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ABSTRACT 
Premature convergence is a persisting problem in evolutionary 
optimisation, in particular – genetic algorithms. While a number of 
methods exist to approach this issue, they usually require problem 
specific calibration or only partially resolve the issue, at best by 
delaying the premature convergence of an evolving population. 
Analytical models in biology show that resiliently diverse 
populations evolve on high-dimensional fitness landscapes with 
“holey” rather than “rugged” topographies, but the implications for 
artificial evolutionary systems remain largely unexplored. Here I 
show how holey fitness landscapes (HFLs) can be incorporated in 
an evolutionary algorithm and use this approach to investigate the 
ability of HFLs to maintain genetic diversity in an evolving 
population. The results indicate that an underlying HFL can 
counteract premature genetic convergence and sustain diversity. 
They also suggest that HFL may provide a flexible mechanism for 
dynamic creation and maintenance of subpopulations that 
concentrate their evolutionary search in different regions of the 
solution space. Finally, I discuss on-going work on using the HFL 
model in optimisation problems. 

Categories and subject descriptors: G.1.6 [numerical analysis] 
Optimisation – global optimisation, stochastic programming. 

General terms: algorithms, performance, theory. 

Keywords: evolutionary algorithm, genetic algorithm, holey fitness 
landscape, gene flow, premature convergence, reproductive 
isolation. 

1. INTRODUCTION 
Premature convergence is a common problem in genetic and other 
evolutionary algorithms. A number of approaches have been 
introduced to counter against it, however, solutions are often case-
specific and the general mechanisms that maintain diversity in 
natural populations are not well understood. In nature, populations 
often maintain a resilient genetic diversity under strong selection 
pressures, and various generic approaches to achieving this effect in 
evolutionary optimisation have been based on mechanisms thought 
to facilitate the maintenance of diversity in nature. Most of these 
methods are variants of the so-called niching approach [1] (e.g. 
crowding [2], sharing [3], island model [4]). Other approaches 
attempt to vary environmental factors such as maximum population 
size [5], or the evolutionary goal [6], however the latter processes 
are not always present in diverse natural populations. 

In general, niching aims to introduce a degree of reproductive 
isolation (RI) between groups of candidate solutions in order to 
concentrate the evolutionary search on different regions of the 

solution space. A recurring difficulty in applying niching-based 
algorithms is that the optimal degree of RI and the number of 
reproductively isolated groups (RI groups) are usually problem-
specific and must be artificially tuned or set arbitrary. In addition, 
while often successfully delaying or slowing premature 
convergence, niching algorithms are rarely successful at preventing 
it completely [1]. This difficulty corresponds to a number of results 
from theoretical biology: In biological terms, niching introduces 
prezygotic RI, i.e. RI caused by not mating with members of other 
groups rather than by offspring inviability. However, the 
maintenance of sustained prezygotic RI presents a theoretical 
challenge for biologists: Prezygotic RI based on ecological 
divergence or physical barriers is often transient, collapsing when 
selection pressures change. In addition, even moderate migration 
between populations leads to high gene flow making the extinction 
or merging of RI groups likely [7]. On the contrary, RI is likely to 
be sustained once postzygotic reproductive barriers have evolved 
and genetic incompatibilities make hybrid viability unlikely [7]. 

Recent advances in theoretical biology suggest that assumptions 
about the relative fitness of individuals have profound implications 
for our understanding of the above problems [8]. In particular, 
Gavrilets and Gravner [9] showed that when fitness landscapes have 
high dimensionality (as is likely for real organisms as well as for 
many computational problems), the topology of the landscape 
changes from “rugged” to “holey”. However, integrating such holey 
fitness landscapes into computational models remains a challenge. 

In this study, I briefly examine the notion of the holey fitness 
landscape (HFL) and its implications for genetic diversity. I outline 
a method for integrating HFL genetics into an evolutionary 
algorithm. Using this method, I explore conditions for maintenance 
of genetic variation and reproductive isolation in an artificial 
evolution. Finally, I discuss on-going work [7, 10, 11] on potential 
applications to concrete optimisation problems.  

2. HOLEY FITNESS LANDSCAPES 
The notion of a holey fitness landscape (HFL) was introduced by 
Gavrilets [8, 9, 12]. Generally, a HFL is “an adaptive landscape 
where relatively infrequent high-fitness genotypes form a 
contiguous set that expands throughout the genotype space” [12]. 

To build some intuition for this model, first recall a few results 
from percolation theory which play an important role in the 
analytical treatment of HFLs. Consider a 2-dimensional lattice of 
cells which can assume one of two states: “black” or “white” (figure 
1). Let every cell be black with some probability p independently of 
all other cells, or white with probability 1 – p. If p is small, the 
lattice will contain a few black cells, which may be grouped in a 
number of small, isolated clusters. As p increases, these clusters 
grow and merge. Once p crosses a certain threshold pc, most of the 
black cells merge together into a single giant cluster that percolates 
the whole lattice (figure 1). For a 2-dimensional square lattice this 
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percolation threshold is known to be pc ≈ 0.5927 [13]. However, for 
lattices of higher dimensions the percolation threshold lies around 
the reciprocal of the lattice dimension [14], meaning that for a high 
dimension lattice a small proportion of black cells is sufficient for 
the emergence of a giant percolating cluster of connected black 
cells. 

For the HFL model, a genotype is assumed to be viable with 
probability p independent of all other genotypes, and inviable with 
probability 1 – p. For the purpose of this discussion, the exact 
fitness of a genotype is irrelevant, thus let the fitness of all viable 
and inviable genotypes be 1 and 0 respectively. Consider all 
possible (haploid) genotypes with L loci and A alleles at each locus 
ordered in an abstract genotype space, in which the distance 
between the genotypes describes the ease of transformation from 
one genotype to another. The dimensionality of this genotype space 
is D = L × (A – 1), and the corresponding percolation threshold is 
p  = 1/ Dc . Even for short genotypes (on biological scales) a 
relatively small value of p will result in an extensive network of 
high-fitness ridges extending through the genotype space (e.g. for L 
= 105 and A = 5, pc ≈ 20 × 10-7). The traditional picture of rugged 
highly-dimensional fitness landscapes is therefore misleading, as 
these landscapes are characterised by the existence of percolating 
nearly neutral networks. These high fitness networks are important 
as adaptive walks along such networks can proceed far without any 
substantial loss to fitness. 

There are a number of analytic models of HFLs (e.g. see [8, part 
1]), however the application of this concept to simulation and 
computational scenarios is largely unexplored. One of the reasons 
for this gap can be attributed to difficulties in the implementation of 
HFL-models. The difficulties arise because the space and the time 
complexity of computing an appropriate set of viable genotypes is 
in the order of AL. In [7] and [10] my colleagues and I discuss this 
issue in detail and outline an algorithm that allows creating an HFL 
for large L using a desktop computer within a few minutes. In short, 
a set ’ ∈  is created, where  is the set of all genotypes of length 
L and ’ is a connected percolating subset that is uniformly 
distributed in . The diallelic genotypes are represented as bit-
strings and stored in a manner that allows an efficient 
implementation of a function viable(G) that takes an arbitrary bit-
string and returns true iff G ∈ ’. 

 

3. SIMULATION MODEL 
My objective is to investigate the extent to which HFL can sustain 
existing RI (and therefore, diversity) between spatially isolated sub-
populations under different levels of migration. For this I created a 
simulation model (previously introduced in [7]) in which individuals 
are located on a homogeneous landscape consisting of a cell-grid. 
Individuals, whose fitness (viability) is defined by the HFL, mate 
with other individuals within the same cell and then migrate to a 

neighbouring cell with a certain probability. The lifecycle of the 
individuals is reproduction – selection – migration and  generations 
are non-overlapping. As common in biological models (e.g. [15]), I 
use a number of neutral loci to measure the level of gene flow 
between the populations in different cells for different migration 
rates. 

Here I give the parameter values used in the experiments. For 
motivation of particular values and sensitivity analysis see [7]. 
Representation: Individuals are represented by their genotype, 
which consists of a coding section and a neutral section. The coding 
section consists of LC = 26 diallelic loci that code for vital traits. 
The coding section of a genotype is used as a parameter to the 
viable function of the HFL described at the end of the previous 
section. This function is used to determine whether an individual is 
viable. The neutral genotype section consists of 
LN = 5 loci with AN = 128 different alleles possible at each locus. 
The neutral loci do not affect the fitness (viability) of an individual 
and are used to measure the genetic divergence. 

Reproduction: Each individual is selected once as a mother and a 
partner is selected randomly from the same cell. The offspring 
genotype is determined through free recombination. Mutation is 
applied with probability pM = 10-4 per locus. If a coding locus is 
mutated, its binary value is flipped. The neutral loci are subject to a 
circular stepwise mutation model [16].  

Selection: All individuals within a single cell of the spatial 
landscape compete to reach the age of reproduction. A landscape 
cell provides enough resources for the survival of Cmc = 250 mature 
individuals. If a cell is inhabited by more than Cmc individuals, Cmc 
viable individuals are selected with equal probability and the rest are 
discarded (as in this HFL model a particular individual is either fit 
or inviable). 

Dispersal: To avoid edge artefacts the landscape is represented as a 
torus. Initially, migration between the cells is disabled and the 
model is iterated for 100,000 generations in order to allow the allele 
distribution to reach equilibrium. Then, migration is permitted at a 
specific rate (see results section) and the model is iterated for 
300,000 further generations. 

A quantity of prime interest in this model is the number of 
reproductively isolated groups (RI groups) present in the model at 
any one time as well as various attributes of such groups. The aim is 
to detect groups of genotypes that could mate successfully, not 
groups of individuals who actually do so. In order to cluster the 
genotypes of a population into RI groups I employ the Markov 
Clustering algorithm (MCL) [17]. The details of this approach and 
an analysis of the applicability of the results is given in [7]. On the 
basis of the RI groups, the average genetic divergence in neutral loci 
between the groups is measured using the fixation index Fst [18]. 
This measure is close to 1 when the RI groups in the population 
exhibit a strong genetic divergence at neutral loci and close to 0 
when no significant divergence is present [7]. For each of the 
scenarios discussed below 10 independent model runs were 
performed and the results were averaged. 

 
Figure 1. Percolation on a square lattice. The cells are black 
with probability p = 0.1 (left), p = 0.3 (middle) and p = 0.6 (right). 

4. SIMULATION RESULTS 
Consider first the 2×2 grid layout. As a basis for comparison a set of 
runs with a migration rate of 0% was performed. As expected, the 
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number of RI groups corresponds to the number of cells and the 
divergence at neutral loci grows (Fst ≈ 1) (figure 2)1.  
 In the next scenario the migration rate was increased to 1% after 
the first 100,000 generations. This lead to a slight increase in the 
number of distinct coding sections in the population which is due to 
viable hybrids resulting from breeding with immigrants. Some of 
these hybrids spontaneously form RI groups, however such groups 
cannot persist due to low population numbers in comparison to 
native populations. These viable hybrids facilitate a limited gene 
flow between the populations: after 300,000 generations Fst has 
decreased to ca. 0.8 (figure 2.D). 

In the next scenario the migration rate was set to 5%. 
Qualitatively, the results are similar to the 1% scenario. 
Quantitatively, the gene flow between the populations is higher (Fst 
falls to ca. 0.7, not shown). The higher migration rate leads to an 
increased probability for formation of RI hybrid groups (figure 2.A). 
Genetic drift within a larger number of RI groups as well as 
hybridisation between more diverse individuals lead to a larger 
number of coding genotype sections in the population (figure 2.B) 
and to a higher rate of discovering new viable adaptations (figure 
2.C). Further rises in the migration rate to 15% and 20% (figure 2) 
increase the strength of the above effects.  

When the migration rate is set to 25% or more RI can no longer 
be sustained. A large number of reproduction events that lead to 
inviable offspring implies a high chance of extinction for any native 
cell population. As seen in figure 2.A only one RI group remains 
under 25% migration. Sporadically small RI groups arise due to 
drift, but do not persist long enough to achieve a significant 
divergence at neutral loci (figure 2.D). The main population evolves 
as a single RI group and the number of distinct coding sections in 
the population is small (figures 2.B & 2.C). 

Next, the above experiments were repeated on a 1×2 grid. In 
large, the model behaviour is similar, however the migration rate 
has a larger impact on the smaller landscape. Readily a migration 
rate of 1% causes Fst to decrease to ca. 0.5 after 300,000 
generations of migration (not shown here, but see figure 5.C in [7]). 
A migration rate of 10% causes the generic divergence of the two 
RI groups to decrease to insignificant levels within 50,000 
generations of migration. However, RI can be sustained at up to 
15% migration – the number of RI groups stays around 2 which 
shows that the significant gene flow is not sufficient to break RI. At 
20% migration, RI collapses rapidly and the entire model population 
evolves as a single reproductive group (figure 5 in [7]). Next, the 
experiments were repeated on a 3×3 grid (not shown here). As 
expected, a larger grid makes it possible to sustain RI at higher 
migration rates. At 30% migration RI is sustained and the number of 
RI groups lies above 40. At 35% migration, RI collapses in a way 
similar to the previous scenarios. 

As a basis for comparison, all of the above experiments were 
repeated without the HFL. In these runs all individuals are viable 
and selection is thus random. The detailed results of these control 
runs are presented in [7]. In summary, for a migration rate of 0%, 
gene divergence is clearly measurable and grows with time. 
However, for all grid sizes, a migration rate of 1% is sufficient to 
cause gene divergence to rapidly drop to a value around zero. 

                                                                 
1 The graphs in this paper were created and processed using the LiveGraph 

exploratory data analysis and visualisation framework [19].  

 

 

 

 
Figure 2. Evolution on a 2×2 grid for the migration rates 0% (red), 
1% (orange), 5% (green), 15% (blue), 20% (red) and 25% (blue). 
Data averaged over 10 runs. Some values omitted for clarity.  
A (top): The number of RI groups increases when the migration rate is 
higher. For very high migration rates the whole model population 
collapses into a single reproductive group.  B (2nd from top): The number 
of distinct coding genotype sections in the population increases when the 
migration rate is high. As the population collapses to a single reproductive 
group at very high migration rates, the number of coding sequences falls.  
C (3rd from top): The rate of evolving new viable coding genotype 
sections increases when migration rate is higher due to drift in a larger 
number of IR groups and due to hybridisation between more RI groups. 
As the population collapses into a single reproductive group at very high 
migration rates, the turnover rate of coding sequences falls.  D (bottom): 
Genetic divergence between RI groups measured using the fixation index. 
Higher migration rates lead to increased gene flow and thus lower genetic 
divergence. 
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5. DISCUSSION AND FUTURE WORK 
The above results have important implications for the design of 
genetic and other evolutionary algorithms. Whereas in nature the 
“holey” structure of HFLs arises implicitly through gene 
incompatibilities, here the HFL was modelled explicitly. This 
explicit model may be used to support and, in some circumstances, 
to replace traditional niching algorithms. In particular, the island 
model [4] bears close resemblance to the current approach. In the 
present model the neutral loci were only used to measure genetic 
divergence, however, in a genetic algorithm they may be used to 
encode candidate solutions instead. The small effect of an increasing 
migration rate on the number of RI groups observed here implies 
that some hybrid populations exhibit real RI and are not simply 
fuelled by repeated hybridisation with immigrants. In population 
biology, hybrid populations that have strong genetic 
incompatibilities with the main population (such as those caused by 
HFL-genetics) are thought to be most stable [7]. In the current 
simulations such populations are short-lived because their small 
initial population size and the absence of prezygotic isolation make 
it unlikely that they successfully reproduce for a large number of 
consecutive generations. However, in the presence of a free niche, 
these hybrid groups can reproduce and persist. Such a niche may be 
given by under-explored areas of the solution space of an 
optimisation problem. Thus, the current model may be used as a 
mechanism for dynamic discovery and maintenance of multiple 
search directions in genetic and other evolutionary algorithms. 
Further experiments are necessary to verify how this approach 
performs for particular optimisation problems. 

As mentioned above, the HFL model discussed here is explicit, 
while in nature, HFL arises implicitly because the majority of 
biochemically possible genotypes gives rise to inviable phenotypes. 
It is important to note that this is paralleled by many optimisation 
problems in which a valid solution encoding can result in an illegal 
or irrelevant solution. For instance, candidate solutions to the 
travelling salesman problem that contain incomplete loops or 
duplicate stops are inviable. Candidate solutions to multiobjective 
optimisation problems that conflict with one or more constrains can 
also be assumed inviable. Evolutionary search for problems for 
which viable genotypes (representations) build a connected cluster 
is carried out on a HFL. In such cases, the coding genes must not be 
considered either viable or inviable, as was the case here. Instead, 
the fitness of viable genotypes must be differentiated to express the 
goodness of a viable candidate solution. A better understanding of 
structure and dynamics of HFLs may provide new insights for the 
solution of such problems. A step in this direction has been 
undertaken in [10], where I provide a numerical analysis of a 
biological niche model with HFL genetics. 
 Natural populations evolving on HFLs have not evolved 
according to the aim of optimising the performance in some specific 
task. Similarly, it is not immediately clear that HFL-models will 
improve the performance of algorithms in the sense that better 
solutions may be found faster. Carefully engineered artificial 
methods can be expected to perform better for such measures. 
However, evolution on HFLs in nature leads to diverse populations 
that perform robustly under unexpected disturbances and are able to 
adapt to unforeseen circumstances. It is this type of tasks where 
engineering methods often fail and where HFL-based methods may 
yield a substantial benefit. 

The notion of holey fitness landscapes, while largely 
unchallenged in biology, has arguably received insufficient attention 
from computer scientists. The current model shows that simulating 
plausible fitness landscapes can considerably change predictions 
about the maintenance of diversity and the emergence of new 
adaptations (novel solutions). Representing fitness landscapes in a 
biologically plausible way may facilitate ongoing adaptive 
exploration and the continuous generation of novelty in evolving 
problem solutions. The approach described here may be useful in 
further exploring these issues and in developing more flexible and 
powerful genetic and other evolutionary algorithms.  
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