
Agent Smith: a Real-Time Game-Playing Agent
for Interactive Dynamic Games

Ryan Small
Department of Computer Science

University of Southern Maine
P.O. Box 9300

Portland, ME 04104

small@cs.usm.maine.edu

ABSTRACT
The goal of this project is to develop an agent capable of learning
and behaving autonomously and making decisions quickly in a
dynamic environment. The agent’s environment is a fast-paced
interactive game known as Unreal Tournament 2004. Unreal
allows for a spectator to watch the agent as it performs its tasks
and even to enter the game and challenge the agent.

The agent’s behavior is controlled by a rule-based system, which
looks at multiple high-level conditions, such as whether the agent
is weak, and determines single high-level actions, such as whether
to head for the nearest known healing source. Using an
evolutionary computation approach, in which the behavior is
evolved over a number of generations, the agent learns
increasingly better strategies for its environment.

Through the work in this project, we are exploring several
research questions, including the development of successful
vocabulary of high-level conditions and actions for the rule set,
the challenges of rapid decision making, and the trade-offs
between hand coding a rule set and using the evolutionary process
to hone a rule set.

Categories and Subject Descriptors
I.2.1 [Applications and Expert Systems]: Games.

General Terms
Algorithms, Experimentation

Keywords
Learning Classifier System (LCS), Games, Agents, Evolutionary
Computation, Rule-Based System

1. INTRODUCTION
Over the last few years the video game industry has exploded into
a multi-million dollar business. These newer games are becoming
increasingly dynamic. Among some of these games is a genre
known as First Person Shooter or FPS. These types of games are
typically fast paced, forcing the player to react quickly to changes
within the environment. Over time a player may develop a sense
of when to execute a particular action for the current scenario. For
instance when a weak and poorly equipped player meets an
opposing player, the more experienced player may retreat while

an new player may engage. This is the type of learning that will
be mimicked through Agent Smith.

1.1 Primary Goals
The initial goal of this project is to develop a learning classifier
system (LCS) capable of evolving a rule set that would allow a
bot to compete in a fast-paced dynamic game. The bot would be
able to rely on this evolved rule set to provide the appropriate
response for a given scenario, thus maximizing the bot’s score. It
can be expected that the agent will initially perform poorly;
however, over time this rule set will evolve into a more complete
and sophisticated set of rules. Unlike a human, the bot will not be
evolving its technical playing skills, but instead, the ability to
react strategically to any given situation.

2. Background
2.1 First Person Shooter
Unreal Tournament 2004 was the game of choice for the project.
This game was selected because it provides a Java API and the
plug-in, Pogamut, that is available to help develop the bot. As
with most FPS games the objective is to obtain a higher score than
any of your opponents. A high score is achieved by killing your
enemies; however, you are penalized for each death. The game
also allows for humans to connect to the game and participate,
which could allow a human to challenge the bot. The bot will
have some natural advantages over any human players. Since the
bot is fed information about the environment within its peripheral
vision and doesn’t need to do any visual processing, players
would be unable to blend in with their surroundings, as humans
would try to do against other humans. The other advantage for the
bot is its ability to be precise when shooting its weapon since
every shot is made by passing in the location of the enemy.

2.2 Learning Classifier System
A learning classifier system is comprised of two parts. The first
part of an LCS is the rule-based system. This rule-based system
uses a rule set which contains multiple rules. Each rule has an
array of conditions and a single action. In these rule-based
systems the environment is surveyed periodically, and then a
check is made on each rule to see if the conditions match the
current environment. When a matching set of conditions is found
the associated action is executed.
The second part of the system is the evolutionary process known
as a genetic algorithm. During the evolutionary process a rule set
is modified using a survival of the fittest scheme. Traits that made
a particular rule set effective are likely to carry on into future

Copyright is held by the author/owner(s).
GECCO’08, July 12–16, 2008, Atlanta, Georgia, USA.
ACM 978-1-60558-131-6/08/07.

1839

generations, while bad traits are dropped from the evolutionary
process.

3. System Design
This section will describe the four main components of this
system, including the Unreal game environment that the bot plays
in, the Pogamut plug-in that allows external bots to connect to an
Unreal game, the Chimera LCS that will be used to evolve the
rule sets used by the bot, and the Agent Smith bot that controls
the avatar within the Unreal game.

3.1 Unreal
The game is set up in such that the bot will initially be challenged
by another bot. This second bot is static and its behavior will
always be the same given a particular state. The game server does
not have any terminating conditions and allows the bot to
continue to evolve without any human interaction. Because Smith
adapts to its environment only a single map is used as a different
map may find different rule sets to be effective.

3.2 Pogamut
The Pogamut plug-in was developed for the Netbeans IDE.
Pogamut was specifically created for the development of bots in
Unreal Tournament 2004. Pogamut takes care of connecting to the
game and handling any messages given by the server.
Fortunately, the plug-in also has developed packages that simplify
finding the location of items, way-points, and other information
that may be useful to the bot. This tool provides example bots.
One of the examples provided will be the static challenger in this
project.

3.3 Chimera
For this project, the Agent Smith bot will use Chimera, a LCS to
evolve its rule sets. Chimera was developed from scratch using
Java. This encoding scheme is further explained in section 3.4.1.
Chimera uses a collection of solutions or rule sets; these rule sets
are evolved over time. Ideally, the average fitness of the
population will increase with each generation. The individual rule
sets themselves will become more complex. As more rules are
introduced into a rule set, the specificity increases, allowing for
the fine tuning to control the appropriate action.

3.3.1 Rule sets
The rule sets used contain a variable number of rules. The number
of rules a rule set will carry depends on the fitness of its parents.
The rule size depends on the fitness of both parents, and is
relative to the size of the longer rule size between both parents. If
both parents are above average fitness, then there will be one
additional rule. If both parents are below average fitness the rule
size will be one less. If each parent is on a different size of the
average fitness the rule length will equal the length of the longer
rule set.
Each rule is made of an array of integers representing the
conditions and a single action. The array of integers is a fixed
length. This forces each element in the array to be specified with
a value. Before Chimera begins the length of the array may be
changed, but not during evolution. Smith will only be concerned
with four conditions, thus the array will be a length of four.

During initialization all of the rule sets will be created randomly.
This approach introduces plenty of diversity. Diversity is
maintained through the crossover method. During the crossover

each rule has a chance for a mutation. Although the chance is
small, the mutation chance is calculated individually for each
rule. The diversity is important to prevent the population of rule
sets to converge on a single solution.

Chimera
Has an array of rule sets.

Rule Set

Fitness Value
 A higher value means

a better fitness.

Rules

Action
A single integer value.

Conditions
Array of integers. Each element represents a

different condition and the value represents the
state of the conditions.

Figure 1. Chimera Architecture

3.3.2 Fitness Function
Chimera delegates the responsibility of evaluation a rule set to a
user defined function. In Smith’s case, the fitness function is the
most time-consuming part of the evolutionary process, as Smith
will need to spend time playing Unreal to evaluate the rule set.
The function used in this project will focus on creating a rule set
that is primarily aggressive, but in some rare situations will
retreat. By awarding more points for a kill, the bot will develop a
more aggressive rule set.

3.3.3 Evolution
Chimera uses a four stage process. These four stages are known as
the initialization, evaluation, selection, and reproduction. The last
three stages are repeated for the number of generations specified.
During the initialization phase the population is randomly
generated. The initialization will only happen once and is the first
stage in the process. There will be no changes to the rule set once
they are initialized.
The second phase utilizes the fitness function created specifically
for its application. In this case, the bot will be using the rule set to
compete in the game. At the end of the round the fitness is
determined by the bot’s success.
In the selection phase rule sets are randomly selected based on the
fitness value assigned at the end of the evaluation phase. This
would be best viewed as a pie chart; the greater the fitness value,
the greater the chance of being selected. Using this selection
process, the rule sets that are selected and are passed into the
fourth stage.
During the final phase the two selected rule sets create a new rule
set that contains parts from both parents. This is the stage where
mutations may occur. At the end of this stage a new generation
will have been created and the evaluation process will begin
again.

1840

Figure 3. Evolutionary Process

The process will repeat for fifty generations, using a population
size of ten. With ten minute rounds, the entire experiment runs for
about eighty-three hours. These rule sets can be saved and further
evolution may continue at a later time.

3.4 Agent Smith
Agent Smith is the interface between Chimera and the Unreal
game. In its basic form, Smith is a java based program, which
merges the evolutionary process of Chimera with the Unreal
game. Smith is primarily the fitness function for Chimera. Agent
Smith will initialize Chimera. When Chimera needs a rule set
evaluated it will call one of Smith’s methods. Once in the method,
the round is considered to have begun. During the round, the
method will continue to reassess the current state of the
environment, then looking for the best matching rule within rule
set. Once a rule has been found, the associated action will be
executed within the Unreal game using the API provided by
Pogamut. After ten minutes the round is considered complete and
a fitness value is returned based on the bot’s success. The entire
process is repeated for each rule set within the population for each
generation.

3.4.1 Smith’s Encoding
In order for Chimera to remain generic it uses an encoding
scheme that requires everything to be converted to integers. Smith
will use three alleles to represent the values of the conditions. If
the value of the condition is zero then the condition is considered
false, if the value is one then the condition is true, a value of two
is a “don’t care” and means the condition can be true or false.
Since each condition is represented as an element within the
integer array, the length of the array will be equal to the number
of conditions used. This experiment looks at four conditions; the
health, armor, weapon, and visibility of the enemy. To determine
the value of a condition like health, a limit is used. If the health of
the bot goes below the limit, then the value is considered true.
The same method is used for armor. To determine the value of the
weapon condition, a list of weapons is used by the bot. If the
weapon the bot is currently using is on the list, then the value can
be considered true. The values for whether the bot can see an
enemy is considered true, if Smith can see an enemy.
The evolutionary process may specify multiple rules that use a
single action if they desire. Using multiple rules to describe a
single action produces the fine tuning that may be needed for
some situations, at the cost of time. If the max rule size is set to
high, the array of rules could become large enough to cause
undesirable delays when trying to find a rule that matches the
current state of the environment.

Example Rule

Low Health: WILDCARD
Low Armor: WILDCARD

Bad Weapon: WILDCARD
Enemy Visible: TRUE

Action: Engage

Figure 4. Example of a Rule Represented in Chimera

4. Results
In the experiments conducted here, the primary goal of the project
was achieved. The bot showed progressive improvements over
time. Although Agent Smith continued to evolve and became
more efficient, it was still unable to dominate the challenger on a
consistent basis. Smith’s rules became more complex with each
generation, providing more specificity for more scenarios.
The rule sets used in the early generations scored very low and
seemed unintelligent. Allowing Smith to start based on hand-
coded rule sets would save a lot of time during the evolutionary
process and provide it a jump start. As an example, some of the
rule sets gave the instruction to engage only when the enemy was
not visible. Since these rule sets scored poorly, they were not
carried on into future generations.

5. Future Work
The initial stage of development demonstrates that evolutionary
computation is a promising approach to working with interactive
games. However, there is obviously much room to extend this
project.

5.1.1 Condition Limits
This initial work limited the conditions to four criteria that
appeared to be the most relevant, and four possible actions. When
playing Unreal, not only do I perform more than four different
actions, but my actions are also based on more than four
conditions. It would be nice to see Agent Smith become more
flexible by adding more complex actions. More conditions could
be added to help make more informed decisions. Some of these

5.1.2 Technical Evolution
Evolution could also be incorporated into the technical aspect of
the game play, techniques such as strafing and camping could
help excel the bots efficiency. During this experiment actions
such as healing lead to the bot randomly grabbing healing items.
Allowing the bot to develop a sense of priority over these various
healing items may allow the bot to spend less time in a healing
state and more time in an engage state, thus increasing its score.

1841

5.1.3 Team Evolution
The development of a team of Smiths could force the progression
of each individual by allowing the team to share some of their
best rule sets. This would allow for both a team and the individual
bots to evolve. A system of communication could be used to
increase efficiency when engaging the enemy. Although, the
primary focus of this experiment would be the communication
protocol that was able to adapt. This could potentially force the
bots to play different roles. One bot may act as a scout, alerting its
teammates of enemy positions, while other bots may escort the
weakest bot to a healing location.

6. Acknowledgements
I would like to thank all of my friends in the Unix Lab for all of
the Unreal advice, and a special thanks to Clare Bates Congdon

for the artificial intelligence classes and all of her help with this
project.

7. References
[1] Unreal Tournament 2004:

www.unrealtournament2003.com/ut2004/index.html
[2] Pogamut:

https://artemis.ms.mff.cuni.cz/pogamut/tiki-index.php
[3] Netbeans: www.netbeans.org
[4] Jones, Tim M. AI Application Programming. 2nd ed. Boston:

Charles River Media, 2005. 229-261

1842

