
Assuming that evolution is parsimonious when performing
an alignment, it is also sought to minimize the number of
evolutionary changes (events of substitutions or indels) that
the alignment implies.

To address the problem of sequence alignement different
approaches have been developed, starting from dynamic pro-
gramming algorithms such as Needleman-Wunsch [4] and
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Smith-Waterman algorithms [6] which are only used in pair-
wise alignments due to their scalability constrains. Using
these exact algorithms the heuristics known as progressive
alignments were devised. MUSCLE [2] is a very efficient pro-
gressive alignment method highly used in the community.
Other approaches have been used, such as Hidden Markov
Models [3] and Simulated Annealing. Evolutionary Compu-
tation has also been used, from Genetic Algorithms [5] to
Evolutionary Programming [1].

2. GLOCSA
The Global Criterion for Sequence Alignment (GLOCSA)

is a new proposed function to assess the quality of multi-
ple sequence alignments of DNA. It has been built from the
ground up with simplicity in mind and rating the alignment
as a whole, not taking pairs of sequences to score their cor-
responding alignment separately. It also takes into account
gaps, seeking to favor parsimony.

GLOCSA is composed of three individual criteria, Mean
Column Homogeneity (MCH) , Gap Concentration (GC)
and Columns Increment (CI). These are combined in a poly-
nomial with a set of corresponding weights (wmch, wgc and
wci, respectively).

GLOCSA = wmchMCH + wgcGC + wciCI (1)

These weights are set by default to the following values:
wmch = 1000 , wgc = 20 and wci = −20 . These default
values were determined empirically, adjusting them to assing
a better scores to better alignments.

At the moment it is intended to rate only multiple se-
quences of DNA composed of the standard IUB/IUPAC cod-
ifications for nucleic acids (including polymorphisms, which
are ambiguous codifications for two or three bases used when
it cannot be precisely determined which base is there ) with
the addition of “−” to indicate gaps and “?” to signal that
no reading was done. These are shown in table 1.

Table 1: Nucleic Acid Codifications Supported
A Adenosine K G or T H A or C or T
C Cytosine M A or C V G or C or A
G Guanine S G or C N any base
T Thymine W A or T - gap
R G or A B G or T or C ? any base
Y T or C D G or A or T or gap

To score an alignment of multiple sequences it is consid-
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ered as a matrix with C columns, being C the maximum
number of positions in a sequence, and S lines, where S is
the number of sequences in the alignment. At the end of
the sequences shorter than the longest one, gap positions
are appended (“−”) to fit all the sequences perfectly in the
matrix.

2.1 Mean Column Homogeneity
In the alignment matrix each position is represented in a

column, and the column homogeneity has the purpose of rat-
ing the grade of diversity in the elements of a given position
scoring higher the more homogeneous columns.

The basic idea is, first, counting the occurrences of each
of the four bases. A,C,G and T are counted with a weigth
of 1.0 while polymorphisms are counted as an equal fraction
of a unit for each base they represent (e.g. A counts 1.0
for A while R is either G or A, so it counts 0.50 for G and
0.50 for A). Gaps are also counted, with a slightly smaller
weight (i.e. 0.7), in order to favor columns with less gaps.
After counting, the column homogeneity of a given column
is computed using the following formula,

CHj =

P

4

t=0
(wcjt)

2

`
P

4

t=0
wcjt

´2
(2)

where wcjt is the (weighted) count of the base t at the
column j, and t = {0, 1, 2, 3, 4} being 0 = “A′′, 1 = “C′′,2 =
“G′′,3 = “T ′′,4 = “−′′.

In the case that a position in a sequence has the “?” codi-
fication, that sequence is discarded (as it was not there) for
the computing of that column homogeneity value. This be-
cause a ? implies that in that position the sequence has no
information. An special consideration is taken when all the
elements in a column are gap codifications (−), in that case
the column homogeneity is given a value of zero, to penalize
the existence of such columns.

When the column homogeneity value for all the columns
has been computed , the mean value is obtained and that is
the Mean Column Homogeneity. This criterion gives higher
scores to more homogeneous columns, penalizing diversity
of bases in a column. Therefore it is intended to favor more
aligned matrices.

2.2 Gap Concentration
Contiguous gap codifications are grouped into gap blocks;

as they are in the representation of individuals. Gap Con-
centration is the mean size of the gap blocks divided by the

total number of single gap codifications: GC = SGB

GP
, where

SGB is the mean size of the gap blocks, and GP is the num-
ber of gap positions in the alignment.

This criterion serves the purpose of rewarding the align-
ments where the gap codifications are located in a more con-
centrated manner, i.e. where there are fewer larger blocks of
gap codifications rather than more blocks of smaller length.

2.3 Columns Increment
It is common that the number of columns in an alignment

increases while inserting gaps. Columns Increment is the
ratio of this increment, defined by CI = C

C0
− 1, where C

is the number of columns after aligning, and C0 the number
of columns before aligning (the number of nucleotides of
the longest sequence). Larger alignments are not generally
prefered, and this criterion is intended to penalize them.

Table 2: Alignment Matrix Example
sequence-#

0 A A - - A A A A
1 A A - - A - A A
2 - - A A A A - -

Table 3: GA Representation Example
sequence-#

0 [2, 2]
1 [2, 2], [3, 1]
2 [0, 2]

3. GGGA - GA IMPLEMENTATION
GGGA, GLOCSA Guided Genetic Algorithm is the Ge-

netic Algorithm implemented to optimize the GLOCSA score.
GGGA is a genetic algorithm where a custom representation
is proposed, along with a specific mutation operator. There
is no crossover operator, selection is performed by tourna-
ment and elitism is used. The initialization of the population
is done using the mutation operator and a seed alignment
(generated with MUSCLE [2] 3.6) which is an input to the
algorithm. To produce each individual of the next genera-
tion, an individual is selected from the previous generation,
using the tournament selection operator, and then submit-
ted to the mutation operator to generate the new individual
(under a mutation probability).

3.1 Representation of Individuals
Each individual in the population represents a possible

alignment for the sequences. The alignment matrix (de-
scribed in 2, e.g. in table 2) used to rate an alignment with
GLOCSA is the base for the representation of individuals.

But not everything in the matrix is necessary to recon-
struct any given alignment of a set of sequences. The only
information needed are the position and size of the gap
blocks (contiguous gap codifications) in the alignment, be-
cause the other sequence information (base codifications) do
not change with the alignments. To determine the position
of a gap block the following consideration is made: if the
bases in every sequence of the alignment are indexed with
consecutive numbers, starting from 0 for the first base to
ease its implementation, the position of the gap blocks can
be determined by the base index it precedes.

Thus, the alignment can be represented by having for each
sequence a list of the positions and sizes of every gap block in
them, i.e.: each gap block represented as two non-negative
integers (position and size).

As a simple illustrative example the alignment matrix of
table 2 is transformed to its corresponding representation in
table 3. In this example, the sequence 0 has only one gap
block of size 2, before the A with index 2 (the third one),
hence the list of gap blocks for this sequence only has one
element which is [2, 2]; sequence 1 has two gap blocks [2, 2],
[3, 1]; and sequence 2 has only one [0, 2], the two gap codi-
fications at the end of the sequence were appended to fit it
in the alignment matrix, so there is no need to include them
in the representation (trailing gaps are a consequence of the
different lengths of the sequences).
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3.2 Mutation Operator and Suboperators
The mutation operator is basically in charge of chang-

ing the gap codification appearances in the alignment rep-
resented by an individual, in order to explore the solution
space. It works with a mutation probability, which deter-
mines the number of mutations per individual that will be
performed.

For each mutation operation five types of changes to the
gap codification appearances are proposed: insertion of new
gap blocks, increment of the size of a gap block, decrease
of the size of a gap block, shift of positions of gap blocks
and deletion of a gap block. These five types of changes
are denominated suboperators, and the selection of which
one will be applied is determined by its probability, which
is dynamically adapted throughout the generations. These
suboperators were selected because, in the opinion of the
autors, they make the algorithm capable of searching the
solution space in a relatively efficient way. A crossover op-
erator was also considered but was discarded in early stages
because it gave no apparent advantage to the algorithm.

3.2.1 Insertion Suboperator
This suboperator chooses randomly a taxa, and inserts

a gap block in it. The size of the new gap block is also
random, but in a certain range and biased towards smaller
sizes. The position of this new gap is determined at random.
The size of the new gap blocks to insert is biased towards
small sizes because large gap blocks are not very common,
but still exist. The method to determine the size of the new
gap block is not discussed here due to space constraints.

3.2.2 Increment Suboperator
The Increment Suboperator chooses a taxa at random,

and increases the size of an existing gap block in one unit.
If the selected taxa does not have any gap block at all, this
operator does nothing.

3.2.3 Decrease Suboperator
As the previous operator, it chooses randomly a taxa, and

a gap block from it, whose size will decrease by one; if the
size is 1 gap codification, this operator deletes the gap block
totally. Again if the selected taxa does not have any gap
block at all, this operator does nothing.

3.2.4 Shift Suboperator
In a taxa chosen at random, this operator selects first

a gap block in it, then a position is selected randomly in
that taxa, if a gap block exists in that position,the sizes of
them are interchanged. If there is not a gap in the selected
position, the position of first gap selected is set to the other
position. If the selected taxa does not have any gap block
at all, this operator does nothing.

3.2.5 Deletion Suboperator
This operator selects randomly a taxa, and then a gap

block. This gap block is completely deleted from the list of
gap blocks. If no gap block exist in the selected taxa, no
operation is done.

3.2.6 Adaptation of Mutation Suboperators Proba-
bility

The probability of applying each of the subopertors is dy-
namically adapted as the algorithm evolves (starting all with

Table 4: Test Bench
# of seq. max. # of pos. total # of bases

exmpl19 19 649 10908
exmpl17 17 649 10149
exmpl29 29 245 6150

equal probabilities). It is changed accordingly to their effect
in the GLOCSA score of the alignments represented by the
individuals, giving more probability to the more benefical
ones (or less damaging ones if it is the case). This adap-
tation is done once at the end of every generation. Due to
space constraints the details are not explained in this paper.

3.3 Population Initialization
To initialize the population a given alignment is used as a

starting point. The individuals of the initial generation are
mutations of it, obtained by applying the mutation operator.
The mutation operator is applied discarding the adaptation
stage, therefore the five suboperators have the same proba-
bility while initializing the population.

4. TESTS WITH REAL DATA

4.1 Test Bench
To test the ability of GGGA to optimize the GLOCSA

scoring function, three multiple sequence alignment prob-
lems were proposed, which are shown in table 4 along with
relevant information. The set of sequences exmpl17 is a sub-
set of exmpl19, the two shortest sequences were eliminated,
thus presumably reducing the complexity of the alignment.

4.2 GA Test Parameters
Each set of sequences was first aligned with MUSCLE

[2] 3.6, a popular progressive alignment tool. The resulting
alignment was seeded as a starting point for the initializa-
tion of the population, thus the aim of the test is to see if
further improvements to the alignment of MUSCLE can be
performed, guided by the GLOCSA scoring function. The
genetic algorithm for all the experiments was run over 1000
generations with a population of 100, with 5 individuals of
elitism. Selection is performed using a tournament of 5 indi-
viduals. GLOCSA, the objective function, uses the default
weights defined in section 2. The rate of the mutation was in
the range of [0.1, 3] with increments of 0.1, the rate of muta-
tion is in units that represent mutations per alignment. For
each of these combination of values (the previously men-
tioned parameters and the mutation rate) 30 experiments
were performed.

4.3 Experiments results
Results of these experiments are shown in figures 1, 2 and

3. It was observed that the GLOCSA Guided Genetic Algo-
rithm always improved (at least slightly) the solution previ-
ously found by MUSCLE, and as expected the amount of im-
provement is strongly related with the mutation rate; lower
(near zero) and higher (close and beyond three mutations
per alignment) mutation rates produce less improvements
while values in or in the vicinity of the range of [0.5, 1.0] ,
produce the higher optimization values. This trend can be
observed more clearly in the mean value of the scores.
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Figure 1:

Figure 2:

Figure 3:

5. CONCLUSIONS
For the assessment of the quality of multiple sequence

alignments, scoring functions have been previously defined,
but in the opinion of the authors, the results obtained so
far are not satisfactory enough, and therefore the GLOCSA
measure was devised. It aims to be considered an alterna-
tive scoring function for multiple sequence alignments, one
which is simple, rates the whole alignment at once, and is
parsimonious.

Given the complexity of the problem of multiple sequence
alignment, the techniques of Evolutionary Computation -
Genetic Algorithms in particular - seem useful for optimiz-
ing this new proposed scoring function. Although it is not
efficient in terms of computing time, compared with the fast
progressive alignment heuristics, the GGGA has the abil-
ity to optimize GLOCSA as the objective function. In the
light of performing it as a refinement over previously aligned
data with more efficient methods, as in the test experiments
where MUSCLE alignments were inserted as starting points,
is a promising application.

6. FUTURE WORK
Currently GLOCSA only rates DNA sequence alignments,

the next step would be to extend its application scope to
protein sequences.

GLOCSA as a quality measure has been validated empiri-
cally, but tests to assess its reliability are still pending. This
will be done with the aid of defined sets of reference align-
ments such as BALiBASE [7] and GGGA. Thus resulting in
the assessment of both, the scoring function and the genetic
algorithm implementation.
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