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ABSTRACT

Proportional integral derivative (PID) controller tuning is an
area of interest for researchers in many disciplines of science
and engineering. This paper presents a new algorithm for
PID controller tuning based on a combination of the foraging
behavior of F coli bacteria foraging and Particle Swarm Op-
timization (PSO). The E coli algorithm depends on random
search directions which may lead to delay in reaching the
global solution. The PSO algorithm may lead to possible
entrapment in local minimum solutions. This paper pro-
posed a new algorithm Bacteria Foraging oriented by PSO
(BF-PSO). The new algorithm is proposed to combines both
algorithms’ advantages in order to get better optimization
values. The proposed algorithm is applied to the problem
of PID controller tuning and is compared with conveniently
Bacterial Foraging algorithm and Particle swarm optimiza-
tion.

Categories and Subject Descriptors: 1.2 [Computing
Methodologies]: ARTIFICIAL INTELLIGENCE; 1.2.8 [Prob-
lem Solving, Control Methods, and Search]: Control theory

General Terms: Algorithms, Performance.

Keywords: Bacterial Foraging, Particle Swarm Optimiza-
tion, Tuning of PID controller.

1. INTRODUCTION

As a result of extensive investigation to devise methods of
choosing optimum controller setting for the PID controller,
Ziegler and Niclhols showed how they could be estimated us-
ing open and closed loop tests on the plants. The method is
referred to as ZN rules. The ZN setting usually experiences
excessive overshoot of the plant response. With the ease of
computation, numerical optimization methods become sig-
nificant in devising formula for PI and PID controller pa-
rameter tuning. The squared error integral criteria are the
most common for such optimization.

Several optimization techniques using the swarming prin-
ciple have been adopted to solve a variety of engineering
problems in the past decade. Ant Colony Optimization
(ACO) was introduced around 1991-1992 by M. Dorigo and
colleagues as a novel nature-inspired metaheuristic for the
solution of hard combinatorial optimization problems. Fa-
rooq et al developed a bee inspired algorithm for routing
in telecommunication network. The work is inspired by
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the way these insects communicate. Swarming strategies
in bird flocking and fish schooling are used in the Parti-
cle Swarm Optimization (PSO) introduced by Eberhart and
Kennedy [1]. A relatively newer evolutionary computation
algorithm, called Bacterial Foraging scheme has been pro-
posed and introduced recently by K.M.Passino [2].

In this paper, the use of both PSO and (E coli) based
optimization for PID parameter tuning is investigated. A
new algorithm bacterial foraging oriented by particle swarm
optimization (BF-PSO) is proposed that combine the above
mentioned optimization algorithms.

2. BASIC PARTICLE SWARM OPTIMIZA-
TION (PSO)

The Particle Swarm Optimization (PSO) model [1] con-
sists of a swarm of particles, which are initialized with a
population of random candidate solutions. They move iter-
atively through the d-dimension problem space to search the
new solutions. Each particle has a position represented by a
position-vector X} where (i is the index of the particle), and
a velocity represented by a velocity-vector Vii. Each particle
remembers its own best position P},..;. The best position
vector among the swarm then stored in a vector Pl pa-
During the iteration time k, the update of the velocity from
the previous velocity to the new velocity is determined by.

Vki+1 = Vkl +01R1 (Pli/best - Xlz:) +02R2(Pélobal - Xllc) (1)

The new position is then determined by the sum of the
previous position and the new velocity.

Xli+1 =X + vlci+1 (2)

Where R; and Rz are random numbers. A particle decides
where to move next, considering its own experience, which
is the memory of its best past position, and the experience
of the most successful particle in the swarm .

3. BASIC BACTERIAL FORAGING OPTI-
MIZATION (BF)

The selection behavior of bacteria tends to eliminate poor
foraging strategies and improve successful foraging strate-
gies. After many generations a foraging animal takes actions
to maximize the energy obtained per unit time spent forag-
ing. This activity of foraging led the researchers to use it
as optimization process. The E coli bacterium has a control
system that enables it to search for food and try to avoid



Noxious substances. The bacteria distributed motion can
modeled as the following four stages:

3.1 Swarming and Tumbling via flagella (v,)
The flagellum is a left-handed helix configured so that as

the base of the flagellum (i.e. where it is connected to the
cell) rotate counterclockwise, as shown in figure 1-a
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Figure 1: E coli bacteria while it’s swimming or tum-
bling

from the free end of the flagellum looking toward the cell,
it produces a force against the bacterium pushing the cell.
This mode of motion is called swimming. Bacteria swims
either for maximum number of steps N or less depending
on the nutrition concentration and environment condition.
But if the flagellum rotate clockwise each flagellum pulls
on the cell as shown in figure 1-b, so that the net effect
is that each flagellum operates relatively independently of
the others and so the bacterium “tumble”. Tumbling mode
indicates a change in the future swim direction. Alternates
between this two modes of operation in the entire life time.

3.2 Chemotaxis (N.)

A chemotaxis step is a set of consequence swim steps fol-
lowing by tumble. A maximum of swim steps with a chemo-
tactic step is predefined by N,. The actual number of swim
steps is determined by the environment. If the environment
shows good nutrients concentration in the direction of the
swim, the (E. Coli) bacteria swim more steps. The end of
the chemotactic step is determined by either reaching the
maximum number of steps N or by reaching a poor envi-
ronment. When the swim steps is stopped a tumble action
takes place.

To represent a tumble, a random unit length vector with
direction Delta(n,i) is generated. where j be the index for
the chemotactic step, i is the index of bacterium that has
the maximum number of bacteria S. This vector is used to
define the direction of movement after a tumble. Let N,
be the length of the lifetime of the bacteria as measured by
the number of chemotaxis steps they take during their life.
Let ¢¢ > 04 = 1,2,...,S denote a basic chemotactic step
size that we will use to define the lengths of steps during
runs. The step size is assumed to be constant. The position
of each bacterium is denoted by P(n,1,j, k, ell) where n is
the dimension of search space, k is the index of reproduction
step and ell is the index of elimination-dispersal events. The
new bacterium position after tumbling is given by.

P} i1 ke = P jken + Delta(n,i) ¢ (3)
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3.3 Reproduction (»,.)

After N. chemotactic steps, a reproduction step is taken.
Let N,. be the number of reproduction steps to be taken.
For convenience, we assume that S is a positive even integer.
Let

68

° (1)

be the number of population members who have had suffi-
cient nutrients so that they will reproduce (split in two) with
no mutations. For reproduction, the population is sorted in
order of ascending accumulated cost (higher accumulated
cost represents that it did not get as many nutrients during
its lifetime of foraging and hence, is not as “healthy” and
thus unlikely to reproduce). The S, least healthy bacteria
die and the other S, healthiest bacteria each split into two
bacteria, which are placed at the same location.

3.4 Elimination and dispersal (V.,)

Elimination event may occur for example when local sig-
nificant increases in heat kills a population of bacteria that
are currently in a region with a high concentration of nu-
trients. A sudden flow of water can disperse bacteria from
one place to another. The effect of elimination and disper-
sal events is possibly destroying chemotactic progress, but
they also have the effect of assisting in Chemotaxis, since
dispersal may place bacteria near good food sources.

The bacterial foraging algorithm has been tested for con-
trol applications like harmonic estimation for a signal dis-
torted with additive noise [3], and adaptive control [2]. The
combination of bacteria foraging and genetic algorithm is
used to tune a PID controller of an automatic voltage reg-
ulator [4]. In this paper (E coli) is used for tuning PID
controller of the plant transfer function and the results are
reported.

4. BACTERIAL FORAGING OPTIMIZATION

ORIENTED BY PARTICLE SWARM OP-
TIMIZATION

The (BF-PSO) combines both algorithms BF and PSO.
This combination aims to make use of PSO ability to ex-
change social information and BF ability in finding a new
solution by elimination and dispersal.

For initialization, the user selects S, Ns, N¢, Nye, Ned,
P.q, C1, C2, R1, Ro and ¢(3),7 = 1,2...S. Also initialize the
Position P} 1 ;1,4 =1,2...5 and Velocity randomly initial-
ized. The (BF-PSO) models bacterial Population Chemo-
taxis, swarming, reproduction, elimination and dispersal ori-
ented by PSO is given below (Initially, j = k = ell = 0).
Implicit subscribes will be dropped for simplicity.

1. Initialize parameters n, S, Nc, Ns, Nyre, Ned, Ped,
c(i)(i=1,2...85), Delta, C1, C2, R1, R2. where,

e n : Dimension of the search space,

e S : The number of bacteria in the population,
Sy : Half the total number of bacteria ,

N, : Maximum number of swim length,

N. : Chemotactic steps,

Nre : The number of reproduction steps,



Negq : Elimination and dispersal events,
e P.; : Elimination and dispersal with probability,
e ¢(i) : The step size taken in the random direction,
C1,C2 : PSO random parameter,

e R1,R2: PSO random parameter.

2. Generate a random direction Delta(n,i) and position.

For (ell=1 to Ned)

For (k=1 to Nre)

For (j=1 to Nc)

For (i=1 to S)

Evaluate the cost function

J(i,7) = Func(P(4,7))

Store the best cost function in Jlast

Jlast J(i,7)

The best cost for each bacteria will be
selected to be the local best Jlocal

Jlocal(i,7) Jlast(i,7)

Update position and cost function

P(i,j+1) = P(i,j)+c(i)*Delta(n, i)

J(i,j5+1) Func(P(¢,j+1))

while (m < Ns)
If J(i,j+1) < Jlast
then

Jlast

J(i,5+1)

Update position and cost function

P(i,j+1) P(i,j+1)+c(4)«xDelta(n, i)

J(i,7+1) Func(P(7,j5+1))

Evaluate the current position and local cost
for each bacteria

Pcurrent(i,j+1) P(i,j+1)

Jlocal(i,j41) Jlast(i,7+1)

else

Pcurrent(i,j+1) P(i,j+1)

Jlocal(i,j+1) Jlast(i,j5+1)
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end if

m 1

m +

end while

next 4 ( next bacteria )
Evaluate the local best position (Plbest) for
each bacteria and global best position (Pgbest).

Evaluate the new direction for each bacteria

V =w * V 4+ ClxRI( Plbest—Pcurrent)+
C2 x R2(Pgbest—Pcurrent)

Delta =V

next j (next chemotactic)

for (i =1 to S5)
. Ne+1
J}Zzealth = Z (ivjak‘vell)
j=1
end
The Sr bacteria with the highest Jhealth

remove and the other Sr bacteria with
the best values copies.

next k (next reproduction)

With probability Ped, eliminates and
disperse each bacterium.

next ell (next elimination )

5. PID TUNING BY PSO, BF AND (BF-PSO)

The prime objective of this work is to test the perfor-
mance of the developed bacterial foraging oriented by par-
ticle swarm optimization algorithm PID controller tuning.

Attempt has been made to achieve globally minimal error
squared error integral criteria in the step response of a pro-
cess which is cascaded with PID controller by tuning the K,
proportional gain, K; integral gain and K, differential gain
values.

Usually, the choice of the controller coefficients is imple-
mented by approximate methods, which in turn will not
guarantee globally optimal solution for control applications.
The values of K, K; and Kg derived through the BF, PSO
and (BF-PSO) methods after ensuring the presence of all
the poles of the transfer function confined to the left half of
the S plane.

The performance of the developed algorithm is tested with
transfer functions of systems of different orders. The cost
function here is the square of integral error. The closed
loop PID controller cascaded with the process is tuned for
values K, K; and K4. Results obtained by using (BF-
PSO) algorithm are presented in table 1. Table 2 presents



the tuning results using PSO and BF. These parameters are
randomly initialized in the same range for all methods.

For the first plant, the values of K, K4 found by BF and
(BF-PSO) are nearly the same. The solution provided by
PSO is drifted by about 20% of the values founded by BF
and (BF-PSO). This is reflected in the cost values shown in
table 3 where PSO has the worst cost function.

The result founded by the three algorithms nearly the
same for plant 2 and 7. It is clear the PSO algorithm is
unstable for plant 4 but the solution founded by the other
two algorithm almost the same. Also it is obvious that the
result is obtained by PSO in plant 3 is nearer to the best
one and the BF algorithm has a bad response.

In all cases (BF-PSO) results in a lower overshoot com-
pared to other methods.

Table 1: PID values obtained by BF-PSO

plant N.O Transfer Function KD BF'};ISO K-
1 ST TETES 0.60 | — |[0.87
2 (simrsrigoszoos) | 147 | — ]399
3 (siids) | 003 [ — [o16
4 (srme ez ms) | 040 [0.07] 03
5 (oo —5) | 0.11 [0.03 | 0.40
6 (srmsriasrsgrs) | 1271 | 0.34 | 3.76
l (s ro157) 1.26 | 0.83 | 1.17

Table 2: PID values obtained by PSO and BF

BF PSO
plant N.O K5 K7 K7 K5 K7 K7
1 0.53 — [ 0.80 | 0.62 — | 0.56
2 1469 | — [ 405 | 1441 | — | 4.36
3 0.24 — [ 0.08 | 0.03 — | 0.17
4 0.43 | 0.08 | 0.30 | 15.92 | 0.48 | 0.10
5 0.13 [ 0.10 [ 0.37 | 0.21 | 0.18 | 0.44
6 5.82 | 0.27 | 2.83 | 13.00 | 0.12 | 3.78
7 1.25 [ 0.78 | 1.20 | 3.58 | 1.11 | 0.72

Table 3: cost function obtained by BF-PSO and PSO
and BF

Cost function
plant N.O ' prps5—T—P30 BF
1 15.2633 | 10.1436 | 15.7906
7 21.6921 | 22.3756 | 21.8843
3 1.0525 | 2.8484 | 13.4133
a 20.8912 | 46465 | 20.9543
5 0.6999 | 1.5457 | 1.2674
6 21.0880 | 25.6203 | 22.8060
7 7.3021 | 15.3445 | 7.7158

6. CONCLUSION

In this paper, a new BF oriented by PSO optimization al-
gorithm is proposed. This algorithm combines PSO and BF
techniques in order to make use of PSO ability to exchange
social information and BF ability in finding a new solution
by elimination and dispersal. The proposed technique is ap-
plied to the PID parameter tuning for a set of test plants.
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Figure 2: step response of a plant (2)
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Figure 3: step response of a plant (7)

Simulation results demonstrate that the proposed algorithm
out performance both conventional PSO and BF.

7. FUTURE WORK

The work presented in this paper may be extended by
considering the following parts.

e Application of developed algorithm in other conditional
application ex. system identification , model predictive
control.

e Considering valuable step size of the bacterium to agree
the digitization effect of the solution.

e Application of the develop algorithm to non linear plant
with time delay.
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