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ABSTRACT 
The goal of this project is to develop an agent capable of learning 
and behaving autonomously and making decisions quickly in a 
dynamic environment. The agent’s environment is a fast-paced 
interactive game known as Unreal Tournament 2004. Unreal 
allows for a spectator to watch the agent as it performs its tasks 
and even to enter the game and challenge the agent.  

The agent’s behavior is controlled by a rule-based system, which 
looks at multiple high-level conditions, such as whether the agent 
is weak, and determines single high-level actions, such as whether 
to head for the nearest known healing source. Using an 
evolutionary computation approach, in which the behavior is 
evolved over a number of generations, the agent learns 
increasingly better strategies for its environment.  

Through the work in this project, we are exploring several 
research questions, including the development of successful 
vocabulary of high-level conditions and actions for the rule set, 
the challenges of rapid decision making, and the trade-offs 
between hand coding a rule set and using the evolutionary process 
to hone a rule set. 

Categories and Subject Descriptors 
I.2.1 [Applications and Expert Systems]: Games. 

General Terms 
Algorithms, Experimentation 

Keywords 
Learning Classifier System (LCS), Games, Agents, Evolutionary 
Computation, Rule-Based System 

1.  INTRODUCTION 
Over the last few years the video game industry has exploded into 
a multi-million dollar business. These newer games are becoming 
increasingly dynamic. Among some of these games is a genre 
known as First Person Shooter or FPS. These types of games are 
typically fast paced, forcing the player to react quickly to changes 
within the environment. Over time a player may develop a sense 
of when to execute a particular action for the current scenario. For 
instance when a weak and poorly equipped player meets an 
opposing player, the more experienced player may retreat while 

an new player may engage. This is the type of learning that will 
be mimicked through Agent Smith. 

1.1  Primary Goals 
The initial goal of this project is to develop a learning classifier 
system (LCS) capable of evolving a rule set that would allow a 
bot to compete in a fast-paced dynamic game. The bot would be 
able to rely on this evolved rule set to provide the appropriate 
response for a given scenario, thus maximizing the bot’s score. It 
can be expected that the agent will initially perform poorly; 
however, over time this rule set will evolve into a more complete 
and sophisticated set of rules. Unlike a human, the bot will not be 
evolving its technical playing skills, but instead, the ability to 
react strategically to any given situation. 

2.  Background 
2.1  First Person Shooter 
Unreal Tournament 2004 was the game of choice for the project. 
This game was selected because it provides a Java API and the 
plug-in, Pogamut, that is available to help develop the bot. As 
with most FPS games the objective is to obtain a higher score than 
any of your opponents. A high score is achieved by killing your 
enemies; however, you are penalized for each death.  The game 
also allows for humans to connect to the game and participate, 
which could allow a human to challenge the bot. The bot will 
have some natural advantages over any human players. Since the 
bot is fed information about the environment within its peripheral 
vision and doesn’t need to do any visual processing, players 
would be unable to blend in with their surroundings, as humans 
would try to do against other humans. The other advantage for the 
bot is its ability to be precise when shooting its weapon since 
every shot is made by passing in the location of the enemy.  

2.2  Learning Classifier System 
A learning classifier system is comprised of two parts. The first 
part of an LCS is the rule-based system. This rule-based system 
uses a rule set which contains multiple rules. Each rule has an 
array of conditions and a single action. In these rule-based 
systems the environment is surveyed periodically, and then a 
check is made on each rule to see if the conditions match the 
current environment. When a matching set of conditions is found 
the associated action is executed.  
The second part of the system is the evolutionary process known 
as a genetic algorithm. During the evolutionary process a rule set 
is modified using a survival of the fittest scheme. Traits that made 
a particular rule set effective are likely to carry on into future 
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generations, while bad traits are dropped from the evolutionary 
process. 

3.  System Design 
This section will describe the four main components of this 
system, including the Unreal game environment that the bot plays 
in, the Pogamut plug-in that allows external bots to connect to an 
Unreal game, the Chimera LCS that will be used to evolve the 
rule sets used by the bot, and the Agent Smith bot that controls 
the avatar within the Unreal game. 

3.1  Unreal 
The game is set up in such that the bot will initially be challenged 
by another bot. This second bot is static and its behavior will 
always be the same given a particular state. The game server does 
not have any terminating conditions and allows the bot to 
continue to evolve without any human interaction. Because Smith 
adapts to its environment only a single map is used as a different 
map may find different rule sets to be effective. 

3.2  Pogamut 
The Pogamut plug-in was developed for the Netbeans IDE. 
Pogamut was specifically created for the development of bots in 
Unreal Tournament 2004. Pogamut takes care of connecting to the 
game and handling any messages given by the server. 
Fortunately, the plug-in also has developed packages that simplify 
finding the location of items, way-points, and other information 
that may be useful to the bot. This tool provides example bots. 
One of the examples provided will be the static challenger in this 
project.  

3.3  Chimera 
For this project, the Agent Smith bot will use Chimera, a LCS to 
evolve its rule sets. Chimera was developed from scratch using 
Java. This encoding scheme is further explained in section 3.4.1. 
Chimera uses a collection of solutions or rule sets; these rule sets 
are evolved over time. Ideally, the average fitness of the 
population will increase with each generation. The individual rule 
sets themselves will become more complex. As more rules are 
introduced into a rule set, the specificity increases, allowing for 
the fine tuning to control the appropriate action. 

3.3.1 Rule sets 
The rule sets used contain a variable number of rules. The number 
of rules a rule set will carry depends on the fitness of its parents. 
The rule size depends on the fitness of both parents, and is 
relative to the size of the longer rule size between both parents. If 
both parents are above average fitness, then there will be one 
additional rule. If both parents are below average fitness the rule 
size will be one less. If each parent is on a different size of the 
average fitness the rule length will equal the length of the longer 
rule set. 
Each rule is made of an array of integers representing the 
conditions and a single action. The array of integers is a fixed 
length. This forces each element in the array to be specified with 
a value. Before Chimera begins the length of the array may be 
changed, but not during evolution. Smith will only be concerned 
with four conditions, thus the array will be a length of four.  

During initialization all of the rule sets will be created randomly. 
This approach introduces plenty of diversity. Diversity is 
maintained through the crossover method. During the crossover 

each rule has a chance for a mutation. Although the chance is 
small, the mutation chance is calculated individually for each 
rule. The diversity is important to prevent the population of rule 
sets to converge on a single solution. 
 

Chimera
Has an array of rule sets.

Rule Set

Fitness Value
 A higher value means  

a better fitness.

Rules

Action
A single integer value.

Conditions
Array of integers. Each element represents a 

different condition and the value represents the 
state of the conditions.

 
Figure 1. Chimera Architecture 

3.3.2  Fitness Function 
Chimera delegates the responsibility of evaluation a rule set to a 
user defined function. In Smith’s case, the fitness function is the 
most time-consuming part of the evolutionary process, as Smith 
will need to spend time playing Unreal to evaluate the rule set. 
The function used in this project will focus on creating a rule set 
that is primarily aggressive, but in some rare situations will 
retreat. By awarding more points for a kill, the bot will develop a 
more aggressive rule set. 

3.3.3 Evolution 
Chimera uses a four stage process. These four stages are known as 
the initialization, evaluation, selection, and reproduction. The last 
three stages are repeated for the number of generations specified. 
During the initialization phase the population is randomly 
generated. The initialization will only happen once and is the first 
stage in the process. There will be no changes to the rule set once 
they are initialized.  
The second phase utilizes the fitness function created specifically 
for its application. In this case, the bot will be using the rule set to 
compete in the game. At the end of the round the fitness is 
determined by the bot’s success.  
In the selection phase rule sets are randomly selected based on the 
fitness value assigned at the end of the evaluation phase. This 
would be best viewed as a pie chart; the greater the fitness value, 
the greater the chance of being selected. Using this selection 
process, the rule sets that are selected and are passed into the 
fourth stage.  
During the final phase the two selected rule sets create a new rule 
set that contains parts from both parents. This is the stage where 
mutations may occur. At the end of this stage a new generation 
will have been created and the evaluation process will begin 
again. 
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Figure 3. Evolutionary Process 

The process will repeat for fifty generations, using a population 
size of ten. With ten minute rounds, the entire experiment runs for 
about eighty-three hours. These rule sets can be saved and further 
evolution may continue at a later time.  

3.4  Agent Smith 
Agent Smith is the interface between Chimera and the Unreal 
game. In its basic form, Smith is a java based program, which 
merges the evolutionary process of Chimera with the Unreal 
game. Smith is primarily the fitness function for Chimera. Agent 
Smith will initialize Chimera. When Chimera needs a rule set 
evaluated it will call one of Smith’s methods. Once in the method, 
the round is considered to have begun. During the round, the 
method will continue to reassess the current state of the 
environment, then looking for the best matching rule within rule 
set. Once a rule has been found, the associated action will be 
executed within the Unreal game using the API provided by 
Pogamut. After ten minutes the round is considered complete and 
a fitness value is returned based on the bot’s success. The entire 
process is repeated for each rule set within the population for each 
generation.  

3.4.1  Smith’s Encoding 
In order for Chimera to remain generic it uses an encoding 
scheme that requires everything to be converted to integers. Smith 
will use three alleles to represent the values of the conditions. If 
the value of the condition is zero then the condition is considered 
false, if the value is one then the condition is true, a value of two 
is a “don’t care” and means the condition can be true or false.  
Since each condition is represented as an element within the 
integer array, the length of the array will be equal to the number 
of conditions used. This experiment looks at four conditions; the 
health, armor, weapon, and visibility of the enemy. To determine 
the value of a condition like health, a limit is used. If the health of 
the bot goes below the limit, then the value is considered true. 
The same method is used for armor. To determine the value of the 
weapon condition, a list of weapons is used by the bot. If the 
weapon the bot is currently using is on the list, then the value can 
be considered true. The values for whether the bot can see an 
enemy is considered true, if Smith can see an enemy.  
The evolutionary process may specify multiple rules that use a 
single action if they desire. Using multiple rules to describe a 
single action produces the fine tuning that may be needed for 
some situations, at the cost of time. If the max rule size is set to 
high, the array of rules could become large enough to cause 
undesirable delays when trying to find a rule that matches the 
current state of the environment. 
 

 

Example Rule

Low Health: WILDCARD
Low Armor: WILDCARD

Bad Weapon: WILDCARD
Enemy Visible: TRUE

Action: Engage

 

 
Figure 4. Example of a Rule Represented in Chimera 

 

4.  Results 
In the experiments conducted here, the primary goal of the project 
was achieved. The bot showed progressive improvements over 
time. Although Agent Smith continued to evolve and became 
more efficient, it was still unable to dominate the challenger on a 
consistent basis. Smith’s rules became more complex with each 
generation, providing more specificity for more scenarios.  
The rule sets used in the early generations scored very low and 
seemed unintelligent. Allowing Smith to start based on hand-
coded rule sets would save a lot of time during the evolutionary 
process and provide it a jump start. As an example, some of the 
rule sets gave the instruction to engage only when the enemy was 
not visible. Since these rule sets scored poorly, they were not 
carried on into future generations.  

5.  Future Work 
The initial stage of development demonstrates that evolutionary 
computation is a promising approach to working with interactive 
games. However, there is obviously much room to extend this 
project. 

5.1.1  Condition Limits 
This initial work limited the conditions to four criteria that 
appeared to be the most relevant, and four possible actions. When 
playing Unreal, not only do I perform more than four different 
actions, but my actions are also based on more than four 
conditions. It would be nice to see Agent Smith become more 
flexible by adding more complex actions. More conditions could 
be added to help make more informed decisions. Some of these  

5.1.2  Technical Evolution 
Evolution could also be incorporated into the technical aspect of 
the game play, techniques such as strafing and camping could 
help excel the bots efficiency. During this experiment actions 
such as healing lead to the bot randomly grabbing healing items. 
Allowing the bot to develop a sense of priority over these various 
healing items may allow the bot to spend less time in a healing 
state and more time in an engage state, thus increasing its score.  
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5.1.3  Team Evolution 
The development of a team of Smiths could force the progression 
of each individual by allowing the team to share some of their 
best rule sets. This would allow for both a team and the individual 
bots to evolve. A system of communication could be used to 
increase efficiency when engaging the enemy. Although, the 
primary focus of this experiment would be the communication 
protocol that was able to adapt. This could potentially force the 
bots to play different roles. One bot may act as a scout, alerting its 
teammates of enemy positions, while other bots may escort the 
weakest bot to a healing location. 
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