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ABSTRACT 
In this work an improvement of an initial approach to design 
Artificial Neural Networks to forecast Time Series is tackled, and 
the automatic process to design Artificial Neural Networks is 
carried out by a Genetic Algorithm. A key issue for these kinds of 
approaches is what information is included in the chromosome 
that represents an Artificial Neural Network. In this approach new 
information will be included into the chromosome so it will be 
possible to compare these results with those obtained in a 
previous approach. There are two principal ideas to take into 
account: first, the chromosome contains information about 
parameters of the topology, architecture, learning parameters, etc. 
of the Artificial Neural Network, i.e. Direct Encoding Scheme; 
second, the chromosome contains the necessary information so 
that a constructive method gives rise to an Artificial Neural 
Network topology (or architecture), i.e. Indirect Encoding 
Scheme. The results for a Direct Encoding Scheme (in order to 
compare with Indirect Encoding Schemes developed in future 
works) to design Artificial Neural Networks to forecast Time 
Series are shown. 

ACM Categories and Subject Descriptors 
I.2.6 [Artificial Intelligence]: Learning - Connectionism and 
neural nets; G.3 [Mathematics of Computing]: Probability and 
Statistics - Time series analysis; 

General Terms 

Algorithms, Measurement, Performance, Design, Theory 
Verification, Experimentation. 

Keywords 
Evolutionary Computation, Genetic Algorithms, Artificial Neural 
Networks, Time Series, Forecasting. 
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1. INTRODUCTION 
In order to acquire knowledge, it is so interesting to know what 
the future will look like, i.e. forecast the future from the observed 
past. The forecasting task can be performed by several techniques 
as Statistical methods, and other based on Computational 
Intelligence like Immune Systems, and Artificial Neural Networks 
(ANN). 

This contribution reports the methodology to carry out the 
automatic design of Artificial Neural Networks (ANN) that 
tackles the Forecasting Time Series problem taken from a 
referenced set of Time Series [1]. First Time Series is called Dow-
Jones [2], second one is Temperature [3] and the last one is 
Passengers [4]. The task will consist of forecasting several Time 
Series, not all of them with the same ANN, but an automatic 
method will be used to obtain a different ANN to forecast each 
Time Series.  

Two different steps will be done to get an ANN to forecast each 
Time Series. The first step will consist of setting the kind of ANN 
that will solve the forecasting task, and the learning algorithm 
used. According to [5], that show the approximation capability of 
Multilayer Perceptron (MLP), we have focused on full connected 
MLP with only one hidden layer and Backpropagation (BP) as 
learning algorithm to forecast time series as a first approach 
because ANNs with only one hidden layer are faster to train and 
easier to work with them. 

In the second step the design of the ANN will be done setting the 
parameter values of the ANN. In the case of MLP with only one 
hidden layer and BP the parameters are: number of inputs nodes, 
number of hidden neurons (number of output neurons is placed by 
the problem), which is the connection pattern (how the nodes are 
connected), and as a new parameter, the whole set of connection 
weights. So, the process of designing ANN could be considered as 
a trial and error search problem within all possible designs, and 
this search could be done by Genetic Algorithms (GA). Different 
“pruning” and “growing” algorithms have been developed [3]. 

The paper is organized as follows. Sec 2 reviews the state of art 
about how to tackle forecast task with ANNs. Sec 3 explain how 
our system designs ANN with GA to forecast Time Series. In Sec 
4 experimental setup and results are shown. And finally, 
conclusions and future works are described in Sec 5. 
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2. STATE OF ART 
Several works have tackled the forecasting Time Series task with 
ANN, not only computer science researchers, but statistics as well 
[6]. This reveals the full consideration of ANN (as a data driven 
learning machine) into forecasting theory [7].  

Before using an ANN to forecast, it has to be designed, i.e. 
establishing the suitable value for each freedom degree of the 
ANN [8] (kind of net, number of input nodes, number of outputs 
neurons, number of hidden layer, number of hidden neurons, the 
connections from one node to another , connection weights, etc ). 
The design process is more an “art” based on test and error and 
the experience of human designer, than an algorithm. In [9] 
Zhang, Patuwo and Hu present a “state of the art” of ANN into 
forecasting task, in [10] is proposed an “extensive modeling 
approach” to review several designs of ANNs, and finally Crone 
and Preβmar show in [11] an evaluation framework to NN 
modeling in forecasting, and literature review.  

2.1 Time Series and ANN 
In order that a single ANN could work forecasting Time Series 
values, an initial step from original values of Time Series have to 
be done, i.e. normalize the data. And, once the ANN gives those 
values, the inverse process is done. This step is important as the 
ANN will learn just the normalized values. 

The problem of forecasting Time Series with ANN is considered 
as obtaining the relationship of the value of period "t" (i.e. the net 
has only one output neuron) and the values of previous periods, 
i.e to obtain a function as it is shown in (1): 

at = f (at-1,at-2,…,at-k). 
 

(1)

Therefore, the Time Series will be transform into a pattern set, it 
depend on the k inputs nodes of a particular ANN. Each pattern 
consists in:  

(i) "k" inputs values, that correspond to "k" normalized 
previous values of period t: at-1,at-2,…,at-k; 

(ii)  one output value, that corresponds to normalized Time 
Series value of period t. 

The complete patterns set are ordered into the same way the Time 
Series is. This patterns set will be used to train and test the ANN, 
then it will be split into two sets, train and test sets. The train set 
will be obtained from the first m% (e.g 70%) and the test set will 
be obtained from the rest of the complete patterns set. 

If hand design of ANN is carried out, several topologies (i.e. 
different number of inputs nodes and number of hidden neurons in 
only one hidden layer), with different learning rates are trained. 
For each of them, train and test error are obtained, and one with 
better generalization capability (i.e. less test error and a good train 
error) is selected to generate forecasted values. 

2.2 ANN and Evolutionary Computation 
Several works approach the design of ANN using Evolutionary 
Techniques. Some of them use Direct Encoding Schemes (DES) 
[12,13], the others using Indirect Encoding Scheme (IES) 
[14,15,16]. For DES the chromosome contains information about 

parameters of the topology, architecture, learning parameters, etc. 
of the Artificial Neural Network. In IES the chromosome contains 
the necessary information so that a constructive method gives rise 
to an Artificial Neural Network topology (or architecture). Ajith 
Abraham [17] shows an automatic framework for optimization 
ANN in an adaptive way, and Xin Yao et. al. [18] try to spell out 
the future trends of the field. 

3. ANN DESIGN WITH GA 
The problem of designing ANN could be seen as a search problem 
into the space of all possible ANN. And that search can be done 
by a GA [19] using exploitation and exploration. Therefore there 
are three crucial issues: the solution's space (how each solution is 
codified into a chromosome), Encoding Scheme and what is 
looking for, translated into the fitness function. 

In this first approach it has been chosen MLP as computational 
model due to its approximation capability, according to [5], and 
inside this group, Full Connected MLP with only a hidden layer 
because they are easier to encode into a chromosome and to work 
with them. The final object of our approach is to consider 
Sparsely Connected MLP to forecast Time Series and use both 
Indirect Encoding Schema, one based on Cellular Automata [20] 
and other based on Bidimensional Grammar [21], to design ANN 
using GA. A previous work for designing ANN to forecast using 
GA based on Cellular Automata is developed by Salah and Al-
Salqan in [22]. 

But as a first approach to design ANN to forecast Time Series, a 
Direct Encoding Scheme for Full Connected MLP has been 
considered. Between all the different parameters that define an 
ANN (hidden layers, number of input nodes, number of output 
nodes, learning algorithm, algorithm to specify the initial 
connection weights values, etc), some of the are previously fixed 
(i.e. Back Propagation as learning algorithm) and others will be 
set during the search process. For this Direct Encoding Scheme 
the information placed into the chromosome is: 

• Number of inputs nodes (i), corresponding to “k” (k=i) 
previous periods in (1) for each individual. 

• Number of hidden nodes (h). 

• Learning rate, for BP learning algorithm (α). 

• Seed to initialize the weights of the MLP (s). 

The value of learning rate “α” is between 0 and 1, and the value 
of “i” and “h” will be limited by a maximum number of inputs 
nodes (max_inputs) and a maximum number of hidden nodes 
(max_hidden) respectively. 

One important characteristic for the performance of a MLP is the 
set of values known as connection weights. For each ANN the 
connection weights are obtained by means of a learning 
algorithm, in the case of MLP the algorithm is BP [8] The set of 
connection weights could be information to be included into the 
chromosome but in this case, the final chromosome would be to 
long and the search process carried out by the GA would be to 
slow and ineffective [23]. 

BP begins with a set of pseudorandom weights called initial 
weights, so always that it begins with the same set of initial 
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weights, it will always arrive to the same set of final weights at 
the end of the training process. It means that one full connected 
MLP with the same topology and same seed value trained during 
“n” cycles will get the same connection weights values at the end 
of the process, each time that BP is carried out. Then, an approach 
to include the set of connections weights of the ANN into the 
chromosome will be done encoding the initialization seed “s” of 
the connection weights for each individual. 

As it was said before values of “i” and “h” are limited by a 
maximum number of inputs nodes (max_inputs) and a maximum 
number of hidden nodes (max_hidden), respectively. These 
maximum values are related to a factor "A" (given by an expert as 
a parameter using partial autocorrelation function), and with the 
number of periods of the Time Series, it means, the known values 
of the Time Series (nts). See ec. (2)  

max_inputs = A × nts. 

max_hidden = 2 × max_inputs. 
 (2)

Into the chromosome, two decimal digits, i.e two genes, are used 
to codify the value “i”, other two for “h”, two for “α”, and the last 
ten genes for ”s” (seed in SNNS is of “long int type”, that is why 
it has been used 10 genes to encode “s”). This way, the values of 
“i”, “h”, “α” and “s” are obtained, from the chromosome, as it can 
be seen in (3) 

Chrom: 

gi1 gi2 gh1 gh2 gα1 gα2 gs1 gs2 gs3 gs4 gs5 gs6 gs7 gs8 gs9 gs10 

0 ≤ gxy ≤ 9 ; x =i,h,α ; y=1..10 

i = max_inputs x ((gi1•10+gi2)/100) 

h = max_hiddens x ((gh1•10+gh2)/100) 

α = ((gα1•10+gα2))/100 

s = gs1 gs2 gs3 gs4 gs5 gs6 gs7 gs8 gs9 gs10 

(3)

Although there are sixteen possible genes into the chromosome, 
as it will be seen into the experimental results (section 4.2), two 
different codification of the chromosome will be used. One just 
composed of genes to encode “i”, “h” and “α”, and the other one 
with these six genes plus the ten genes used to encode “s”. 

The search process (GA) begins with a random population, i.e set 
of randomly generated chromosomes. Later, the fitness value for 
each one of the individual of the population is obtained (a). Once 
that it is already done the GA operators as Elitism, Selection, 
Crossover and Mutation are applied in order to generate the 
population of next generation, i.e. set of chromosomes (b). The 
steps (a) and (b) are iteratively executed till a maximum number 
of generations are reached. To obtain the fitness value of a 
chromosome: 

1. The phenotypes (i.e. ANN) of all the individuals of the 
actual generation are obtained. 

2. The train patterns and test patterns sets are obtained for 
each individual, depending on the number of inputs nodes of 
each net, as it was said above (sec.2). 

3. Then, depending of which of the two different 
experiments are going to be done, the connection weights 
are randomly initialized (first experiment), or they are taken 
from the chromosome with the seed (second experiment).  

4. Finally, the net is trained with BP (using Stuttgart 
Neural Network Simulator (SNNS) binary tools [24]) a 
maximum training cycles. 

The fitness value will be the minimum test error reached during 
the learning process; it doesn’t have to be in the last training 
cycle. The architecture of the net (topology + connections 
weights) when the test error is minimum in training process is 
saved to be used later to forecast. Once that GA reaches the last 
generation, the best individual from all generations is used to 
forecast the future Time Series values (i.e. validation set). 

4. EXPERIMENTAL SETUP AND 
RESULTS  
4.1 Experimental Setup 
To normalize the Time Series values (sec 2.2), so the nets will be 
able to work with them, it has to be considered the Time Series 
shape [25], especially trend (upward or downward) component. 
As the Time Series values have to be rescale, into the numerical 
range value [0,1], considering not only the known values, but the 
future values (those to be forecasted), the maximum and 
minimum limits for normalizing (max2norm, min2norm 
respectively) cannot be just the maximum (max) and 
minimum(min) known Time Series values. A margin from max 
and min has to be set if future values are higher or lower than they 
already are. This margin will depend on another parameter given 
by the expert (Prct_inc), in those cases in which the Time Series 
is stationary a Prct_inc of 10% will be enough, but when the Time 
Series is increasing or decreasing Prct_inc should be at least of 
50%, because if it is going to be forecasted new values for a Time 
Series that in growing up, it is needed a margin enough big so the 
new values can be into the numerical range [0,1]. This Equation 
(4) show how are obtained max2norm and min2norm. 

max2norm = max + (Prct_inc× (max-min))
min2norm = min - (Prct_inc × (max-min)) 

(4)

Once that all the normalized Time Series values are obtained, the 
set of all the patterns is got as it was explained in sec. 2.1. After 
that the whole set of patterns will be split into train pattern set (as 
it was mentioned before first 70% of the whole pattern set, with it 
we will train the net during “m” (104) cycles), test pattern set (as 
it was mentioned before the rest 30% of the whole pattern set, 
with it we will be able to obtain the fitness value testing the net 
each “n” cycles). The validation pattern set (apart from train and 
test sets) will be the future values to be forecasted and used to 
evaluate nets obtained from GA results. 

The parameters of GA described in sec 3 are: population size, 50; 
maximum number of generations, 100; percentage of the best 
individual that stay unchangeable to the next generation 
(percentage of elitism), 10%; crossover method; mutation 
probability, (1/length_chrom) = 0.17. The final goal of the search 
process is an ANN with the best generalization capacity (i.e. 
minimum test error) so it will be able to forecast better the 
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validation pattern set values. Therefore, as it was said before, the 
fitness function is the minimum error test reached during the 
training process (sec 3). 

4.2 Results of GA 
As it was said before, three different Time Series will be used for 
the experiments. This set is composed of Dow-Jones, 
Temperature and Passengers. Passengers Time Series tends to 
grow up, Temperature and Dow-Jones are stationary (i.e. they 
have no trend). 

The GA to design ANN has been carried out for this 3 selected 
Time Series. At the beginning it was only considered “i”, “h” and 
“α” genes when encoding the topologies of the ANN into the 
chromosome, later it was also considered the ten genes of the 
initialization seed of the connection weights into the chromosome. 
After having run our system (i.e. GA) several times (10 times, 
although only two of them will be shown in the graphs due to a 
space problems) for each Time Series with and without seed, a 
graph is obtained for each one of them. It is the fitness evolution 
graph along the generations (i.e. the fitness value of the best 
individual from each generation). We can then observe a saw 
shape in the fitness evolution graph of the three Time Series when 
it is not encoded “s” into the chromosome. Dow-Jones Time 
Series is shown in Fig 1. 

It can be said that the GA does not improve (i.e. it does not 
decrease) the fitness value along 100 generations when 
experiments without seed are launched for the three Time Series. 
This saw shape can be explained because a same chromosome 
(i.e. same topology) in generation “i” and generation ”i+1” will 
have a different architecture due to that the connection weights 
are randomly initialized each generation by the system (i.e SNNS 
get a random seed at the beginning), so we can say this process of 
getting the fitness from genotype is non deterministic. Anyway, as 
it can be observed there is only a decreasing trend in the fitness 
value along the time the first ten generations, from here till the 
end it is stationary but still with the saw shape. That is why it was 
decided to include “s” (i.e. initialization seed of the connection 
weights) into the codification of the chromosome, so initialization 
seed of the connection weights will be kept generation after 
generation, eliminating the saw shape and obtaining a decreasing 
trend in the fitness evolution graph. 

 
Figure 1 Dow-Jones Fitness graph with and without seed. 

In Dow-Jones Time Series it can be also possible to check that not 
always the best individual taken from last generation of the 

experiment with seed (i.e. generation 99 with fitness 0,003254) 
has a better fitness value than the best individual that can be find 
in any generation of the experiment without seed (i.e. generation 
3 with fitness 0,003091) encoded into the chromosome. That 
happens because looking for a good individual between a set of 
50 individuals multiplied by 100 generations with only six genes 
and a set with the same number of individuals but including the 
seed (with sixteen genes into the chromosome) is easier for the 
first process to find a good one because the search space is 
smaller. If more generations were used to carry out the 
experiment, or a chromosome reduction was done the set of 
individuals that have the seed included would obtain a better 
result. Carrying out the same process for Temperature and 
Passengers these are the graphs obtained (Fig 2 & 3). 

 
Figure 2 Temperature Fitness graph with and without seed. 

For Passengers and Temperature it can be observed that those in 
which the seed has been encoded into the chromosome, the best 
individual from the last generation (i.e. generation 99 with fitness 
0,000156 for Passengers and generation 99 with fitness 0,001772 
for Temperature) obtains a better fitness value than any individual 
without seed along all generations (i.e. generation 75 with fitness 
0,000162 for Passengers and generation 81 with fitness 0,001971 
for Temperature). 

 
Figure 3 Passengers Fitness graph with and without seed. 

Once that all processes have finished, and best individuals with 
seed and without seed (i.e ANN already trained) have been 
obtained for each Time Series, forecasting step can be done. As it 
was said before, due to a space problem, only two forecast with 
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seed (in the graph called WS_X where X is a number) and other 
two carried out without seed (named WoS_X where X is a 
number) were done. These forecasts are carried out with the same 
best nets obtained from GA runs shown in Fig 1, Fig 2 and Fig 3. 

A zoom of forecasted normalized values (i.e. forecasted values 
between [0, 1]) with the already known values also normalized 
(i.e. NTS) for Dow-Jones, Temperature and Passengers Time 
Series are shown together in Fig 4, Fig 5 and Fig 6. For 
Passengers and Temperature Time Series the forecasted values 
tend to follow the real values they should take. But for Dow Jones 
Time Series forecasted values resulting from only one of the 4 
nets obtained from GA runs (WS_2) tend to follow real values 
(not close as Passenger and Temperature) of validation subset. 

 
Figure 4 Dow-Jones forecasted values. 

 

 
Figure 5 Temperature forecasted values. 

Once that all the forecasted values are done it can be check how 
well this system works. This task will be carried out using MSE 
[26] and SMAPE error [27] for validation set, both of them will 
be calculated for the two best individuals with seed and without 
seed of each Time Series and we will be able to see which 
individual (i.e with or without seed) is better for each problem. 
Results of the four best topologies for Dow-Jones, Temperature 
and Passengers Times Series are shown in Table 1, Table 2 and 
Table 3 respectively. In these tables, first column will be used to 
represent the topology obtained, i.e. 
inputs_hidden_learningrate_seed, second column will represent 
the Fitness (test error value), third and fourth will be for MSE and 
SMAPE of forecasted values. The tables are ordered by the forth 
column value. 

 
Figure 6 Passengers forecasted values. 

Table 1.Dow-Jones MSE/SMAPE 

Best ANN Fitness MSE SMAPE 

44_24_19_1653845331 0,003452 0,00499 9,0877203 

45_71_04 0,003091 0,01968 13,478619 

44_24_15_1241091545 0,002914 0,01411 13,615619 

13_82_01 0,003492 0,01709 15,633814 

Table 2.Temperature MSE/SMAPE 

Best ANN Fitness MSE SMAPE 

62_47_31 0,002117 0,00277 8,642285 

61_27_11_411555096 0,001929 0,00296 10,333577 

66_86_60_1926843532 0,002067 0,00421 12,209635 

80_53_72 0,002033 0,00545 15,966226 

Table 3.Passengers MSE/SMAPE 

Best ANN Fitness MSE SMAPE 

49_69_39_1588734993 0,000156 0,00046 2,0891843 

50_29_40 0,000162 0,00046 2,1729044 

49_62_58_570946223 0,000169 0,00059 2,5386781 

50_44_71 0,000166 0,00075 3,3733351 

New information can be gathered from those three tables. As it 
can be seen there is a correlation between MSE and SMAPE, but 
if Fitness value is compared with MSE and SMAPE, we check 
that not always the individual with the best Fitness value has also 
the minimum MSE and SMAPE error. It can be explained because 
when the forecast is done we are trying to obtain the future real 
unknown values with an ANN that has already been trained and 
test with a reduced number of data of the Time Series (i.e. Time 
Series data already known). But not always the best ANN 
obtained (i.e. ANN with best Fitness) will get the best forecast 
because it has the best generalization capacity for the known 
values but it doesn’t mean that it will also have the best 
generalization capacity for the future unknown values of the Time 
Series. 
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About Topologies, it can be also observed that for the three Time 
Series our system obtains different topologies as a solution, some 
of them with seed and others without seed. For Passenger Time 
Series, there is not a great difference of the number of inputs 
nodes among all ANN obtained, but having a look to the number 
of hidden nodes we can see that they have no relation (i.e. 69, 62, 
29 and 44). In the case of Dow-Jones and Temperature solutions, 
ANN obtained by the system have different number of hidden 
nodes as used to happen to Passengers Time Series but if we pay 
attention to the number of input nodes those ANN obtained with a 
similar number of input nodes (i.e. 44, 44 and 45 for Dow-Jones 
and 61, 66 and 62 for Temperature) get a smaller SMAPE and 
MSE error than those which number of input nodes have no 
relation, for example in Dow-Jones Table the last ANN (i.e. 
13_82_01) is a solution, but the worst of all of them. 

So, in some Time Series forecasting including the initialization 
seed of the connection weights into the chromosome is a good 
idea to get a smaller forecasting error (i.e. Dow-Jones and 
Passengers), but in Temperature Time Series there is not too 
much difference between including or not the seed into the 
chromosome, because although smaller SMAPE error is obtained 
with an individual without seed (i.e. SMAPE 8,6422% with 
individual 62_47_31) second smaller SMAPE is got by an 
individual with seed (i.e. SMAPE 10,3333% with individual 
61_27_11_411555096). 

5. CONCLUSIONS AND FUTURE WORKS 
Including the seed into the chromosome, that allows us to get the 
initial pseudorandom set of connection weights for each ANN, 
decrease the fitness value during the generations and finish with 
the “saw shape”. On the other hand, including the initialization 
seed of the connection weights into the chromosome not always 
get a better individual (i.e. individual with better Fitness value 
and smaller SMAPE error) than those ANN in which the seed is 
not included into the chromosome. That is why the system (i.e. 
GA) should be launched several times to get different solutions, 
some with seed and other without seed so they can be compared 
and use the best one to forecast the future values of the Time 
series.  

To avoid the discovered problem in which individuals with better 
fitness do not carry out a better forecasting (i.e. there is not a 
direct correlation between fitness and SMAPE obtained for each 
ANN), in future works shuffling the patterns before train and test 
set are created (till the moment train pattern set is obtained from 
the first 70% of the total pattern set and test pattern set is the 30% 
remaining) could be an improvement. 

In this new system the only pre-process that has to be done on the 
data is normalizing them, so it is easier for an inexperienced user 
to work with it than working with other systems in which more 
variables have to be set before it is carried out. 

The results show that ANN has more difficulty predicting Dow-
Jones time series than Temperature and Passengers, due to the 
greater chaotic component of Dow-Jones. An improvement, so 
Dow-Jones Time Series could be accurately forecasted, is to 
consider, not full connected nets, but Sparsely Connected MLP. 
For this kind of MLP design, both Indirect Encoding Scheme, one 
based on Cellular Automata [20] and other based on 
Bidimensional Grammar [21], will be studied. Besides, more 

parameters of ANN design, e.g. moment value for BP, activation 
function of artificial neuron, etc. could be include into the 
chromosome. 
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