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ABSTRACT
We propose the use of rough sets theory to improve the first
approximation provided by a multi-objective evolutionary
algorithm and retain the nondominated solutions using a
new adaptive grid based on the ε-dominance concept that
tries to overcome the main limitation of ε-dominance: the
loss of several nondominated solutions from the hypergrid
adopted in the archive because of the way in which solu-
tions are selected within each box. We decided to use a
multi-objective version of differential evolution to build a
first approximation of the Pareto front and in a second stage,
we use the rough sets theory in order to improve the spread
of the solutions found so far. To assess our proposed hy-
brid approach, we adopt a set of standard test functions
and metrics taken from the specialized literature. Our re-
sults are compared with respect to the NSGA-II, which is an
approach representative of the state-of-the-art in the area.

Categories and Subject Descriptors: G.1.6 [Optimiza-
tion]: Unconstrained optimization; I.2.8 [Problem Solving,
Control Methods and Search]: Heuristic Methods

General Terms: Algorithms

Keywords: Multi-objective optimization, rough sets the-
ory, local search

1. INTRODUCTION
Multi-Objective Optimization (MOO) is a research field

that has raised great interest over the last thirty years,
mainly because of the many real-world problems which nat-
urally have several (often conflicting) criteria to be simulta-
neously optimized [6].

In recent years, a wide variety of multi-objective evolu-
tionary algorithms (MOEAs) have been proposed in the spe-
cialized literature [2, 3]. Our main motivation for propos-
ing a hybrid approach is to reduce the overall number of
fitness function evaluations performed to approximate the
true Pareto front of a problem. Our proposed hybrid is able
to produce reasonably good approximations of the Pareto
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front of a variety of problems of different complexity with
only 3000 fitness function evaluations.

The organization of the rest of the paper is the following.
Some basic definitions related to MOO are in Section 2. An
introduction to rough sets theory is provided in Section 3.
In Section 4, we introduce differential evolution, which is the
approach adopted as our search engine. Section 5 describes
the new adaptive grid that we adopted to retain nondomi-
nated solutions (called Pareto-adaptive ε-dominance). Our
proposed hybrid is described in Section 6. The experimental
setup adopted to validate our approach and the correspond-
ing discussion of results are provided in Section 7. Finally,
our conclusions and some possible paths for future research
are provided in Section 8.

2. MULTI - OBJECTIVE OPTIMIZATION
We are interested in solving problems of the type1:

Minimize �f(�x) := [f1(�x), f2(�x), . . . , fk(�x)]
subject to:

gi(�x) ≤ 0 i = 1, 2, . . . , m and hj(�x) = 0 j = 1, 2, . . . , p

where �x = [x1, x2, . . . , xn]T is the vector of decision vari-
ables, fi : R

n → R, i = 1, ..., k are the objective functions
and gi, hj : R

n → R, i = 1, ..., m, j = 1, ..., p are the con-
straint functions of the problem. To describe the concept
of optimality in which we are interested, we will introduce
next a few definitions.
Definition 1. Given two vectors �x, �y ∈ R

k, we say that
�x ≤ �y if xi ≤ yi for i = 1, ..., k, and that �x dominates �y
(denoted by �x ≺ �y) if �x ≤ �y and �x �= �y.
Definition 2. We say that a vector of decision variables
�x ∈ X ⊂ R

n is nondominated with respect to X , if there

does not exist another �x′ ∈ X such that �f(�x′) ≺ �f(�x).
Definition 3. We say that a vector of decision variables
�x∗ ∈ F ⊂ R

n (F is the feasible region) is Pareto-optimal
if it is nondominated with respect to F .
Definition 4. The Pareto Optimal Set P∗ is defined by:

P∗ = {�x ∈ F|�x is Pareto-optimal}
Definition 5. The Pareto Front PF∗ is defined by:

PF∗ = {�f(�x) ∈ R
k|�x ∈ P∗}

We thus wish to determine the Pareto optimal set from the
set F of all the decision variable vectors that satisfy the
constraint functions of the problem.

1Without loss of generality, we will assume only minimiza-
tion problems.
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Figure 1: Rough sets approximation

3. ROUGH SETS THEORY
Rough Sets theory is a new mathematical approach to

deal with imperfect knowledge. Rough sets theory was pro-
posed by Pawlak [9]. Let’s assume that we are given a set
of objects U called the universe and an indiscernibility rela-
tion R ⊆ U × U . Let X be a subset of U . The problem is
that we want to characterize the set X with respect to R.
The way rough sets theory expresses vagueness is employing
a boundary region of the set X built once we know points
both inside X and outside X. If the boundary region of a
set is empty it means that the set is crisp; otherwise, the
set is rough (inexact).

4. DIFFERENTIAL EVOLUTION (DE)
Differential Evolution [12, 13] is a relatively recent evolu-

tionary algorithm designed to optimize problems over con-
tinuous domains. In DE, each decision variable is repre-
sented by a real number. As in any other evolutionary algo-
rithm, the initial population of DE is randomly generated,
and then evaluated. After that, the selection process takes
place. During the selection stage, three parents are chosen
and they generate a single offspring which competes with a
parent to determine who passes to the following generation.
DE generates a single offspring by adding the weighted dif-
ference vector between two parents to a third parent. More
formally, the process is described as follows:

For each vector −−→xi,G; i = 0, 1, 2, . . . , N − 1., a trial vector−→v is generated using:

−→v = −−−→xr1,G + F · (−−−→xr2,G −−−−→xr3,G)

with r1, r2, r3 ∈ [0, N − 1], integer and mutually different,
and F > 0. The integers r1, r2 and r3 are randomly cho-
sen from the interval [0, N − 1] and are different from i.
F is a real and constant factor which controls the amplifi-
cation of the differential variation (−−−→xr2,G − −−−→xr3,G). DE has
been extended to solve multi-objective problems by several
researchers (see for example [1, 8, 10]). However, in such ex-
tensions, DE has been found to be very good at converging
close to the true Pareto front (i.e., for coarse-grained opti-
mization), but not so efficient to actually reaching the front
(i.e., for fine-grained optimization).

5. PARETO-ADAPTIVE ε-DOMINANCE
ε-dominance has been mainly used as an archiving strat-

egy in which one can regulate the resolution at which our
approximation of the Pareto front will be generated. This al-
lows us to accelerate convergence (if a very coarse resolution
is sufficient) or to improve the quality of our approximation
(if we can afford the extra computational cost). However,

ε-dominance has certain drawbacks and limitations. For ex-
ample: (1) we can lose a high number of nondominated so-
lutions if the decision maker does not take into account (or
does not know) the geometrical characteristics of the true
Pareto front, (2) the extrema of the Pareto front are nor-
mally lost and (3) the upper bound for the number of points
allowed by a grid is not easy to achieve in practice. In order
to overcome some of these limitations, the concept of paε-
dominance was proposed in [7]. Briefly, the main difference
is that in paε-dominance the hyper-grid generated adapts
the sizes of the boxes to certain geometrical characteristics
of the Pareto front (e.g., almost horizontal or vertical por-
tions of the Pareto front) to increase the number of solutions
retained in the grid. This scheme maintains the good prop-
erties of ε-dominance but improves on its main weaknesses.
In [7], it is empirically shown that the advantages of paε-
dominance over ε-dominance make it a more suitable choice
to be incorporated into a MOEA and therefore our decision
of adopting this scheme for the work reported in this paper.

6. THE HYBRID METHOD: DEMORS
Our proposed approach, called DEMORS (Differential Evo-

lution for Multi-objective Optimization with Rough Sets) is
divided in two different phases, and each of them consumes
a fixed number of fitness function evaluations. During Phase
I, our DE-based MOEA is applied for 2000 fitness function
evaluations. During Phase II, a local search procedure based
on rough sets theory is applied for 1000 fitness function eval-
uations, in order to improve the solutions produced at the
previous phase. Each of these two phases is described next.

Phase I : Use of Differential Evolution
The pseudo-code of our proposed DE-based MOEA is shown
in Algorithm 1 [11]. Our approach keeps three populations:
the main population (which is used to select the parents),
a secondary (external) population, which is used to retain
the nondominated solutions found and a third population
that retains dominated solutions removed from the second
population.

Algorithm 1 Phase I pseudo-code

1: Initialize vectors of the population P
2: Evaluate the cost of each vector
3: for i = 0 to G do
4: repeat
5: Select (randomly) three different vectors
6: Perform crossover using DE scheme
7: Perform mutation
8: Evaluate objective values
9: if offspring is better than main parent then
10: replace it on population
11: end if
12: until population is completed
13: Identify nondominated solutions in population
14: Add nondominated solutions into secondary population
15: Add dominated solutions into third population
16: end for

First, we randomly generate 25 individuals, and use them
to generate 25 offspring. Phase I has two selection mecha-
nisms that are activated based on the total number of gener-
ations and a parameter called sel2 ∈ [0, 1], which regulates
the selection pressure. Both types of selection and recom-
bination operators are described in [11]. In both selections
(random and elitist), a single parent is selected as reference.
This reference parent is used to compare the offspring gen-
erated by the three different parents. Differential evolution
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does not use an specific mutation operator, since such op-
erator is somehow embedded within its recombination op-
erator. However, in multi-objective optimization problems,
we found it necessary to provide an additional mutation op-
erator in order to allow a better exploration of the search
space. We adopted uniform mutation for that sake.

Phase II : Local Search using Rough Sets
Upon termination of Phase I, we start Phase II, which de-
parts from the nondominated set generated in Phase I (ES).
This set is contained within the secondary population. We
also have the dominated set (DS), which is contained within
the third population. We want to create a grid to describe
the set ES in order to intensify the search on it. This is, we
want to describe the Pareto front in decision variable space
because then we could easily use this information to generate
more efficient points and improve this initial approximation.

Algorithm 2 Phase II pseudo-code

1: ES ← nondominated set generated by Phase I
2: DS ← dominated set generated by Phase I
3: eval ← 0
4: repeat
5: Items← NumEff points ∈ ES &NumDom points ∈ DS
6: Range Initialization
7: Compute Atoms
8: for i ← 0, Offspring do
9: eval ← eval + 1
10: ES ← Offspring generated
11: Add Offspring into ES set
12: end for
13: until 1000 < eval

From the set ES we choose NumEff points. Next, we
choose from the set DS NumDom points previously unse-
lected. These points will be used to approximate the bound-
ary between the Pareto front and the rest of the feasible set
in decision variable space. What we want to do now is to in-
tensify the search in the area where the nondominated points
reside, and refuse finding more points in the area where the
dominated points reside. For this purpose, we store these
points in the set Items and perform a rough sets iteration:
(1) Range Initialization: We build a (non-uniform) grid
in decision variable space. (2) Compute Atoms: We com-
pute NumEff rectangular atoms centered in the NumEff
efficient points. (3) Generate Offspring: Inside each atom
we randomly generate Offspring new points. Each of these
points are sent to the set ES (with a paε-dominance grid) to
check if it must be included as a new nondominated point.

7. COMPUTATIONAL EXPERIMENTS
In order to validate our proposed approach, our results are

compared with respect to those generated by the NSGA-II
[4], which is a MOEA representative of the state-of-the-art in
the area. Our approach was validated using 6 test problems:
three from the ZDT set [14] and other three from DTLZ
set [5]. In all cases, the parameters of our approach were set
as follows: Pc = 0.3, sel2 = 0.3, Pop = 25, Offspring = 1,
NumEff = 2 and NumDom = 10. The NSGA-II was used
with the following parameters: crossover rate = 0.9, muta-
tion rate = 1/num variables, ηc = 15, ηm = 20, population
size = 100 and maximum number of generations = 30. The
population size of the NSGA-II is the same as the size of
the grid of our approach, in order to allow a fair compar-
ison of results, and both approaches adopted real-numbers
encoding and performed 3000 fitness function evaluations.

SSC I1
ε+

Funct DEMORS NSGA-II DEMORS NSGA-II
Mean σ Mean σ Mean σ Mean σ

ZDT1 0.852 0.001 0.635 0.021 0.006 0.001 0.193 0.022
ZDT2 0.794 0.014 0.555 0.032 0.031 0.036 0.342 0.053
ZDT3 0.788 0.002 0.647 0.025 0.017 0.006 0.154 0.020

DTLZ1 0.997 0.0007 0.996 0.002 0.023 0.007 0.046 0.009
DTLZ2 0.941 0.0017 0.930 0.004 0.067 0.008 0.079 0.015
DTLZ3 0.996 0.0006 0.996 0.004 0.042 0.018 0.060 0.014

SDC

Function DEMORS NSGA-II
Mean σ Mean σ

ZDT1 0.008 0.004 0.051 0.010
ZDT2 0.033 0.026 0.159 0.041
ZDT3 0.091 0.016 0.073 0.005

DTLZ1 0.096 0.013 0.040 0.018
DTLZ2 0.026 0.011 0.007 0.007
DTLZ3 0.110 0.036 0.043 0.016

Table 1: Comparison of results between our DEMORS and

the NSGA-II for the ZDT and DTLZ problems adopted.

Three performance measures were adopted in order to al-
low a quantitative assessment of our results: (1) Size of the
space covered (SSC), proposed by Zitzler and Thiele [15];
(2) Unary additive epsilon indicator (I1

ε+), introduced by
Zitzler et al. [16]; and (3) Standard Deviation of Crowding
Distances (SDC) which measures the distribution of vectors
in the approximation set. A perfect distribution, that is
SDC = 0, means that the solutions are at the same crowd-
ing distance (see [3] for more details on this distance).

Discussion of Results.
Table 1 shows a summary of our results. For each test

problem, we performed 30 independent runs per algorithm.
The results reported in Table 1 are the mean values for each
of the three performance measures and the standard devia-
tion of the 30 runs performed. The best mean values in each
case are shown in boldface.

It can be seen in Table 1 that our DEMORS produced the
best mean values in all cases. The graphical results shown
in Figure 2 serve to reinforce our argument of the superi-
ority of the results obtained by our DEMORS. These plots
correspond to the run in the mean value with respect to the
unary additive epsilon indicator. The spread of solutions
of our DEMORS is evidently not the best possible, but the
quality of the spread of solutions is sacrificed at the expense
of reducing the computational cost required to obtain a good
approximation of the Pareto front. Our results indicate that
the NSGA-II, despite being a highly competitive MOEA is
not able to converge to the true Pareto front in most of the
test problems adopted when performing only 3000 fitness
function evaluations. If allowed a higher number of evalu-
ations, the NSGA-II would certainly produce a very good
(and well-distributed) approximation of the Pareto front.

8. CONCLUSIONS AND FUTURE WORK
We have presented a new local search technique inspired

on Rough sets theory to improve the results of a MOEA.
The proposed approach was found to provide very compet-
itive results in a variety of test problems performing only
3000 fitness function evaluations. Within this number of
evaluations, NSGA-II, a highly competitive MOEA, is not
able to converge to the true Pareto front in most of the
test problems adopted. This led us to conclude that Rough
Sets is a suitable tool to be hybridized with a MOEA in
order to improve the local exploration around the nondom-
inated solutions found so far. It is important to mention

1801



that the search engine needs to produce a coarse-grained
approximation of the Pareto front with only a few number
of function evaluations (as DE did in our case) to allow the
Rough sets to explote those solutions efficiently and achieved
a good approximation of the true Pareto front with a low
computational cost. As part of our future work, we intend
to improve the performance of the differential evolution al-
gorithm adopted. For that sake, choosing the parents in a
proper manner is of major importance in order to perform
a good search. Thus, we are interested in exploring other
DE schemes [13] in order to see if we can accelerate the
convergence of our search engine. We are also interested in
studying schemes that might reduce or automate (at least
partially) the parameters adopted by our approach.
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Figure 2: Pareto fronts generated by DEMORS
(left) and NSGA-II (right) for ZDT1, ZDT2, ZDT3,
DTLZ1, DTLZ2, and DTLZ3
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