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ABSTRACT
In Nature, behavioral specialization is ubiquitous. Groups
benefit from complementary and specialized behaviors in
individuals, especially in tasks requiring collective behav-
ior. We apply four multiagent NeuroEvolution approaches
to such a task: Enforced SubPopulations [5], Parallel and
Coevolutionary Enforced SubPopulations [16] and Collective
NeuroEvolution [11]. Rather than just single controllers we
evolve teams of simulated robots to search an unexplored
area and gather certain object types for collective construc-
tion of a specific sequence. Teams are composed of agents
that may evolve from initially homogeneous behavior into
specialists that effectively complement each other. Results
show that cone outperforms in the collective behavior task
when assisted with target behavior heuristics for lifetime
learning to speed up the search. Some evolved specialists
however become what we call all-rounders, taking on some
more tasks to compensate for their lack in number.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Intelligent
agents

General Terms
Algorithms
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1. INTRODUCTION
Increasingly, research is directed into finding good combi-

nations or teams of controllers with behaviors. NeuroEvo-
lution (NE) has also been investigated as a means of devel-
oping coordinated behavior in robot teams [4]. Yet most of
this work on multi-agent learning is based on homogeneous
teams, while the potential benefits of division of labor [13]
through diversity or specialization have been investigated in
only a few studies in neuroevolution. Furthermore, most
NE methods lack measures to exchange learned experience
between individuals in a multiagent collective such that spe-
cialization may still emerge as an efficient solution to collec-
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tive behavior tasks. One recent approach that does facilitate
and utilize specialization is the recently developed Collective
NeuroEvolution (cone) method introduced by [11].

This study aims to show that cone facilitates emergent
specialization so as to achieve higher levels of task perfor-
mance comparative to similar methods in a collective behav-
ior task. We compare performance of four NE approaches
in a specially designed gathering and collective construction
(gacc) task that combines the foraging and pursuit-evasion
tasks. Here, simulated rovers are to search and carry simple
objects towards a drop zone located on a hill. Challenges in
reaching this goal are that (i) the objects must be returned
in a particular sequence to achieve the task’s goal, that is, to
construct one complex object, and that (ii) carrying objects
uphill and delivering them takes at least two agents (hence
they must occasionally find and assist each other).

Besides evolving fixed, reactive behaviors that must suit
an entire lifetime, there is also an opportunity for the agents’
neural network controllers to learn during their lifetime but
only if this training is supervised using some target rules of
behavior. For complex tasks such as gacc this approach is
a bit unusual because the target behaviors reduce the flex-
ibility and creativity inherent in evolution and it requires
understanding of the specific task domain. However, early
experiments with lifetime learning showed dramatic perfor-
mance increases in the limited time available to us, making
differences in algorithmic advantages more apparent. Fur-
thermore, the lack of behavioral variety due to lifetime learn-
ing of a specific target behavior increases visibility of what
effect (lack of) specialization has on collective task perfor-
mance.

Hypothesis 1. Agent (controller) specialization improves
collective behavior task performance in the gacc task.

Hypothesis 2. cone yields a higher higher collective be-
havior task performance comparative to similar methods used
for evolving controllers to accomplish the gacc task.

2. MULTIAGENT NEUROEVOLUTION
NE methods create artificial neural networks (ANNs) for

a wide variety of applications by evolving the network’s hid-
den neurons, its topology, or both. The algorithms com-
pared here all descend from the Symbiotic Adaptive Neuro-
Evolution or sane method [10] which evolves a population of
neurons from which it constructs a neural network that has
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Figure 1: Task domain definitions.

a fixed, single-layer topology. The more advanced Enforced
SubPopulations or esp method [5] evolves neurons within
their own subpopulations which greatly improves the ability
to evolve and combine neurons that each specialize in par-
ticular features or subtasks. Collective NeuroEvolution or
cone [11] extends esp to multiple agents and allows gene
transfer between them based on a Genetic Distance metric
that measures the genetic similarity of their neuron subpop-
ulations.

Here we compare cone with three multiagent variants
of esp, which are: cloned or Mono-esp, parallel or Poly-
esp and coevolutionary or Team-esp [16]. These methods
were selected as they are very similar to cone, yet they
lack particular features regarding the ability to efficiently
evolve a cooperative team of controllers. That is, Mono-esp
evolves just one controller for all agents in the team thus pro-
ducing homogeneous behavior, Poly-esp evolves each team
member separately but focuses only on individual perfor-
mance, while Team-esp also evolves each agent separately,
this time focusing on team performance (cooperative coevo-
lution), but agents cannot learn from each other as they can
with cone. The cone method was selected given the hy-
pothesis that it encourages emergent specialization and such
specialization is beneficial for the gacc task. Mono-esp (co-
evolved clones) and Poly-esp (individualists) however may
evolve specialist behaviors but without an efficient division
of labor for successful cooperation. Team-esp on the other
hand will evolve successful collective behaviors, but finding
them will take more effort as the method lacks cone’s ability
of gene transfer among agents.

Experiments performed to answer these questions require
a common base for comparison, preferably based on open
source standards to allow future reproduction and exten-
sion. Unfortunately no such framework was available that
could accommodate the gacc task domain, provide the se-
lected NE algorithms and link them together by means of
agents that also allow lifetime learning. To have a com-
mon framework, the NeuroEvolution Simulation Toolkit1

was constructed from scratch combining well-known open-
source packages and standards such as the Evolutionary Com-
putation for Java toolkit [8] for the neuroevolution algo-
rithms, the Multi-Agent Simulation toolkit [7] for the agent
task domain, and the Weka data mining toolkit [15] for the
neural network lifetime learning algorithm.

1http://gforge.cs.vu.nl/projects/nest/

3. THE COLLECTIVE BEHAVIOR TASK
Agents are placed in a square environment and start around

a central drop point. Their task is to search and collect
objects O of different types A placed at random in an un-
explored environment before returning and dropping them
again within a certain range of the drop point. As shown
in Figure 1, the circular drop-zone resides on a hill which
agents can negotiate fine when empty. However, carrying
objects uphill and onto the drop-zone requires assistance
from another agent to help push or pull them up the slope.

The objects o ∈ O must be gathered in a particular order
as defined by the current scenario. The order concerns a
sequence of object types a ∈ A. Type 0 is distributed around
the drop point while all other types > 0 are distributed in
the environment’s corners. The reward r ∈ [0, 1] for moving
and delivering objects is calculated as the ratio of distance
objects traveled towards the drop-zone, multiplied by the
ratio of (in order) deliveries Odelivered ⊂ O:

r =

P
o∈O d(o)P

o∈O dmax(o)
× |Odelivered|+ 1

|O|+ 1
(1)

where d(o) denotes the distance between an object and the
drop-zone’s edge.

Shaping or incremental evolution is applied to the task of
finding controllers for agents that collectively deliver objects
in the correct order. Similar to other NE research [5, 16, 3]
the task is decomposed into several difficulty levels which
the NE algorithm can increase upon completion, guiding
it towards good solutions. The following conditions must
be met to complete each level: (0) each bot gathered one
object of any type, no obstacles; (1) gathered one object of
each type, no obstacles; (2) gathered one object of each type
while avoiding obstacles; (3) gathered half the sequence in
order while avoiding obstacles; and (4) gathered the entire
sequence in order while avoiding obstacles.

To control their sensors and motors, agents use an ar-
tificial neural network with sigmoid aggregation functions
in a topology of one hidden layer and two connection lay-
ers. Agents can adapt their behavior during a trial (lifetime
learning) by adapting perceptron weights (53 per neuron)
each iteration using a predefined target behavior (see Fig-
ure 2) and the BackPropagation algorithm [12, 14].

Figure 2: Target behavior for lifetime learning.
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Method N I. Best II. Diffi- III. Action IV. Degree of V. Neurons VI. Burst
Fitness culty Level Entropy Specialization Mutations

Randomized
N/A 53 3.4%± 0.1% 1.0± 0.0 0.0000G + 0.6783 −0.0000G + 0.0004 0.0268G + 9.6032 0.0664G− 1.0028
Reactive
Mono-esp 11 10.7%± 3.5% 0.6± 0.2 0.0012G + 0.1779 −0.0012G + 0.4131 0.0013G + 8.7279 0.0712G + 0.1905
Poly-esp 16 8.8%± 1.2% 0.3± 0.6 −0.0005G + 0.4189 0.0004G + 0.0784 −0.0040G + 9.6615 0.0813G− 1.2219
Team-esp 29 7.5%± 1.0% 0.1± 0.1 0.0002G + 0.2713 0.0002G + 0.2017 −0.0112G + 9.2324 0.0850G− 0.3551
cone 27 8.1%± 0.7% 0.1± 0.1 0.0003G + 0.2459 −0.0000G + 0.3390 −0.0048G + 5.0701 0.0877G + 0.0562
Adaptive
Mono-esp 12 14.9%± 3.1% 1.0± 0.3 0.0003G + 0.5038 −0.0001G + 0.1363 0.0008G + 9.3352 0.0679G + 0.2035
Poly-esp 27 12.2%± 1.0% 0.3± 0.2 −0.0004G + 0.4612 0.0001G + 0.2500 0.0115G + 9.3161 0.0723G− 1.2169
Team-esp 14 10.3%± 2.0% 0.2± 0.1 −0.0007G + 0.4569 0.0003G + 0.3174 0.0096G + 8.3262 0.0750G + 0.2297
cone 50 13.0%± 1.2% 0.6± 0.2 0.0001G + 0.3183 −0.0003G + 0.4241 0.0066G + 5.5104 0.0775G− 0.0108
Lamarckian
Mono-esp 12 42.6%± 11.0% 1.3± 0.3 −0.0002G + 0.4565 −0.0001G + 0.1988 −0.0064G + 7.4195 0.0838G− 0.0820
Poly-esp 28 32.3%± 4.5% 2.6± 0.3 −0.0000G + 0.4603 −0.0003G + 0.2170 0.0029G + 8.2605 0.0755G− 1.7044
Team-esp 37 31.3%± 2.8% 2.4± 0.4 0.0005G + 0.4688 −0.0005G + 0.1854 −0.0051G + 8.4171 0.0792G− 0.8925
cone 14 33.3%± 4.8% 3.5± 0.3 0.0007G + 0.5396 −0.0001G + 0.0420 0.0137G + 5.4645 0.0634G− 1.3839

Table 1: Results with 95% confidence intervals at G = 240 generations or linear trends for 120 ≤ G ≤ 240.

4. EXPERIMENTS
We applied the Mono-esp, Poly-esp, Team-esp and cone

methods to evolve robot controller teams for accomplishing
the gacc task in three learning setups: Reactive, Adap-
tive and Lamarckian. Reactive agents have fixed behav-
iors and only improve through the slow evolutionary pro-
cess. Adaptive agents adapt their behavior during a trial so
NE is finding individuals that learn quickly, a process biol-
ogists call the Baldwin Effect after [1]. Lamarckian agents
pass on lifetime experience directly through their genomes,
a process not actually found in Nature but suggested by [6]
and fashionable before Darwin’s Origin of Species [2] and
Mendel’s laws of inheritance [9]. Table 1 presents results
after G = 240 generations, averaged over N ≥ 10 runs. Us-
ing time series data from all runs, we performed regression
trend analysis and determine the Pearson product-moment
correlation coefficients.

Correlation pair I/III II/III I/IV II/IV
Expected (−) (−) (+) (+)
Reactive
Mono-esp −0.10 −0.33∗∗ −0.23∗∗ −0.05
Poly-esp −0.67∗∗ −0.42∗∗ 0.53∗∗ 0.13∗

Team-esp −0.73∗∗ −0.29∗∗ 0.73∗∗ 0.35∗∗

cone −0.47∗∗ −0.39∗∗ 0.26∗∗ 0.62∗∗

Adaptive
Mono-esp −0.30∗∗ −0.36∗∗ −0.55∗∗ −0.52∗∗

Poly-esp −0.73∗∗ −0.49∗∗ 0.21∗∗ 0.29∗∗

Team-esp −0.53∗∗ −0.67∗∗ 0.46∗∗ 0.43∗∗

cone −0.52∗∗ −0.59∗∗ 0.46∗∗ 0.49∗∗

Lamarckian
Mono-esp 0.44∗∗ 0.29∗∗ −0.83∗∗ −0.73∗∗

Poly-esp −0.03 −0.06 −0.68∗∗ −0.68∗∗

Team-esp 0.28∗∗ 0.57∗∗ −0.68∗∗ −0.88∗∗

cone 0.37∗∗ 0.74∗∗ −0.80∗∗ −0.85∗∗
∗p < 0.05 ∗∗p < 0.01

Table 2: Performance/specialization correlations.

Hypothesis 1 states that agent specialization improves col-
lective task performance in the gacc task. This should be
reflected by coefficients of correlation in Table 2 between
collective task performance (I. Best Fitness or II. Difficulty
Level) and agent specialization (III. Action Entropy or IV.
Degree of Specialization). Correlations I/III and II/III are
expected to be negative as performance should drop when
action unpredictability (III) rises, whereas correlations I/IV
and II/IV are expected to be positive as performance should
increase when specialization (IV) also increases.

According to the values in Table 2, Reactive and Adaptive
agents perform as expected, although in the Mono-esp cases
we see opposite correlations in Degree of Specialization (I/IV
and II/IV). These Mono-esp runs showed increased per-
formance when agents became all-rounders, switching more
(decreasing the Degree of Specialization) between fewer jobs
(decreasing Action Entropy). Lamarckian agents show re-
sults opposite from Reactive and Adaptive agents. Given
these results, we can accept Hypothesis 1 for Reactive and
Adaptive cases, but must reject Hypothesis 1 for Lamarckian
cases where agents perform significantly better when their
actions are less predictable and less focused.

Hypothesis 2 states that cone outperforms similar meth-
ods in the gacc task. That means Best Fitness and es-
pecially Difficulty Level should be significantly higher for
cone. Table 1 shows that for Reactive and Adaptive agents
cone is outperformed only by Mono-esp and performs about
the same as Poly-esp or Team-esp (see Figure 3(a), 3(b),
3(c) and 3(d)). Slightly higher Poly-esp performance values
with Reactive agents are caused by a single lucky run that
evolved a team which completed all levels. With Adaptive
agents, cone’s advantage over Poly-esp and Team-esp be-
comes somewhat better, but Mono-esp with its small search
space still outperforms cone (see Figure 3(e), 3(f), 3(g) and
3(h)). For Lamarckian agents, cone reaches a significantly
higher Difficulty Level while Best Fitness is not significantly
higher (see Figure 3(i), 3(j), 3(k) and 3(l)) indicating agents
did not move objects much further but cooperated better to
make deliveries. We can thus accept Hypothesis 2 for the
Lamarckian cases.

5. CONCLUSIONS
Results indicate that the cone method supported by heuris-

tics derives a higher collective behavior task performance in
the gacc task comparative to that of the multiagent variants
of esp. The Mono-esp method for deriving homogeneous
teams is sufficient for simple task levels that require little co-
operation, whereas for tasks that require cooperative and co-
ordinated behavior coevolutionary methods Team-esp and
cone were more appropriate. Their support for heterogene-
ity among team members allowed more complementary and
complex roles to emerge. With the cone method, teams
were able to learn target behaviors more quickly thanks to
cone’s gene transfer capability.
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Mono-esp Poly-esp Team-esp cone
Reactive agents

(a) N = 11 (b) N = 16 (c) N = 29 (d) N = 27

Adaptive agents

(e) N = 12 (f) N = 27 (g) N = 14 (h) N = 50

Lamarckian agents

(i) N = 12 (j) N = 28 (k) N = 37 (l) N = 14

Figure 3: Difficulty level results for first G = 240 generations.
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