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ABSTRACT
Interplanetary trajectory optimization studies mostly considered a
single objective of minimizing the travel time between two plan-
ets or the launch velocity of spacecraft at the departure planet. In
this paper, we have considered a simultaneous minimization study
of both launch velocity and time of travel between two specified
planets with and without the use of gravitational advantage (swing-
by) of some intermediate planets. Using careful consideration of a
Newton-Raphson based root finding procedure of developing a tra-
jectory based on a given set of decision variables (departure date,
swing-by planets, altitude of spacecraft at the first swing-by planet,
etc.), a number of derived parameters such as time of flight between
arrival and destination planet, date of arrival, and launch veloc-
ity are computed. A popularly used evolutionary multi-objective
optimization algorithm (NSGA-II) is then employed to find a set
of trade-off solutions. The accuracy of the developed software
(we called GOSpel) is first demonstrated by matching the trajec-
tories with known missions and then the efficiency of the software
is shown by solving a number complex, real-world like missions.
Categories and Subject Descriptors: G.1.6 [Numerical Analy-
sis]: Optimization
General Terms: Algorithms

1. INTRODUCTION
The interplanetary mission design is a challenging task. As space-

craft travels through our solar system it may encounter many ce-
lestial bodies, and may get influenced by their gravitational fields
(swing-by of planets). Due to these effects, spacecraft may deviate
from its path or even may get damaged. On the other hand, these
gravitational fields may be used in a constructive way to reduce
energy requirement of a flight. Sending satellites to interplanetary
trajectory is risky and expensive. There can be various trajectories
which a spacecraft may follow. But there has to be an optimal tra-
jectory which when followed, gives high performance boost either
in energy requirement or in time required for the mission.

Genetic Algorithms (GAs) have been used for over 20 years
in various applications of optimization. GAs are successfully ap-
plied in many complex real-world optimization problems where
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the function to be optimized is highly non-linear and discrete. In
the recent past, they have been adapted very successfully in solv-
ing multi-objective optimization problems involving more than one
conflicting objectives. Non-dominated Sorting Genetic Algorithm-
II (NSGA-II) [4] and Strength Pareto Evolutionary Algorithm (SPEA-
II) [8] are examples of such GA based multi-objective optimizers.
The present work explores the possibility of multi-objective opti-
mization in interplanetary trajectory optimization. It highlights the
efficiency of GAs to find almost all possible solutions with varying
properties which leads to observational principles about the trends
and trade-offs. The most interesting role of the developed software,
GOSpel, lies in not, just solving the problem but also optimizing
it in a conflicting multi-objective scenario. Input parameters like,
the time of window in which optimal solutions are sought, type of
the transfer, choice of mission and information about the swing-by
planets are accepted from the user. The practical limits on launch
parameters like difference in flyby velocities, maximum and mini-
mum bounds on number of days can also be specified by the user.

2. INTERPLANETARY TRAJECTORY OP-
TIMIZATION

In general, the interplanetary trajectory design involves three ma-
jor phases: (i) departure hyperbolic trajectory phase relative to de-
parture planet, (ii) interplanetary transfer trajectory phase relative
to central body (that is, Sun) and (iii) approach trajectory phase
relative to the arrival or intermediate swing-by planet. These three
phases must be synchronized to realize a mission. A large number
of iterations are required to be carried out on these three phases to
synchronize them. Trajectory planning is dependent on the kind of
mission which is to be pursued, namely, which type of mission is
it? Is it an orbiter mission or a flyby mission? An orbiter mission
requires the satellite to reach the destination planet with a partic-
ular velocity so that it continues to revolve about the planet under
it’s gravitational effect. Swing-by means moving towards an inter-
mediate planet on a hyperbolic trajectory, coming close to it and
without colliding recede back again on a hyperbolic path. In an
effective swing-by, the planet’s gravitational pull may be assisted
to maneuver satellite towards the destination planet. If gravity as-
sistance (swing-by) from more than one planets used then it is im-
portant to know how many times and from which planet such an
assistance is used? In finding the optimal trajectory, all the above
factors are important and must be considered either as variables or,
if desired, as a fixed parameter.

In particular the swing-by case becomes very interesting as a
spacecraft first goes to one or more flyby planets and then to the
destination planet. If the gravitational pull of the flyby planets is
utilized effectively in directing the transfer of the satellite towards
the destination then the launch velocity goes down. But, as one
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may expect the time taken to reach the destination planet increases.
Hence, there exists a direct conflict between the energy require-
ments and the total transfer time. Minimizing the total transfer time
is important as it helps to avoid any catastrophic event that satellite
may encounter while staying in space for too long. Thus, the prob-
lem is formulated as a multi-objective optimization problem with
objective functions considered as (1) minimization of launch veloc-
ity (2) minimization of total time of travel.

The standard orbital mechanics [3] is employed for fixing a tra-
jectory. For computing a transfer from one planet to another, a
patched conic model [3] is usually employed. In this model, the
motion takes place along a plane. In actual practice, the transfer
can involve swing-by planets or can be a direct one. Thus, when a
swing-by is to be considered, the spacecraft may have to go through
a plane change from one pair of planet transfer to the other. This re-
quires the spacecraft to spend some energy for making a change in
its motion from one plane to another. To take care of this additional
energy, we add it in the computation of the initial launch veloc-
ity. Following subsection briefly describes the Direct and Swing-by
Transfers.

2.1 Direct Transfer
Consider a satellite transfer from first to the second planet. This

involves knowing the locations of departure and destination plan-
ets. Moreover, assume that we fix a transfer time t for reaching
second planet from the first one and investigate if such a transfer
is possible from the location information of both planets. The so-
called Lambert’s approach [6] helps us to determine the velocity
vectors required at the first (v1) and the second (v2) planet in order
to materialize such a transfer time. Lambert’s approach involves
an iterative procedure of adjusting the velocities so that the desired
transfer time t is achieved. Thus, for a direct transfer, the depar-
ture date and transfer time are the two variables of the optimization
problem.

2.2 Swing-by Transfer
In order to have the overall swing-by transfer feasible, the differ-

ence between the incoming and outgoing speed at every swing-by
planet must be as small as possible [5]. If there are S number of
swing-by planets, then in practice, we construct one equality con-
straint at each swing-by planet:

|v+

i | − |v−

i | = 0, i = 1, 2, . . . , S. (1)

Above equation says that at i-th swing-by planet, v+

i
(+ mean

outgoing from the planet) and v−

i
(− means incoming to the planet)

are equal in magnitude. If outgoing v+

i
and incoming v−

i
do not

happen to be in same plane then corresponding energy required
to change the plane is accounted and added to the initial launch
velocity.

Now, S swing-bys would involve S+1 transfer times. To convert
the problem in to a root finding problem in S +1 transfer times, we
introduce another equality constraint as follows:

h1 − hd

1 = 0, (2)

where hd

1 is the desired altitude of the first swing-by planet and
which is specified. With the help of Lambert’s approach S + 1
transfer times can now be found from above equations. In an over-
all procedure transfer time values and the altitude of the first swing-
by planet are adjusted by using the Newton-Raphson method till
the equality constraints are satisfied using a small ǫ value. There-
after, the original transfer time values are replaced with the ones
computed using the Newton-Raphson method. Objective values
are then computed for the solution. Variable bounds on transfer

times are checked and any violation is assigned as the ‘constraint
violation’ of the solution and the solution is declared infeasible.

2.3 Handling Using NSGA-II
Here we discuss the representation scheme for the decision vari-

ables within the NSGA-II framework [4]. A maximum of three
swing-by planets is fixed, thereby leaving us with four options: (i)
direct flight (no swing-by), (ii) one planet swing-by, (iii) two planet
swing-by and (iv) three planet swing-by. A two-bit substring for
representing these four options with 00, 01, 10 and 11, respec-
tively, is used. Thereafter, we have three substrings of three bits
each. Each three-bit substring represents a swing-by planet (one
of the first eight planets of the solar system coded as 000: Mer-
cury, 001: Venus, 010: Earth, etc. Depending on the first two-bit
substring dictating the number of swing-by planets we pick the cor-
responding planets from the string. These 2+3×3 or 11-bit strings
give us information about which and how many planets are used in
the trajectory determination.

The next set of 4 variables are coded as real-valued variables and
represent transfer times between departure planet to first swing-by
planet, first to second swing-by planet, second to third swing-by
planet and third swing-by to arrival planet. Here again, depending
on the number of swing-by planets (S) dictated by the first two-bit
substring, we consider only the first (S + 1) transfer times.

A typical NSGA-II solution may look like the following:

10 000 100 101 16/6/2005 .15 124 205 580 425

The solution signifies that there are two swing-by planets and
they are the first planet (Mercury, 000) and fifth planet (Jupiter,
100) between departure and arrival planets (which need not be rep-
resented in NSGA-II, as they are fixed for all solutions). Thus, we
ignore the third swing-by planet mentioned in the solution. The
next decision variable is the departure date (16 June 2005). This
date is actually represented using the Julian day (which is an inte-
ger value) . The next variable is height of the altitude above the first
swing-by planet as the fraction of the radius of this planet. The next
four real-valued values are transfer times and we only pick the first
three values as the transfer time between the departure and the first
swing-by planet and so on. Once again, the transfer time of 425
is a useless parameter for this solution, since only two swing-bys
are considered dictated by the first two-bit substring 10. Thus, in
a case of direct transfers only two variables (the departure date and
the first real-parameter value indicating the transfer time). Working
out it turns that in case of single swing-by six, two planet swing-by
eight and three planet swing-by all ten variables are to be consid-
ered.

Along with the evaluation procedure described in the previous
section, NSGA-II procedure considers a population of solutions
and emphasizes feasible over infeasible solutions, non-dominated
solutions over dominated solutions and less-crowded solutions over
crowded solutions. We combine the evaluation scheme with NSGA-
II and develop a user-friendly software GOSpel(Genetically Opti-
mized Space Launcher).

3. PROOF-OF-PRINCIPLE RESULTS
In the following subsections the correctness of our implemen-

tation of trajectory optimization procedure is justified by applying
our code on number of known missions, taken from web and liter-
ature. Comparison of these results provides authenticity and high-
lights the fact that GOSpel performs better in many cases. Solving
the problem in multi-objective framework provides an insight about
the trajectory transfer and also highlights some critical launch op-
portunities.
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3.1 Earth-Venus-Mercury Mission

Table 1: Earth-Venus-Mercury trajectories using
Exhaustive∗ Search and GOSpel˙

Exha.∗ Search GOSpel
Earth Departure (mm/dd/yy) 08/05/02 08/05/02
Venus Swing-By (mm/dd/yy 12/05/02 12/05/02
Mercury Arrival (mm/dd/yy 02/13/02 02/07/02
Altitude at Venus (Km) -938.9 -978.84
Total Time (Days) 192 186
Launch Velocity Km/s 2.79 2.78

Here we consider a Earth-to-Mercury venus mission with a pos-
sible swing-by from Venus. This problem was studied by using
an exhaustive search procedure [7] for the minimization of launch
velocity. For the years 2001 and 2002, the launch possibility and
corresponding launch velocity needed for the mission to Mercury
via Venus was calculated with a step size of one day for departure.
The best solution found is shown in Table 1

To validate our procedure, we use GOSpel during this two-year
departure window to find Pareto-optimal solution for the minimiza-
tion of launch velocity and time of flight. We use the option for
using one or no swing-by and the option of an orbital motion to
the destination planet. A population of size 200 and a maximum
generation of 200 are fixed. The GOSpel software uses the SBX
operator with pc = 0.9 and ηc = 10 and the polynomial muta-
tion operator with pm = 1/n and ηm = 20. Figure 1 shows the
corresponding frontier. It is interesting to note that there are two
disconnected fronts: (i) trajectories with swing-by and (ii) trajecto-
ries with direct transfer. For minimum launch vecolity trajectories,
it is recommended to use the swing-by from Venus and for min-
imum time trajectories it is better to go straight to Mercury from
Earth. Table 1 shows a closest solution to the exhaustively searched
solution for the minimum launch vecolity objective. The GOSpel
solution is closer to the previously-reported solution. In fact, since
no finite step is used in GOSpel, a better launch-velocity solution
than the exhaustive search method (with a step size of one day) is
found. The best launch vecolity solution demands a slightly smaller
value than the exhaustive search solution. The matching of our re-
sults with the exhaustive search solution by an independent study
provides confidence to our developed software.

Before we leave this proof-of-principle study, we also plot the
departure, swing-by, and arrival dates of all obtained solutions by
GOSpel. Figure 1 marks the Julian dates of these trajectories (val-
ues marked on the right axis). The following features of trajectores
are gathered:

1. All Pareto-optimal missions must start at the same date: 5
October 2002, irrespective of whether the mission involves a
swing-by or not.

2. With an increase in launch velocity requirement, the arrival
becomes quicker. It seems that if departed from Earth on
5 October 2002, there exist a number of plausible missions
trading-off lanuch velocity and travel time.

3.2 Earth-Mars-Venus-Mercury Mission
Next, we apply GOSpel and compare its results with another

study performed by a commercial software, Swing-by Calculator
(SC) [2] on a mission involving two planet swing-bys: Mars and
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Figure 1: Trade-off solutions for the Earth-Venus-Mercury
mission using GOSpel.

Table 2: Earth-Mars-Venus-Mercury trajectories using
GOSpel and exhaustive search.

VSSC GOSpel
Earth Departure Date (mm/dd/yy) 08/14/05 08/14/05
Mars swing-by Date (mm/dd/yy) 10/26/05 10/26/05
Mars: v∞ incoming km/s 15.9737 15.9465
Mars: v∞ outgoing km/s 15.7722 15.9465
Venus swing-by Date (mm/dd/yy) 02/01/06 01/31/06
Venus: v∞ incoming km/s 8.7439 8.9958
Venus: v∞ outgoing km/s 8.9459 8.9958
Mercury Arrival (mm/dd/yy) 03/31/06 03/31/06
Flight Time (Days) 229 228.326
Launch Velocity (km/s) 11.176 11.145

Venus. The destination planet is Mercury and the departure window
is kept within 1 Jan 2005 for a year. Table 2 shows the obtained SC
result obtained for minimum time of flight. The dates of arrival at
Mars and Venus and the corresponding arrival and departure veloci-
ties are also shown in the table. The GOSpel solutions are shown in
Figure 2 for both objectives. In this case, we allow only two-planet
swing-by trajectories to be considered. Thus, direct or one-planet
swing-by option is not considered. All solutions found involve two
swing-bys, but providing a trade-off between time of flight and en-
ergy requirement. The solution on the Pareto-optimal front closest
to the SC solution is tabulated in Table 2. The comparison of both
solutions again indicates the accuracy of GOSpel procedure. In-
terestingly, the S solution does not seem to be the minimum-time
solution. The figure shows that there exists a solution with a smaller
time of flight.

3.3 Cassini Mission
Finally, we consider a mission having three swing-by planets.

We found that the Cassini-Huygens mission has four swing-bys [1].
But since our software is limited to a maximum of three swing-by
planets, we have considered only the first three out of four swing-
by planets in this study. The mission type is set to be a fly-by type
at the destination planet. By setting the mission type to fly-by at
the destination we expect that our mission’s behaviour is similar to
transfer which involved the fourth swing-by planet. Thus, the com-
plete mission for the case is departure from Earth, swingby from
Venus, another swingby from Venus, third swingby from Earth and
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Figure 2: Trade-off solutions for the Earth-Mars-Venus-
Mercury mission using GOSpel.

the final arrival to Jupiter. A typical trajectory (taken from [1]),
GOSpel and SC solutions are compared in Table 3. From the table,
it can be observed that solution found by GOSpel and SC are non-
dominated GOSpel solution but time taken are more close to actual
mission dates. Time window for departure is considered in a two
days span over the actual transfer date. In this case as well GOSpel
demonstrates a very good ability of finding trajectory transfers that
have been practiced in real-time over past.

Table 3: Earth-Venus-Venus-Earth-Jupiter transfer (part of
Cassini mission) using SC and GOSpel.

Web [1] GOSpel SC
Departure Date (mm/dd/yy) 10/15/97 10/15/97 10/29/97
Venus Date (mm/dd/yy) 04/26/98 05/19/98 05/11/98
Earth-to-Venus Time (Days) 194 216.318 194
Venus Date (mm/dd/yy) 06/24/99 06/22/99 06/26/99
Venus-to-Venus Time (Days) 392 399 411
Earth Date (mm/dd/yy) 08/18/99 08/17/99 08/18/99
Venus-to-Earth Time (Days) 55 55.940 53
Jupiter Arrival Date (mm/dd/yy) 12/30/00 12/22/00 02/02/01
Earth-to-Jupiter Time (Days) 500 493.46 534
Total Flight Time (Days) 1168 1164.72 1192
Launch Velocity (km/s) NA 6.805 4.46

4. CONCLUSIONS
In this paper, we have discussed the development of a multi-

objective optimization software (GOSpel) for finding various opti-
mal interplanetary trajectories between any two planets for a dual
minimization of travel time and launch velocity. The software is
capable of considering a maximum of three swing-bys of interme-
diate planets to assist in reducing the fuel comsumption. The use

Pareto-optimality concept and genetic algorithms has demonstrated
that the proposed approach can be used to find a set of trade-off so-
lutions which match with the existing solutions of known missions.
Thereafter, the developed code is applied to a number of complex
case studies and interesting solutions have been obtained. This pa-
per has amply shown the usefulness and flexibility of such a code
for real-time application of EMO for interplanetary trajectory opti-
mization.
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