
Selection for Group-Level Efficiency Leads to
Self-Regulation of Population Size

Benjamin E. Beckmann, Philip K. McKinley, and Charles Ofria
Department of Computer Science and Engineering

3115 Engineering Building
Michigan State University

East Lansing, Michigan 48824
{beckma24,mckinley,ofria}@cse.msu.edu

ABSTRACT
In general, a population will grow until a limiting factor,
such as resource availability, is reached. However, increased
task efficiency can also regulate the size of a population dur-
ing task development. Through the use of digital evolution,
we demonstrate that the evolution of a group-level task, re-
quiring a small number of individuals, can cause a popula-
tion to self-regulate its size, even in the presence of abundant
energy. We also show that as little as a 1% transfer of energy
from a parent group to its offspring produces significantly
better results than no energy transfer. A potential applica-
tion of this result is the configuration and management of
real-world distributed agent-based systems.

Categories and Subject Descriptors
F.1.1 [Computation by Abstract Devices]: Models of
Computation—Self-modifying machines; I.2.8 [Computing
Methodologies]: Artificial Intelligence—Problem Solving,
Control Methods, and Search

General Terms
Experimentation

Keywords
Artificial life, digital evolution, self-regulation, multi-agent
systems, selection, cooperative behavior.

1. INTRODUCTION
In 2004, malignant neoplasms, or cancer, caused the deaths

of 7.6 million people worldwide, and an estimated 12.3 mil-
lion new cases were discovered [25]. Cancer is caused by
the breakdown of apoptosis, the natural processes by which
cells die. The failure of this process effectively destabilizes
a human body’s ability to regulate its population of cells,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’08, July 12–16, 2008, Atlanta, Georgia, USA.
Copyright 2008 ACM 978-1-60558-130-9/08/07 ...$5.00.

ultimately causing the untimely deaths of millions of peo-
ple. Similarly, cancerous problems can arise in agent-based
computational systems when the number of agents in the
system grows out of control. For example, if the number of
detector agents in an artificial immune system is not prop-
erly controlled, then the system’s ability to detect a threat
may degrade due to resource limitations and a correspond-
ing increase in false positives, leading to system-wide quality
of service (QoS) degradation or even failure [17]. Further-
more, global limitations on the number of agents within a
decentralized system may not be possible due to a lack of
knowledge caused by communication, synchronization, and
time constraints. Therefore, if agent overpopulation can
cause an unacceptable decrease in a system’s QoS, then self-
regulation of population size is a desirable feature.

Our investigations focus on how the harnessing of digital
evolution (DE) [1] can contribute to the design or synthe-
sis of robust distributed agent-based systems [20]. In a DE
system, individuals, or digital organisms, self-replicate and
evolve to perform tasks in a user defined computational en-
vironment. Instead of a traditional fitness-based selection
process, in DE an organism’s ability to self-replicate drives
natural selection. This method of selection more closely
matches that of the natural world and can provide insight
into the evolutionary process [2], often revealing unexpected
and strikingly clever solutions [16].

Many similarities can be drawn between the capabilities
of a digital organism and an agent in a distributed system.
Both are capable of replication, local computation, environ-
mental interactions, and communication with other individ-
uals. In addition, these capabilities can be leveraged and
coupled within a group to produce collaborative behaviors,
i.e., swarms of agents, enabling the completion of a complex
task through the self-organization of individuals.

This work investigates the role that group-level energy ef-
ficiency can play in natural selection, in particular, its effects
on the self-regulation of a group’s population. For example,
when a group is selected for replication, what happens if its
previous energy gains are ignored completely, partially, or
not at all? What effects does group-level efficiency have on
the number of individuals required to complete the task and
their behavior? Does energy abundance increase or decrease
the time required to evolve a group-level task? In addition to
providing evidence that helps to answer these questions, we
will also discuss the application of the results to the design
of agent-based distributed systems.

185

The remainder of this paper is organized as follows. Sec-
tion 2 provides background on agent-based systems, self-
regulating populations, energy based selection, and digital
evolution. Section 3 describes Avida, the digital evolution
platform used in this study. Section 4 presents our experi-
mental setup and results, followed by conclusions and future
work in Section 5.

2. BACKGROUND
As computing becomes more pervasive and decentralized,

many design techniques have been proposed to handle the
increasing complexity, including autonomic agent-based sys-
tems [14]. In these systems, individual agents collaborate to
perform a task based on administrative goals, and the sys-
tem as a whole is self-managing. Therefore, after such a
system is configured and initiated, little or no human inter-
action is required. However, proper initial configuration is
essential to ensure the agents do not inhibit the system. For
example, in some artificial immune systems, the lifetime of
a detector agent is determined a priori. If improperly con-
figured, an agent’s lifetime can limit the system’s ability to
function properly, resulting in either false positive or false
negative detection of threats [12]. In addition to an agent’s
lifetime, the number of agents in the system can also affect
QoS. Continuing our example, if the number of detectors
in an artificial immune system is too small, then threats
can go undetected, whereas if they are too numerous, the
system can suffer from resource limitations. Autonomically
adapting values associated with these management concerns
(agent lifetime and number of agents) can directly affect
a system’s responsiveness, robustness, resiliency, and effi-
ciency [5].

Research on population size regulation in agent-based sys-
tems has appeared in the genetic algorithm literature [3,7,8].
However, in these works, the strategy for varying the popu-
lation size is static and may require global knowledge. For
example, in [8], an individual’s chances of survival is de-
creased by a fixed percentage every generation, fixing the
maximum life span of an individual. Also, the reproduction
rate of the population is determined by its diversity: when
the population diversity is low, the reproduction rate is also
low. To avoid a reproductive slowdown, many individual
mutations are applied simultaneously to a large portion of
the population when its diversity drops below a threshold,
increasing the populations diversity and reproductive rate.

In addition to evolutionary computation methods, work
on population size regulation has also been done in systems-
related fields [4, 28]. However, many of these works use
predefined rules based on stigmergic communication. The
method described in this paper does limit the lifetime of
an individual, however this limit is greater than 10 times
the maximum ever observed. In addition, the method also
limits the maximum population size, however the popula-
tion rarely reaches this maximum capacity. In contrast, this
method does not predetermine the number of individuals re-
quired to solve a problem, or allow information to be stored
in the environment for us in stigmergic communication. We
will show that this method is capable of evolving to solve
a group-level problem while self-regulating the population
size.

If selection is based solely on how well an individual com-
pletes a task, and energy efficiency is ignored, then solu-
tions can evolve to be successful, but their translation into

real devices can produce suboptimal results. For example,
as shown in [19], when a robot was evolved to search for an
object without any energy constraints, it evolved to spiral
out from its starting position and ignore possibly useful sen-
sor readings. In contrast, when energy was included in the
fitness evaluation, the robot actively polled its sensors and
chose a more direct path to the target, increasing its energy
efficiency. Energy efficiency has also been used indirectly
in the study of the evolutionary process. In [10], a mobile
robot was evolved to move for an extended period of time
using a rechargeable battery. As long as the robot returned
to the recharging sector of the environment before its bat-
tery was depleted, it could continue to move, increasing its
fitness. Through the evolutionary process the robot evolved
to recharge itself and survive until it was stopped due to a
hard time limit. These direct and indirect uses of energy
demonstrate the theory of diminishing returns. Ideally, a
computer system should automatically operate close to this
point, optimizing its performance. Commonly, the config-
uration required to achieve such performance, such as the
number of agents within a system, is computed a priori as
in artificial immune systems [13] and particle swarm opti-
mization [22]. However, research into run-time optimization
of resources through self-* properties has increased in recent
years [18,23,27] leading to exciting projects including NASA
ANTS [26], and Swarmanoid [6]. Our focus here is on the
effects energy efficiency can have on evolution, specifically,
the effects that energy transferred from one generation to the
next generation can have on the evolvablity of group-level
tasks.

3. AVIDA BACKGROUND & EXTENSIONS
Avida is a well established artificial life platform used to

study evolutionary biology [2, 15, 16, 21, 29]. In Avida, in-
dividuals, or digital organisms, compete for space in a two-
dimensional grid of cells, shown at the bottom of Figure 1.
Each cell can contain at most one organism comprised of a
circular list of instructions (its genome) and a virtual CPU
that executes those instructions, shown at the top of Figure
1. An organism’s virtual CPU is made up of three general
purpose registers (AX, BX, CX), two general purpose stacks,
and special purpose heads which point to locations within
the organism’s genome. These heads are used to control in-
struction execution and flow, plus facilitate replication. The
execution of an instruction costs both virtual CPU cycles
and energy. Different instructions can be assigned differ-
ent CPU cycle and energy costs. The competitiveness of an
organism within a population depends on its ability to bal-
ance these costs while effectively executing instructions to
complete user defined tasks. A task is a mechanism to re-
ward or punish an organism that has successfully performed
a specific function.

Self-replication is achieved when a (parent) organism copies
its genome and executes a divide instruction, effectively cre-
ating two offspring organisms, one of which replaces the
parent. The two newly produced offspring equally split
the energy of the parent organism after a small percentage
(5%) has been decayed. In general, the copying of instruc-
tions by the parent organism is imperfect, resulting in off-
spring genomes that are not identical to that of the parent.
In the experiments described herein, these copy mutations
are turned off. To introduce variation into the population,
group-level mutations, described later, are used.

186

Figure 1: Avida population (bottom) and composi-
tion of a digital organism: genome (top left), virtual
CPU (top right)

Instead of an explicit fitness function, the competition for
space drives selection in Avida; those organisms who repli-
cate faster are more successful than those who do not. An
organism’s energy is used to calculate its metabolic rate us-
ing Equation 1. An organism’s metabolic rate is inversely
proportional to a user defined limit on the total number of
instructions an organism can execute before its energy is de-
pleted, assuming no new energy influx and all instructions
cost 1 energy unit. Probabilistically, an organism with a
higher metabolic rate will execute more instructions at a
higher energy cost per instruction, calculated by Equation
2, than an organism with a lower metabolic rate.

metabolic rate =
stored energy

instructions before zero energy
(1)

actual energy cost = metabolic rate× energy cost (2)

An Avida population is initialized by injecting it with a
single ancestral organism capable only of self-replication.
Along with the instruction sequence required to replicate,
the ancestral organism also contains 85 no-operation instruc-
tions. These instructions have no effect on the ancestral
organism’s observed behavior, or phenotype, excluding its
gestation time. They do provide the evolutionary process
more room to work, which decreases the probability that
a single mutation will disrupt an organism’s replication cy-
cle. However, if an organism’s replication cycle is broken by
a mutation, it will no longer have the ability to replicate,
thereby removing its genetic code from the population.

In addition to local computation and self-replication, a
digital organism is also capable of inter-organism messaging,
movement, and environmental sensing. Messaging function-
ality is provided by a broadcast instruction, which col-
lects the contents of two virtual CPU registers and transmits
them in a single message to every organism within a user de-
fined radius. For example, Figure 2 depicts three possible
broadcast radii of an organism S. If the organism’s broad-
cast radius is set to 2 then every organism residing in a cell
marked with a number less than or equal to 2 will receive

a copy of a transmitted message. We note that the results
presented in Section 4 use a broadcast radius of 3, however,
a broadcast radius of 1 was also tested and produced similar
results. In addition to messaging, an organism can also move
to a neighboring cell by executing the move instruction. An
organism will always move to the cell that it is facing. For
example, if the organism S in Figure 2 is facing right and it
executes a move it will relocate to the cell marked with a
+1 . An organism can also change its facing by executing a
rotate instruction. Upon birth, an organism initially faces
its parent. Besides messaging and movement, an organism
can also sense its local environment. The operation of the
sense instruction will be discussed in Section 4.1.

Figure 2: Example grid containing an organism S,
and the cells reached by broadcasting with varying
radii.

The combination of local computation and environmental
interaction enables an organism to explore its environment
and cooperate with others to perform a task. To encour-
age cooperative behavior an organism can be rewarded for
completing an individual task that is a building block for
a group-level behavior. For example, an organism could be
rewarded for alerting its group of an important target when
the group is surveying an area. Once a rewarded task is
completed, the organism receives an influx of energy and
its metabolic rate is recalculated. By efficiently perform-
ing individual tasks an organism can increase its metabolic
rate, giving it a competitive advantage. In addition, by de-
composing a group-level behavior into individual building
blocks, the Avida user can encourage the evolution of a com-
plex cooperative behavior.

In addition to promoting selection by rewarding individual
tasks, Avida also allows for group-level selection through the
use of demes. A deme is a independent subgroup within a
population. As shown in Figure 3, a single population can
be divided into multiple independent demes. The demes are
identical in size and topology. When initialized, a deme is
seeded with a single organism, and that organism is provided
with a baseline amount of energy units.

Avida supports multilevel selection [30], specifically indi-
vidual and deme-level selection. To enable deme-level se-
lection, a deme is replicated when it satisfies a deme-level
predicate, more generally thought of as a group-level behav-
ior, such as flocking or consensus. Once a deme has satisfied
a deme-level predicate, it is selected for replication and will
replace itself and another randomly selected deme. Upon
deme replication, prior to creating new offspring demes, mu-
tations are applied to the genome within the parent deme.
During this mutation process each instruction in the genome
is subject to a 0.75% chance of being mutated to a random

187

(a) single population

(b) four independent demes

Figure 3: Depiction of a single Avida population
without and with demes. Dashed lines in Figure
3(a) represent a division of the population into the
demes shown in Figure 3(b).

instruction. The newly created genome and its ancestral
genomes make up the germ line of an offspring deme. The
newly created genome is used in the seed organism for the
new demes. In addition to deme-level predicates, a deme’s
age is also used as a trigger for deme replication. This repli-
cation trigger allows for the bootstrapping of the evolution-
ary process by introducing mutations into a deme’s germ
line. Figure 4 depicts the initial injection of the ancestral
organism into every deme, and both age and predicate based
deme replication methods.

Figure 4: Example showing deme initialization and
replication of germ lines

While individual organisms within a deme are able to
replicate, those replications do not involve mutations to the
genome. Hence, all organisms within a deme are genetically
identical. Floreano et.al. [9] have previously shown that this
approach is effective in evolving cooperative behavior.

4. SELF-REGULATING POPULATION
Distributed agents are commonly used in event detection

systems, such as wireless sensor networks and artificial im-
mune systems. Agents can act both independently [11, 13]

and cooperatively [24]. For example, in [11] agents inde-
pendently detect the presence of a forest fire, but collabo-
rate to determine its perimeter and notify local authorities.
However, the QoS provided by this type of reconnaissance
service, capable of surveying its environment and ascertain-
ing strategic environmental features, is susceptible to agent
under- and overpopulation. In general, the number of agents
required for reconnaissance depends on the desired outcome.
For example, if time is limited, more agents may be used to
cover an area than when time is not an issue. However,
if resource usage is also important, the number of agents
may need to be restricted. Furthermore, some level of co-
operation among agents is required to effectively survey an
environment and report events.

In this work, we focus on the evolution of a cooperative
deme-level reconnaissance task, specifically investigating the
effects of a heritable energy trait on the evolution of this be-
havior in a multi-organism system. We will show, through
experimentation, that a small energy transfer from one gen-
eration to the next can decrease amount of time required to
evolve a gourp-level task and can promote self-regulation of
the groups population.

4.1 Experimental Setup
In these experiments, a population is divided into 100 in-

dependent demes, each consisting of 49 cells arranged in a
7 × 7 grid, as shown in Figure 5. Each cell within a deme
is marked by an integer denoting the cell’s contents: empty
(−1), a “nest” (0), or a target (> 0). Each deme contains ex-
actly one nest cell, located in its center, and one randomly
located target cell; all other cells are empty. An organ-
ism can sense what type of cell it resides in by executing
the collect-cell-data instruction, which reads the value
stored in the cell into a register in the organism’s virtual
CPU. In the experiments described here a single deme-level
predicate is used. To satisfy this predicate, a message con-
taining the target cell’s ID (a random positive integer stored
in the target cell) must be received by an organism currently
residing in the nest. Minimally, this predicate requires two
organisms to cooperate: one to send the message and one
to receive it. Upon the satisfaction of this predicate the
satisfying deme is replicated, as shown in Figure 4.

Figure 5: Deme setup with a nest (0), target (> 0),
and empty (−1) cells.

To encourage the evolution of the desired behavior, two
organism-level tasks are rewarded. The simplest task re-
wards an organism that enters the target cell, with an energy
bonus equal to the baseline energy given to a seed organism
(1000 energy units). Incorporating this task into the envi-
ronment encourages organisms to forage for the target cell.

188

However, this task does not require the organism to take any
action or even have knowledge that it is in the target cell.
To encourage active sensing and reporting of the target cell’s
ID, the second organism-level task rewards an organism for
sending the target cell’s ID in a message. However, before
this task can be rewarded, an organism must gain access to
the target cell’s ID either by finding the target cell (encour-
aged by the first task) and collecting its ID, or by receiving
it in a message. After the organism has gained access to
the target cell’s ID, it must send the ID to an organism on
the nest in order to receive a reward. Once this final step is
completed, the organism will receive a reward of 200 energy
units. By performing these tasks an organism can increase
its energy and gain a competitive advantage. However, it
is conceivable that an organism could evolve to repeatedly
complete either or both tasks. To discourage this type of
hyperactivity, a limit is placed on the number of times an
organism can receive a reward for each task. In addition,
higher energy and virtual CPU cycle costs are assigned to
all sensing, messaging, and movement instructions, mimick-
ing the costs associated with performing these operations on
physical hardware.

4.2 Evolved Foraging Behavior
Our experiments produced demes capable of satisfying the

deme-level predicate. Before evaluating the effects of vari-
ous parameter settings on the evolutionary process, let us
first describe a strategy that evolved frequently in our runs.
We note that an organism cannot glean information about
the location of the target cell from the environment unless
it is occupying that cell. Hence, the only way an organism
can find the target cell is by performing a random search.
However, organisms did evolve to take advantage of the con-
stant location of the “nest” cell and the topology of the envi-
ronment. Specifically, through the use of the get-cell-xy
instruction, which places the organism’s current (x,y) coor-
dinates in two of its registers, and the if-equ register com-
parison instruction, organisms repeatedly moved back and
forth along the deme diagonal. This oscillatory behavior,
depicted in Figure 6, enables an organism to move while
remaining near and frequently entering the “nest” cell.

Figure 6: Example path resulting from organism
moving back and forth on deme diagonal.

4.3 Varied Energy Transfer
To perform the following experiments, we extended Avida

to allow a percentage of a parent deme’s energy to be passed
to its offspring. The passing of energy allows it to be a heri-
table feature, thereby enabling selection based indirectly on
energy efficiency. By varying the amount of energy passed to

the offspring deme, we are able to assess the effects of energy
heritability on the evolution of a deme’s ability to satisfy
the deme-level predicate. We varied the amount of energy
passed to the next generation in four different treatments:
0%, 1%, 5%, or 10%. Additional, higher levels of energy
transfer were also tested, however, none was significantly
different than the results observed in the 10% treatment.
To measure the effect of energy transfer on the evolution of
the behavior to satisfy a deme-level predicate, we compare
each treatment based on the mean gestation time of a deme
(time to complete deme-level task), and the mean number
of organisms within a deme. We also use organism gesta-
tion time to evaluate the effects of energy transfer on the
evolution of the deme-level task.

Figure 7 plots the effect, on the mean gestation time of a
deme, of varying the percentage of energy transferred from
the parent deme to the offspring. The plot shows a sig-
nificant difference between the 0% treatment and all other
treatments after 50, 000 updates. For example, the Wilcoxon
rank-sum test calculates a p-value of 0.0025 when an α of
0.001 is used in the comparison of the 0% and 1% treatments.
This plot suggests that as little as 1% energy transfer from
a parent to an offspring can significantly increase a deme’s
ability to evolve a deme-level task, when compared to the
0% treatment. This result can be attributed to the fact that
an organism injected into a deme in the 0% treatment is
given the baseline amount of energy, which eliminates any
energy advantage that could have been achieved by the par-
ent deme, effectively slowing (but not stopping) the evolu-
tionary process, as shown by the persistent downward slope
in Figure 7. For example, if organisms in a deme increase
their energy in the 0% treatment, then the deme will be more
likely to be replicated. After replication, however, the en-
ergy level of the organisms in the offspring deme is reduced
to the baseline, decreasing the deme’s probability of repli-
cating again. On the other hand, if energy is transferred to
organisms in an offspring deme, the higher organism base-
line energy level gives the deme a competitive advantage,
albeit a small one.

Figure 7: Average fraction of total possible time to
complete a deme-level task using multiple energy
transfer percentages. Results are mean of 30 runs.

In addition to increasing the evolvablity of a system, a
small transfer of energy can also promote the evolution of
a self-regulating population during the deme’s development.

189

Figure 8 plots the mean population size of demes in all four
treatments. This plot reveals a mean increase in deme popu-
lation size in the three non-zero treatments during the begin-
ning of a run followed by a continual reduction after about
the first quarter, eventually finishing below the 0% treat-
ment. In contrast, the 0% treatment does not exhibit much
variation in deme population size.

Figure 8: Average fraction of total possible organ-
isms per deme using multiple energy transfer per-
centages. Results are average of 30 runs.

In addition, organisms in the 0% treatment do not per-
form individual tasks at the same level as organisms in the
1% treatment, as shown in Figure 9. However, we note
a convergence of the task completion statistics toward the
end of both treatments, which is a byproduct of the deme re-
placement method and the decrease in deme gestation time.
Specifically, the drop in task completion levels in the 1%
treatment are caused by demes that are replaced before they
perform a task. The lower levels of individual task comple-
tion in the 0% treatment are due to an absence of a selec-
tive pressure to complete these tasks and collect additional
energy. In addition, since the organisms collect little addi-
tional energy, they are not able to increase the population
in their deme above the level achievable with the baseline
energy. However, even without a fluctuating population, the
evolutionary process selects demes in the 0% treatment that
satisfy the deme-level predicate, but this process requires
more time than when energy is transfered, as seen in Figure
7.

The reduction in deme population size observed in the
non-zero treatments in Figure 8 suggests that organisms
have evolved in one of three ways. Either the organisms
have (1) increased their level of cooperation, enabling them
to satisfy the deme-level predicate more quickly, thereby re-
ducing time for deme replication (supported by the decline
in average deme gestation time shown in Figure 7), or (2)
their replication rate has been slowed such that each organ-
ism reproduces less often, giving the group more time to
satisfy the predicate before producing offspring, or (3) some
combination of both. Figure 10 shows the mean gestation
time of an organism for the 0% and 1% treatments. (The
other non-zero treatments produced results similar to the 1%
treatment and are omitted due to space limitations.) Error
bars are omitted from the figure because there is no signifi-
cant difference between the two treatments. We note that in

Figure 9: Average number of organisms in current
demes who have performed either of the two indi-
vidual tasks. Results are average of 30 runs.

both the 0% and 1% treatments, the mean organism gesta-
tion time increases with time. This phenomenon occurred in
all energy transfer levels tested. In contrast, the gestation
time of Avida organisms typically decreases over time, as
shown during the beginning of both treatments, because of
selective pressures at the organism-level to become a more
efficient self-replicatior and produce more offspring. This
result shows that the pressure to become a more efficient
self-replicatior can be overcome by performing selection at
the deme-level.

Figure 10: Mean of organism gestation times. Re-
sults are the average of 30 runs.

4.4 Abundant Energy
In the previous treatments, the amount of energy an or-

ganism could gain during its lifetime was limited by a re-
striction on the number of times it could receive a reward
for completing an individual task. To investigate the effects
of abundant energy, we removed this limitation. Repeating
the previous treatments with abundant energy, we observed
no significant differences in the results. Figure 11 displays
the mean deme gestation time and total number of organ-
isms per deme for the 0% and 1% treatments when energy

190

accumulation is not limited. By inspecting Figure 11, it
can be determined that the same pressures that caused the
populations in the previous treatments to self-regulate are
still present, even when energy is abundant. In addition,
energy abundance does not significantly affect the gestation
of individual organisms. These results suggest that energy
abundance has little to no effect on the evolution of demes
that satisfy the deme-level predicate. The minimal impact of
energy abundance can be classified as a byproduct of dimin-
ishing returns: As an organism completes more tasks and
accumulates additive energy rewards, it pays a higher en-
ergy cost per instruction because of its increased metabolic
rate. Once the organism reaches the point where it costs
more energy to perform a task than it receives in return, ad-
ditional task completion begins to have a negative effect on
the organism’s metabolic rate. Therefore, the evolutionary
process must balance diminishing returns with the selective
pressure to accumulate additional energy by increasing an
organism’s gestation time.

Figure 11: Fraction of total possible organisms per
deme and fraction of maximum deme gestation time
when energy is abundant and 0% or 1% of the parent
deme’s energy is transfered to the offspring. Results
are representative of 30 runs.

The minimal effect of energy abundance on the evolution
of a cooperative reconnaissance task suggests that deme-
level selection is robust, at least in this case, to organism-
level perturbation. In both the energy abundant and energy
limited case, incorporating energy heritability into deme-
level selection reduces the time required to evolve coop-
erative reconnaissance. In addition, the evolutionary pro-
cess increases the quality of the solution by evolving a self-
regulating population.

5. CONCLUSIONS
Through the use of digital evolution and the Avida sys-

tem, we have shown that a population can evolve to self-
regulate its size during group-level task development when
as little as 1% of the parent deme’s total energy is trans-
ferred to the offspring demes. In addition, we provide ev-
idence that an increase in organism gestation time occurs
when demes evolve to be more proficient at satisfying the
deme-level predicate. In particular, an increase in the ges-
tation time of organisms allows a deme more time to satisfy

the deme-level predicate with fewer total organisms, which
translates into a more energy-efficient deme. Furthermore,
we have shown that abundant resources have little effect on
the evolution of this deme-level behavior.

In these experiments, the evolutionary process is balanc-
ing opposing selective pressures to decrease an organism’s
gestation time with the pressure to decrease a deme’s ges-
tation time. These two pressures are opposing because de-
creasing the gestation time of an organism will increase the
number of births per deme, thereby increasing the amount of
energy lost due to energy decay during replication. Whereas,
a decrease in deme gestation time implies that fewer instruc-
tions are executed by its constituents, which translates into
an energy savings. Since the deme-level predicate used in
these experiments requires cooperation, evolution favors ex-
tending an organism’s gestation time to allow more time to
search for the target before replication occurs. These fac-
tors promote the natural selection of demes that satisfy the
deme-level predicate while selecting against inefficient or-
ganisms, effectively encouraging deme-level efficiency.

In an agent-based distributed system, both individual life-
time and population size are important concerns for devel-
opers. Mismanagement of either of these two concerns can
cause a disruption of a system’s required QoS. Through the
transfer of energy and deme-level selection, digital evolution
has produced a system that can effectively self-manage both
of these concerns in addition to completing a desired task in
an efficient manner. We intend to extend this work into the
design of real-world systems capable of self-regulating their
populations and adapting the lifetime of their agents to ful-
fill the requirements of a particular domain. Specifically, we
intend to apply these results to the design of an agent-based
event detection system for use in a wireless sensor network.
By drawing inspiration from natural systems and harness-
ing the evolutionary process which produced those systems,
we hope to provide tools capable of handling the escalating
complexity of future distributed computing systems.

6. REFERENCES

[1] C. Adami. Introduction to artificial life.
Springer-Verlag New York, Inc., New York, NY, USA,
1998.

[2] C. Adami, C. A. Ofria, and T. C. Collier. Evolution of
biological complexity. Proceedings of the National
Academy of Sciences, 97(9):4463–4468, April 2000.

[3] J. Arabas, Z. Michalewicz, and J. J. Mulawka. Gavaps
- a genetic algorithm with varying population size. In
International Conference on Evolutionary
Computation, pages 73–78, 1994.

[4] M. Bakhouya and J. Gaber. Adaptive approach for
the regulation of a mobile agent population in a
distributed network. In Proceedings of the Proceedings
of The Fifth International Symposium on Parallel and
Distributed Computing, pages 360–366, Washington,
DC, USA, 2006. IEEE Computer Society.

[5] A. Bieszczad, T. White, and B. Pagurek. Mobile
agents for network management. IEEE
Communications Surveys, 1998.

[6] M. Dorigo. Swarmanoid project.
http://www.swarmanoid.org, January 2008.

191

[7] H. Eskandari, C. D. Geiger, and G. B. Lamont.
FastPGA: A dynamic population sizing approach for
solving expensive multiobjective optimization
problems. In Proceedings of the 4th International
Conference on Evolutionary Multi-Criterion
Optimization, volume 4403 of Lecture Notes in
Computer Science, pages 141–155. Springer, 2006.

[8] C. Fernandes and A. C. Rosa. Self-regulated
population size in evolutionary algorithms. In PPSN,
volume 4193 of Lecture Notes in Computer Science,
pages 920–929. Springer, 2006.

[9] D. Floreano, S. Mitri, S. Magnenat, and L. Keller.
Evolutionary conditions for the emergence of
communication in robots. Current Biology,
17:514–519, March 2007.

[10] D. Floreano and F. Mondada. Evolution of Homing
Navigation in a Real Mobile Robot. IEEE
Transactions on Systems, Man and Cybernetics Part
B : Cybernetics, 26(3):396–407, 1996.

[11] C.-L. Fok, G.-C. Roman, and C. Lu. Rapid
development and flexible deployment of adaptive
wireless sensor network applications. In Proceedings of
the 25th IEEE International Conference on
Distributed Computing Systems, pages 653–662,
Washington, DC, USA, 2005. IEEE Computer Society.

[12] M. Glickman, J. Balthrop, and S. Forrest. A machine
learning evaluation of an artificial immune system.
Evolutionary Computation, 13(2):179–212, 2005.

[13] S. A. Hofmeyr and S. A. Forrest. Architecture for an
artificial immune system. Evolutionary Computation,
8(4):443–473, 2000.

[14] J. O. Kephart and D. M. Chess. The vision of
autonomic computing. Computer, 36(1):41–50, 2003.

[15] R. E. Lenki, C. A. Ofria, T. C. Collier, and C. Adami.
Genome complexity, robustness and genetic
interactions in digital organisms. Nature, 400:661–664,
1999.

[16] R. E. Lenski, C. Ofria, R. T. Pennock, and C. Adami.
The evolutionary origin of complex features. Nature,
423:139–144, 2003.

[17] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker.
Search and replication in unstructured peer-to-peer
networks. In 16th ACM International Conference on
Supercomputing, New York, USA, June 2002.

[18] G. Mainland, D. C. Parkes, and M. Welsh.
Decentralized, adaptive resource allocation for sensor
networks. In Proceedings of the 2nd USENIX
Symposium on Networked Systems Design and
Implementation, Boston, MA, USA, May 2005.

[19] G. McHale and P. Husbands. Incorporating energy
expenditure into evolutionary robotics fitness
measures. In Proceedings of the Tenth International
Conference on the Simulation and Synthesis of Living
Systems, pages 206 – 212, Cambridge, MA, USA,
2006. MIT Press.

[20] P. McKinley, B. Cheng, C. Ofria, D. Knoester,
B. Beckmann, and H. Goldsby. Harnessing digital
evolution. Computer, 41(1):54–63, January 2008.

[21] C. Ofria and C. O. Wilke. Avida: A software platform
for research in computational evolutionary biology.
Artificial Life, 10:191–229, March 2004.

[22] J. Pugh and A. Martinoli. Multi-robot learning with
particle swarm optimization. In Proceedings of the fifth
international joint conference on Autonomous agents
and multiagent systems, pages 441–448, New York,
NY, USA, 2006. ACM.

[23] S. M. Sadjadi and P. K. McKinley. Transparent
self-optimization in existing corba applications. In
Proceedings of the First International Conference on
Autonomic Computing, pages 88–95, Washington, DC,
USA, 2004. IEEE Computer Society.

[24] G. Simon, M. Maroti, A. Ledeczi, G. Balogh, B. Kusy,
A. Nadas, G. Pap, J. Sallai, and K. Frampton. Sensor
network-based countersniper system. In Proceedings of
the 2nd International Conference on Embedded
Networked Sensor Systems, pages 1–12, New York,
NY, USA, 2004. ACM Press.

[25] A. C. Society. Global cancer facts & figures, 2007.

[26] W. Truszkowski, M. Hinchey, J. Rash, and C. Rouff.
Nasa’s swarm missions: The challenge of building
autonomous software. IT Professional, 6(5):47–52,
2004.

[27] E. Tuci, R. Gross, V. Trianni, F. Mondada,
M. Bonani, and M. Dorigo. Cooperation through
self-assembly in multi-robot systems. ACM
Transactions on Autonomous and Adaptive Systems,
1(2):115–150, 2006.

[28] T. White, B. Pagurek, and D. Deugo. Management of
mobile agent systems using social insect metaphors. In
21st IEEE Symposium on Reliable Distributed
Systems, pages 410–415, 2002.

[29] C. O. Wilke, J. Wang, C. A. Ofria, C. Adami, and
R. E. Lenki. Evolution of digital organisms at high
mutation rate leads to survival of the flattest. Nature,
412:331–333, 2001.

[30] D. S. Wilson. Introduction: Multilevel selection theory
comes of age. The American Naturalist, 150(S1-S4),
July 1997.

192

