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ABSTRACT
In this paper, a multi-objective particle swarm optimization ap-
proach (popularly known as MOPSO) for topology optimization
of compliant mechanism is proposed. Multi-objective strategy has
a great advantage, over other single objective approaches, in find-
ing a well distributed set of non-dominated solutions in a single
run which makes post-processing and decision making convenient.
The stochastic multi-objective strategy also overcomes the issue of
’initialization of design space’ upon which the final solutions may
depend. Here, MOPSO is coupled with Material-Mask overlay
strategy using honeycomb discretization to obtain optimal single-
material compliant topologies that are free from the pathologies
of ’checker board’ and ’point flexure’. An attempt to study the
performance of proposed MOPSO is made by employing different
techniques, both existing and newly proposed, of selecting the ’per-
sonal best’ and ’global best’. In particular, a newer idea of allowing
each particle to memorize all non-dominated personal best particles
which it has encountered is introduced, i.e. if updated personal best
position be indifferent to the old one, we keep both in the personal
archive. This newly proposed strategy of particle memory seems to
outperform the existing ones significantly. Categories and Sub-
ject Descriptors: G.1.6 [Numerical Analysis]: Optimization
General Terms: Algorithms

1. INTRODUCTION
Particle Swarm Optimization PSO is a relatively new algorithm

proposed by Kennedy and Eberhart (1995). It is a population-
based stochastic optimization technique inspired by social behavior
of bird flocking or fish schooling. Since PSO is originally intro-
duced for optimization of continuous nonlinear functions, it has
been successfully applied to many other problems such as discrete
optimization, artificial neural network training, fuzzy system con-
trol, and other situations where the evolutionary techniques can be
employed [10]. PSO similar in some respects to evolutionary algo-
rithms (EAs), except that the potential solutions (particles) move,
rather than evolve, through the search space. Each particle has a
position and a velocity, and experiences linear spring-like attrac-
tions toward two attractors, namely, personal best- particle’s best
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position so far, and, global best- best particle position in a certain
neighborhood. Here best is in relation to evaluation of an objective
function at that position.The personal best acts as an individual par-
ticle memory and the global best allows the particles to share infor-
mation amongst them. In our study we allow particles to maintain
a personal best archive to make a choice for pbest.

Most of the real-world optimization problems have more than
one conflicting objectives, in recent years more and more attempts
have been made to extend PSO to multi-objective problems, see e.g.
[11]. These methods are called Multi-Objective Particle Swarm
Optimization (MOPSO) methods, they follow the same principles
as the single objective PSO, with the main difference being in the
selection of the personal best (pbest) and the global best (gbest). In
this attempt we study the application of MOPSO on a real world
application problem and investigate the ways in which choices for
pbest and gbest may effect the optimization performance. More-
over, employing PSO as an optimization procedure has certain ad-
vantages in terms of easy implementation and efficient computation
[7].

2. MULTI-OBJECTIVE TOPOLOGY
OPTIMIZATION AND COMPLIANT
MECHANISM

Typically, a mechanism is a mechanical device used to transfer
or transform motion, force, or energy [2]. Traditional rigid-body
mechanisms consist of rigid links connected at movable joints. How-
ever, compliant mechanisms gain at least some of their mobility
from the deflection of flexible members rather than from movable
joints only. Compliant crimping mechanism [2] is a good exam-
ple. Usually, minimizing mass of design structure while main-
taining certain deflection and flexibility criterion are the designers
goals. Thus, an overall topology optimization problem of compli-
ant mechanism tries to derive topologies that are optimal and free
from any singularities related to sub-region connectivity. An opti-
mal topology, for example, could considered as one, which exhibits
lower stiffness and requires minimum volume of the material for
design. Above described problem is formulated in a multi-objective
framework and then solved.

2.1 Topology Optimization and  continuum
Representation

Two popular models [12] for representing material in a domain
that exist are ’Homogenization’ and ’SIMP’(Solid Isotropic Mate-
rial with Penalization). Both these models, are based on a rectan-
gular shaped unit cell andsuffer from an inherit geometric pitfall
of showing (i) checkerboard patterns and (ii) point flexure patholo-
gies. These arise because two contiguous cells can be connected at
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a single point providing zero local bending stiffness. Checkerboard
patterns are related to the over estimation of shear stress while the
point flexures are associated with the strain-free rotations allowed
at the locations where two solid cells are connected diagonally at a
point. To over come these difficulties we employ a newly proposed
[12] honeycomb tessellation, where each tile is a regular hexagon
and all tiles are similar. Since hexagons have an edge connectiv-
ity hence such a representation provides finite stiffness connectiv-
ity everywhere. More over hexagonal cell can be subdivided into
two four-node elements which makes the finite element analysis
straight-forward.

2.2 Material Assignment
Once the whole domain is discretized with hexagonal cells (’hon-

eycomb tessellation’), then using the material mask overlay strategy
[12] material is allocated within the domain. For a compliant topol-

Figure 1: A generic design domain represented using a honey-
comb tessellation with material masks overlaid

ogy design problem let, Pi, Pj are input loads and it may be desired
to maximize deformation at point O, along the direction δout. Con-
sider the masks E1, E2, F1, F2 superimposed over the design re-
gion. Nomenclature E refers to empty or void while F refers to
filled. The cells whose geometric centers are encompassed within
the perimeters of E1 and E2 are assigned no material, while whose
centers fall within F1 and F2 are chosen to be filled. Material as-
signment also depends on how the two overlaying masks interact
with each another. If there is a common region between two masks,
like between E2 and F2 in Figure 1, the topmost mask gets prefer-
ence in material assignment within the intersection area. In other
words, the mask that is processed later gets the preference. Since,
F2 rests over E2 so the cells in the overlapped area are filled.

Given N number of masks to be overlaid in the domain, then
design variables for each mask can be identified as its center co-
ordinates (p,q), the radius r and material status f which can have
values 0 (no material assigned) or 1 (material assigned). The mate-
rial mask overlay strategy is favorable in place of controlling mass
in each individual cell, when number of cells are fairly large. Thus,
leading to 4N design variables.

2.3 Design Problem and MOPSO
Here, the multi-objective problem formulation and MOPSO al-

gorithm that is adopted as an optimization procedure are discussed.
Usually, a monotonic increasing function of output deformation,
sign(δp−1

out )δp
out) and strain energy (e.g. SEq) could be used as

measures of flexibility and stiffness respectively [12]. Here, p and

q are user specified exponents. In many cases minimizing the nor-
malized volume is also considered. The output deformation along a
prescribed direction is computed as mutual strain energy (MSE) us-
ing the virtual work principle by applying a unit dummy load along
that direction [8] . This deformation is computed as:

δout = MSE =

Z

σ
T
d ǫ dω = V

T KU (1)

where σd and V are the stress and displacement fields resulting
from the unit dummy load, K is the structural stiffness matrix, and
ǫ and U are the strain and displacement fields from the actual loads.
Now, the strain energy is computed as:

SE =
1

2

Z

σ
T

ǫ ω =
1

2
U

T KU (2)

where σ is the stress field resulting due to actual loads. In the finite
element formulation, the equilibrium equations can be written as:

Fa = KU (3)

Fd = KV (4)

Where, Fa and Fd are force vectors relating to the actual and dummy
loads respectively. Having known U and V from Eqs. (3) and (4),
the output deformation and strain energy can be computed using
Eqs. (1) and (2). The optimization problem considered in this study
is stated as follows:

Minimize
x

: SE (Strain Energy)
Minimize

x
: Vn (Normalized Volume)

with: x= {χp
i , χ

q
i , χ

r
i , χ

f
i , i = 1, .., N}

such that:

1. Fa = KU

2. K is non-singular

3. XL ≤ χ
p
i ≤ XU

4. YL ≤ χ
q
i ≤ YU

5. RL ≤ χr
i ≤ RU

6. χ
f
i = 0 or 1

where χ
p
i is the x coordinate of the center of the ith mask, χ

q
i is

the y coordinate of the same mask, χr
i is the radius of the ith mask

and χ
f
i denotes the material status of the mask which can take only

0(empty) and 1(filled). XL and XU are the upper and the lower
bounds on x coordinate, YL and YU are the upper and the lower
bounds on y coordinate. The bounds are chosen such that mask
center can be placed anywhere in the design region. RL and RU are
the lower and the upper bounds on the mask radii. N is the number
of masks a priory chosen by the user. To find more details about
evaluation of objective function vector reader is referred to [12].
It is worth mentioning here that penalty approach [12] in cases of
infeasible finite element mesh is adopted.

The proposed MOPSO algorithm in Table 1 is easy to compre-
hend and the reader is encouraged to refer [11]. The idea of propos-
ing an archive based strategy for maintaining pbest is found to be
useful. To know more about such a strategy reader is referred to
[4].
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Table 1: MOPSO algorithm with pbest archive

MOPSO Algorithm
BEGIN

Input: Optimization problem
Output: Non-dominated solutions in archive (A)

Step 1: t=0
Step 2: Initialization:
Initialize population Pt :
For i = 1 to N
Initialize x̄i

t, v̄i
t=0̄ and ai

t={x̄i
t } p̄i

t=x̄i
t

End
Initialize the archive At :={}

Step 3: Evaluate (Pt)
Step 4:

(a)At+1:= Update(Pt, At)
(b) For i = 1 to N
ai

t+1:= Update(x̄i
t, a

i
t)

End
Step 5: Pt+1:=Generate(Pt, At)
For i = 1 to N

(a) p̄
i,g
t = FindGlobalBest(At+1, x̄

i
t)

(b) p̄i
t = FindPersonalBest(at+1, x̄

i
t)

(c) For j = 1 to n
vi
j,t+1 = wvi

j,t + R1(pi
j,t − xi

j,t) + R2(pi,g
j,t − xi

j,t)

xi
j,t+1 = xi

j,t + vi
j,t+1

End
End

Step 6 Unless a termination criterion is met:
t = t + 1 and goto Step 3

END

2.4 Selecting the Global best and Personal best
Here we briefly describe various strategies to select the global

best (gbest) and personal best (pbest). The main challenge in is to
pick suitable pbest and gbest to move the particles through search
space. In general, a good MOPSO method must obtain solutions
with (a) a good convergence, and (b) a diversity and spread along
the pareto-optimal front. Typical strategies to select the gbest in-
clude random selection [5], selecting a particle that dominates many
particles [9], or the sigma method [11]. But, the issue of selecting
the personal best has not been studied thoroughly so far. In past
studies a particle is allowed only to remember its latest ’best’ po-
sition. The possibility of maintaining a personal best archive is
explored for the first time here. In our study the following methods
for selecting gbest and pbest can be employed.

1. Random: This is a simplest strategy to select randomly a
non-dominated member from the global and personal archives.

2. Wtd.: In this approach, in order to maintain diversity, a
higher weight is allotted to those criteria in which particle
is already good and a weighted sum is calculated. Corre-
sponding members in global and personal archives which
have highest weighted sums are chosen [4]. This strategy
helps in further improving an objective function value of a
particle in which it is already good. This approach drasti-
cally favors to reach the extreme ends of a pareto front, but
also has some limitations.

3. Newest: In this approach instead of maintaining a personal

archive only one personal best is maintained. The personal
best is updated as soon as new non-non-dominated position
is reached. This method is only applied in selecting personal
best.

4. Indicator-based: This is a newly proposed approach in which
such a gbest or pbest is chosen which contributes most to the
hyper volume with respect to a reference point. Usually, the
individual itself is chosen as the reference point [1]. This
strategy helps is increasing the diversity in middle parts of
the pareto front, but shows a poor performance at the extreme
ends.

5. Dominance based probability: Amongst the archive mem-
bers which dominate the individual, guides are selected based
on a probability distribution. Archive members which dom-
inate greater number of individuals are assigned a higher
probability of getting selected. In past, such a strategy has
been successfully applied for selecting the global guides [9]
and here its extension [1] for selecting pbest is made.

6. Sigma-Sanaz: Sigma method was originally proposed [11]
for selecting the gbest. The idea behind this strategy it to al-
low the individuals to get attracted towards the non-dominated
members which are closest to it. Here an extension [1] for
selection of pbest is made.

3. RESULTS AND DISCUSSIONS
In this section first we try to analyze the solutions by using differ-

ent selection schemes for lesser number of function evaluations and
then try to implement the most promising strategies for larger num-
ber of function evaluations. Results obtained using the promising
strategies are comparable to the ones already existing in the litera-
ture [6] and [3].

Cantiever problem [3] is one of the most standard shape design
problems. As shown in Figure 2 design space is discretized using
420 hexagonal cells. The size of each cell is set to 1 unit. The left
end of the plate is rigidly fixed and in the middle of right end input
force of 5 N force is applied. Output is specified at the input node
itself where spring constant is chosen to be 10000 N/M. Thickness
of plate is selected to be 3mm. Youngs modulus of 2000 N/mm2

and Poissons ratio of .29 are selected. The number of holes N is
taken to be 50. Coefficients for MSE (p) and SE (q) are taken to be
1 each. MOPSO algorithm, Table 1, is then used as an optimization
procedure with 30 population size, for 50 cycles with turbulence
factor of 0.45. The reference point used for computation of hyper
volume is [10,1000]. Two objectives considered for simultaneous
minimization are a) Strain Energy(SE), flexibility criteria b) Nor-
malized Volume, a resource criteria. Six different strategies stated
in section 3.4 for selecting pbest and gbest are employed and the
corresponding pareto optimal solutions obtained using these selec-
tion techniques are plotted in Figure 3. It’s observed that Random-
Random strategy, i.e., selecting pbest and gbest randomly, is the
best performer. Dominance based probability strategy, for both
pbest and gbest, seems to be next best performer. Newest-Random
strategy, i.e., employing Newest for pbest and Random for gbest
turns out to be third best performer. Similar conclusions can be
drawn from the hyper volume curves generated for first 50 genera-
tions, as shown in Figure 4. Hyper volume curves give a better pic-
ture of performances of the selection strategies. From these curves
we may conclude that Sigma-Sigma and Wtd.-Wtd. are the worst
performers. Now, using Random-Random strategy, population size
30 and 600 generations, the cantilever problem is again solved to
obtain a pareto optimal set. The solution corresponding to strain
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Figure 2: Discretized design space using hexagonal cells. The
left end is rigidly fixed, while an input force and output dis-
placement are specified on right end

N
or

m
al

iz
ed

 V
ol

um
e

Strain Energy

 400

 450

 500

 550

 600

 650

 700

 750

 800

 850

 0.2  0.4  0.6  0.8  1  1.2  1.4

Sigma−Sigma
Ind.−Ind.

Dom_Prob.−Dom_Prob.
Wtd−Wtd

Newest−Random

Random−Random

Figure 3: Pareto optimal fronts for different selection methods

energy of 5.149833 and minimum normalized volume 504.055800
is shown in Figure 5. The solution shown is having a parabolic end
and is acceptable [6].

4. CONCLUSIONS
In this paper, a novel attempt has been made to apply MOPSO on

a real world application problem with a high number of design vari-
ables. The proposed MOPSO is effective in finding a distributed set
of pareto optimal solutions and thus goals of the study are met. Im-
plementation of different selection strategies has brought out their
relative importance, strengths and weaknesses. The study can be
extended by implementation of hybrid moves, i.e., trying to find the
best strategy for pbest and gbest which could give a performance
boost. Other issues like handling of constraints and singularities
can be dealt in a better way, thus trying to keep the solution in fea-
sible domain and improving efficiency.
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