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ABSTRACT
This work presents local dominance with alignment of prin-
ciple search direction and control of dominance area of so-
lutions to enhance selection of MOEAs, aiming to improve
their performance on multi and many objectives combina-
torial problems. We show that the methods used indepen-
dently can substantially improve either diversity or conver-
gence. Also, by including control of dominance area of so-
lutions within the local dominance algorithm, we show that
diversity and convergence can improve simultaneously while
reducing the computational cost of the algorithm.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search—Heuristic methods; G.1.6 [Numerical
Analysis]: Optimization

General Terms
Algorithms, Design, Performance

Keywords
Evolutionary multi and many objectives optimization, selec-
tion, local dominance, control of dominance area of solutions

1. INTRODUCTION
Multiobjective evolutionary algorithms (MOEAs) [1, 2]

are being increasingly applied to solve multi-objective opti-
mization problems. MOEAs aim to find a set of well dis-
tributed solutions that converge to the true Pareto front.
MOEAs based on Pareto dominance perform effectively on
problems with two and three objectives compared to con-
ventional methods. However, satisfying simultaneously con-
vergence and diversity requirements is difficult and often
we have to sacrifice one for the other, especially on com-
binatorial problems. In addition, performance of current
MOEAs drastically deteriorates for more than three objec-
tives, rapidly approaching random search as the number of
objectives increases. The reason is that the likelihood of
solutions being Pareto non-dominated gets larger just by
increasing the number of objectives, making conventional
Pareto dominance selection useless because there is no way
to rank and discriminate among solutions.

This work focuses on two methods designed to enhance
selection in MOEAs aiming to increase their effectiveness
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on multi and many objectives combinatorial optimization
problems. The first method is local dominance with align-
ment of principle search direction [3]. Local dominance in-
duces the algorithm to search for solutions along the whole
true Pareto front. However, convergence might slightly de-
teriorate in some regions. The other method is control of
dominance area of solutions (CDAS) [4], which allows cre-
ating appropriate rankings of solutions to emphasize either
diversity or convergence. CDAS is very effective in many
objectives problems, where an appropriate ranking is spe-
cially required. By including CDAS within the local domi-
nance algorithm, we show that convergence and diversity can
improve simultaneously. In addition, local dominance with
CDAS can be applied within very small neighborhoods, re-
ducing significantly the computational cost of the algorithm.
In this work we use 0/1 multiobjective knapsack problems
with up to 10 objectives and 500 items.

2. LOCAL DOMINANCE MOEA
The main steps of the local dominance MOEA [3] at each

generation are as follows:

(i) Calculate Local Dominance (LD) for each individual in
the population P(t) and assign a local non-domination
rank.

(ii) Assign a θ-crowding factor to each individual.
(iii) Truncate the population P(t) to obtain the parent

population Q(t) taking into account the local non-
dominance ranking and θ-crowding factor.

(iv) Create the offspring population R(t) from Q(t) apply-
ing Local Recombination (LR).

(v) Evaluate the offspring population Q(t).
(vi) Join the parent and offspring population to create the

new population P(t + 1) for the next generation.

2.1 Local Dominance (LD)
To calculate local dominance, first, the fitness vector of

each individual in the population P(t) is transformed to po-
lar coordinates, i.e. an individual p is expressed by a norm
rp and m−1 declination angles θ1,p, θ2,p, · · · , θm−1,p, where
m is the number of objectives. Second, the neighborhood for
local dominance SLD of individual p is temporally created
as a local sub-population by choosing the nLD closest indi-
viduals to p from the entire population P(t). Closeness δp,x

between an individual p and another individual x is deter-
mined by their declination angles as follows

δp,x =

m−1X
i=1

|θi,p − θi,x| . (1)

1811



(a) Before rotation (b) After rotation (c) Alignment

Figure 1: Neighborhood creation, its rotation, and the obtained fronts after non-dominance sorting in the
calculation of Local Dominance (LD), (a) and (b). Alignment of principle dominance direction with principle
search direction, (c).

Third, a principle search direction {θ̂1,p, θ̂2,p, · · · , θ̂m−1,p}
for the neighborhood SLD is established by calculating the
angle difference between extreme individuals in SLD. That
is,

θ̂i,p =
(θmax

i,p − θmin
i,p )

2
+ θmin

i,p (2)

where θmax
i,p = max{θi,x1 , θi,x2 , · · · , θi,xnLD

}, θmin
i,p = min

{θi,x1 , θi,x2 , · · · , θi,xnLD
}, and xj ∈ SLD. Next, the princi-

ple search direction is rotated by {θ̂1,p−π/4, θ̂2,p−π/4, · · · ,

θ̂m−1,p−π/4}, so that all its declination angles would be π/4.
Accordingly, all individuals in the local sub-population are
rotated by the same rotation angles, so their declination an-
gles would be around π/4. Finally, non-domination sorting

[1] is applied to the rotated neighborhood S
′
LD, and p is as-

signed a rank equal to the non-dominated front it belongs to.
Fig. 1 (a) and (b) illustrate for two objectives the neigh-
borhood creation, its rotation, and the fronts obtained with
non-domination sorting before and after rotation. Varying
the number of elements in the neighborhood nLD ≤ |P(t)|
we can control the degree of locality for dominance. In the
extreme, nLD = |P(t)|, we have global dominance as in the
case of conventional MOEAs.

2.2 Motivation and Expected Effect
The motivation to rotate the principle search direction

of the neighborhood is to establish more precisely local non-
domination relationships by aligning the direction where the
individuals are leading (search direction) with the direction
of their area of influence (dominance direction). The rota-
tion angle is π/4 because precisely at that angle the principle
search direction of the sub-population is coincident with the
principle dominance direction, as illustrated in Fig. 1 (c).

The rotation of the sub-population changes dominance re-
lationships among solutions, increasing the chance of select-
ing promising diverse solutions. Let us illustrate this with
an example. As shown in Fig. 1 (a), solutions a and p have
the potential to disperse the search towards the direction
of objective function f2. However, if we calculate domi-
nance with a conventional scheme, say NSGA-II [1], a and
p would be assigned a lower rank and dismissed with high
probability in the parent selection process since they appear
globally dominated by b. On the contrary, if we take into
account the principle search direction of SLD and properly
rotate declination angles, as shown in Fig. 1 (b), a and p
become non-dominated increasing the likelihood of finding
better solutions in the direction of objective function f2.

2.3 Local Recombination (LR) and θ-crowding
In our method offspring are created one at the time. First,

we specify a random principle search direction ν = {ν1, ν2,
· · · , νm−1}, where 0 ≤ νi ≤ π/2. Second, a neighborhood
for local recombination SLR is temporally created as a lo-
cal sub-population around ν by choosing the nLR closest
individuals to ν from the parent population Q(t). Here (1)
is used with ν instead of the declination angles of p, δν,x.
Third, mating is performed within the neighborhood SLR

and then recombination followed by mutation are carried
out. Binary tournament selection is used for mating, but we
enforce equal participation in the tournaments. Varying the
number of elements in the neighborhood nLR ≤ |Q(t)| we
can control the degree of locality for recombination. In the
extreme, nLR = |Q(t)|, we have global recombination as in
the case of conventional MOEAs.

θ-crowding is used to calculate the crowding factor of each
solution in our method [3]. θ-crowding is inspired from the
crowding distance procedure used by NSGA-II [1], but it is
based on declination angles rather than on fitness values.

3. CONTROL OF DOMINANCE AREA
In general, the dominance area is uniquely determined

with a fitness vector f(x) = (f1(x), f2(x), · · · ,fm(x)) in
the objective space when a solution x is given. To contract
and expand the dominance area of solutions, we modify fit-
ness value for each objective function by changing the user
defined parameter Si in the following equation

f ′i(x) =
r · sin(ωi + Si · π)

sin(Si · π)
(i = 1, 2, · · · , m) (3)

where ϕi = Si · π. This equation is derived from the Sine
theorem. We illustrate the fitness modification in Fig. 2,
where r is the norm of f(x), fi(x) is the fitness value in
the i-th objective, and ωi is the declination angle between
f(x) and fi(x). In this example, the i-th fitness value fi(x)
is increased to f ′i(x) > fi(x) by using ϕi < π/2 (Si <
0.5). In case of ϕi = π/2 (Si = 0.5), fi(x) does not change
and f ′i(x) = fi(x). Thus, this case is equivalent to the
conventional dominance. On the other hand, in case of ϕi >
π/2 (Si > 0.5), fi(x) is decreased so f ′i(x) < fi(x).

Such fitness modification changes the dominance area of
solutions. We show an example in Fig. 3, where three so-
lutions a, b and c are distributed in 2-dimensional objective
space. In Fig. 3(a), a dominates c, but a and b, and b and
c do not dominate each other. However, if we modify fitness
values for each solution by using (3), the location of each
solution moves in the objective space, and consequently the
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Figure 2: Fitness modifica-
tion

(a) S1 = S2 = 0.5 (b) S1 = S2 < 0.5 (c) S1 = S2 > 0.5

Figure 3: Conventional dominance and examples of expanding and contract-
ing the dominance area of solutions

(a) NSGA-II with CDAS (b) SPEA2 with CDAS

Figure 4: Changes in hypervolume varying the pa-
rameter S on problems with m = {2, 3, 4, 5, 7, 9, 10},
n = 500 items, and φ = 0.5 feasibility ratio

(a) NSGA-II (b) SPEA2

Figure 5: C metric by conventional Pareto dominance
(S = 0.5) and by CDAS set with optimum parameter
that maximizes hypervolume (S = S∗)

dominance relationship among solutions changes. For ex-
ample, if we use S1 = S2 < 0.5 as shown in Fig. 3(b), the
dominance area of solutions a′, b′ and c′ is expanded from
the original one of a, b and c. This causes that a′ dominates
b′ and c′, and b′ dominates c′. That is, expansion of dom-
inance area by smaller Si(< 0.5) works to produce a more
fine grained ranking of solutions and would strengthen se-
lection especially of solutions with higher projection on the
π/4 direction (middle regions of objective space). On the
other hand, if we use S1 = S2 > 0.5 as shown in Fig. 3(c),
the dominance area of solutions a′, b′ and c′ is contracted
from the original one of a, b and c. This causes that a′, b′

and c′ do not dominate each other. That is, contracting the
area of dominance by larger Si(> 0.5) works to produce a
coarse ranking of solutions and would weaken selection by
giving high rank to solutions located towards the extreme
regions.

4. RESULTS AND DISCUSSION
4.1 MOEA with CDAS

In this paper we use multiobjective 0/1 knapsack problems
and evaluate the search performance of MOEAs with the
hypervolume (HV ) and C metrics. The MOEAs are set
with population size |P | = 200, two-point crossover rate
pc = 1.0, and bit-flipping mutation rate pm = 1/n, where n
is the bit string length. We report the average performance
on 30 runs, each of which spent G = 2, 000 generations. A
constant strength S = Si(i = 1, 2, · · · , m) for all objectives
is used to control the dominance area of solutions.

First, we verify the effectiveness of CDAS on problems
with up to 10 objectives. Fig. 4 (a) and (b) show the HV
achieved by NSGA-II and SPEA2, respectively, varying the
value of the parameter S in the range [0.25, 0.75] in inter-
vals of 0.05. In these figures, the HV values are normalized
so that the values achieved with conventional Pareto domi-
nance (S = 0.5) are always 1.0.

From these figures important observations are as follows.
First, for each number of objectives there is an optimum
value S∗ that maximizes HV , which is higher (better) than
the HV achieved by conventional dominance at S = 0.5.
Second, maximum values of HV are achieved for m = {2, 3}
objectives by contracting the dominance area of solutions
(S > 0.5) (weakening selection pressure), whereas for m ≥ 4
the maximum HV values are achieved by expanding the
dominance area of the solutions (S < 0.5) (strengthening se-
lection). As a general tendency, the optimum parameter S∗

that maximizes HV gradually shifts towards smaller values
as we increase the number of objectives. Third, the increase
in HV by CDAS is most significant for m = {9, 10} objec-
tives. Fourth, SPEA2 shows a relative improvement larger
than NSGA-II when the number of objectives increases.

To analyze with more detail the increase in HV by CDAS,
Fig. 5 (a) and (b) show the values of the C metric by con-
ventional Pareto dominance (S = 0.5) and by CDAS set with
the optimum parameter that maximizes HV (S = S∗). Note
that in m = {2, 3} objectives, most solutions obtained with
controlled dominance (S = S∗) are dominated by solutions
obtained with conventional dominance (S = 0.5). Thus, for
m = {2, 3} the increase of HV by using S∗ > 0.5, which
contracts dominance area of solutions making parent selec-
tion weaker, is due to a better diversity of solutions at the
expense of convergence. On the other hand, for m ≥ 4, so-
lutions by controlled dominance (S = S∗) dominate almost
all solutions found by conventional dominance (S = 0.5).
Thus, for m ≥ 4 the increase of HV by using S∗ < 0.5,
which expands dominance area of solutions making parent
selection stronger, is due to a better convergence. Note that
a similar tendency is observed in both NSGA-II and SPEA2.

4.2 Local Dominance MOEA with CDAS
We examine the performance of the local dominance MOEA

including CDAS after rotation of the principle search direc-
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(a) KP500-2 (b) KP500-3

(c) KP500-4 (d) NSGA-II

(e) nLD = 60, S = 0.50 (f) nLD = 3, S = 0.40

Figure 6: Results on Hypervolume (a)-(c). Final
population obtained in a single run (d)-(f), KP500-
2
tion, before non-domination sorting of the local population.
Here we use problems with m = {2, 3, 4} objectives set-
ting population sizes to |P | = {200, 600, 600} and recom-
bination neighborhood-size nLR = {10, 4, 4}, respectively.
Results on HV are shown in Figure 6 (a)-(c) for dom-
inance neighborhood-size nLD = {3, 5, 10, 20, 30, 60, 100}.
The horizontal lines in the figures show results by conven-
tional NSGA-II.

First, looking at S = 0.5 (on the dotted vertical line), we
can see results by the algorithm that includes local domi-
nance, but ranks solutions using conventional-Pareto domi-
nance. Note that the local dominance MOEA achieves sig-
nificantly better HV than conventional NSGA-II even when
very small neighborhoods are used. Second, comparing with
the results at S = 0.5, we can see that local dominance
with expansion of dominance area of solutions (S < 0.5)
can achieve higher values of HV . Note that this effect is
more notorious for m = {3, 4} objectives than for m = 2 ob-
jectives. Third, expansion of dominance area of solutions
allows significant reductions on the size of the neighbor-
hood, which reduces computation time of the local domi-
nance MOEA. Note that the dominance neighborhood-sizes
that maximize HV are nHmax

LD = {60, 100, 100} by local
conventional-Pareto dominance (S = 0.5), and nHmax

LD =
{3, 3, 30} by local dominance with expansion of dominance
area (S < 0.5) for m = {2, 3, 4} objectives, respectively.

Increases on HV can be due to better diversity and/or

Algorithms’ parameters
Objectives

Algorithm m = 2 m = 3 m = 4
A nLD = 60, S = 0.5 nLD = 100, S = 0.5 nLD = 100, S = 0.5
B nLD = 3, S = 0.4 nLD = 3, S = 0.3 nLD = 30, S = 0.4

Results on C metric
Objectives

C m = 2 m = 3 m = 4
C(A, B) 0.172414 0.000000 0.006740
C(B, A) 0.689840 1.000000 0.818259

Table 1: Results on C metric by local dominance
MOEA with and without expansion of dominance
area of solutions

to better convergence. To analyze this better, Figure 6
(d)-(f) plot the final population of solutions obtained in a
single run by three algorithms. From Figure 6 (d) note
that NSGA-II’s solutions converge close to the true Pareto
front, but cover only a very narrow region of it. From Fig-
ure 6 (e) we can see that the local dominance algorithm
(S = 0.5, nHmax

LD = 60) can find solutions covering the
whole true Pareto front. Furthermore, as shown in Figure
6 (f), by including expansion of dominance area of solutions
within the local dominance algorithm (S = 0.4,nHmax

LD = 3),
the good diversity properties can be kept while converging
closer to the true Pareto front. Moreover, Table 1 shows
results on the C metric obtained with dominance neigh-
borhood sizes that maximize HV nHmax

LD . From the table,
looking at C(B, A) values, we can see that most solutions
obtained without expansion (S = 0.5) are dominated by
solutions obtained with expansion of dominance area of so-
lutions (S < 0.5), i.e. 70%, 100%, and 82% on m = {2, 3, 4}
objectives, respectively. These results confirm that the gain
on HV is mostly due to a better convergence by including
expansion of area of dominance of solution within the local
dominance MOEA.

5. CONCLUSIONS
In this work we have presented local dominance with align-

ment of principle search direction and control of dominance
area of solutions to enhance selection in MOEAs. We ver-
ified that the methods can substantially improve either di-
versity or convergence in problems with up to 10 objectives.
Also, by including control of dominance area of solutions
within the local dominance MOEA, we showed that diver-
sity and convergence can be improved simultaneously while
reducing computational time. As future works, we would
like to study the combined method on continuous problems
and apply it to real world applications.
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