
Evolving Combat Algorithms to Control Space Ships in a
2D Space Simulation Game with Co-evolution using

Genetic Programming and Decision Trees

Tiago Francisco
School of Technology and Management
Polytechnic Institute of Leiria, Portugal

tiago3f@gmail.com

Gustavo Miguel Jorge dos Reis
School of Technology and Management
Polytechnic Institute of Leiria, Portugal

gustavo.reis@estg.ipleiria.pt

ABSTRACT
Developing artificial behaviours to control artificial creatures
or vehicles is a task that can be employed by means of Evolu-
tionary Algorithms. A game’s artificial intelligence is usually
developed by seasoned game developers, which need critical
knowledge of the games mechanics and rules. This paper
presents an alternative, using evolutionary computation to
evolve combat algorithms that will allow spaceships to fight
effectively in a 2D space simulation game. These combat
algorithms will take into account the spaceships character-
istics, using them to gain the advantage needed to fight ef-
fectively

Categories and Subject Descriptors
I.2.4 [Artificial Intelligence]: General; D.2.m [Software
Engineering]: Miscellaneous

General Terms
Algorithms

1. INTRODUCTION
Game developers are normally challenged with the cre-

ation of Artificial Intelligence (AI). This normally takes time
and deep knowledge of the game’s rules and mechanisms.
Also hard coding the algorithm presents various problems:
if by some reason the game mechanics change or the rules
suffer a slight alteration, the algorithm may need to be up-
dated and more time is spent.[1, 2]

Evolutionary Neural Networks can also be used to obtain
the human-like A.I [1] greatly reducing the need to have
dedicated game A.I developers. Also if by some reason the
mechanics/rules of the game change it is easy to adjust the
neural network to work with the new rules.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’08, July 12–16, 2008, Atlanta, Georgia, USA.
Copyright 2008 ACM 978-1-60558-131-6/08/07 ...$5.00.

Evolutionary Computation can also be used in order to
tune the parameters of a finite state machine. Nicholas Cole
et al.[2] created a solution that used a genetic algorithm to
tune the parameters of a Counter Strike1 bot, creating a
human-competitive result. Those results showed that a bot
tuned with the G.A solution was better than the human
tuned bots. David B. Fogel et al. [3] developed a platform
that, using co-evolution and genetic algorithms, evolved sim-
ulated combat algorithms for tanks and robots. These tanks
and robots had various traits and cognitive characteristics
that led to very interesting results.

This paper aims to present an alternative approach: using
genetic programming to create combat strategies, that will
allow agents to fight each other in a 2d space simulation, tak-
ing into account the agents spaceship characteristics, using
them to gain advantage

1.1 Bellerophon
The basis for this paper is a game we developed. Bellerophon

is a space simulation game in which the player as freedom
to do pretty much anything he wants. Normally computer
games have various NPCs2, each with its own personality.
In the case of Bellerophon, 3 major NPCs were created: Mil-
itary, Pirate and Merchant.

Pirates The outlaws of the game. They pillage, steal and
destroy anything they want. Normally they leave pow-
erful ships alone, since their own ships are fragile. Also
the pirates are normally cowards, in the sense that they
tend to flee if they ship is about to be destroyed.

Merchants The backbone of the game’s economy. They
roam from system to system, buying and selling they
products to make money. Their are the normal targets
of pirates.

Military The “good guys”. They ensure the law is obeyed
by everyone, and will attack pirates on sight. They
tend to have a powerful ship to dissuade any attempts
of attack. Also they never surrender since they have
training, meaning they fight to the death.

1Counter Strike is a First Person Shooter game.
2Non Player Characters

1887

Most of the NPCs behaviours were hard coded, with the
help of Finite State Machines. For instance: the patrolling
by the military and the call for help by merchants. The Pi-
rate, for instance, patrols a sector of the universe, always
keeping an eye out for potential targets or dropped cargo.
If it sees a merchant, or the player, it may attack, threaten
or leave them alone.

Since combat is an important part of Bellerophon, we
wanted each NPC’s combat tactic to reflect its personal-
ity. For instance, we wanted the pirate to employ hit and
run tactics, using its ships speed and agility as an advantage
while dealing the most damage possible.

1.2 Vehicles
All the inhabitants of the universe control a spaceship that

can move around the universe.

Ships have a given number of hit points which represent
the structural integrity of the spaceship, and shield points
which represent an energy shield that surrounds the space-
ship. When a spaceship is hit with a projectile, the shield
energy is decremented. When the shield energy reaches 0,
the hit points are decremented with each hit. When the hit-
points reaches 0, the ship is destroyed.

Ships also have maximum speed, acceleration, turning
speed, and a weapon. The weapon fires, at an interval, a
projectile that travels at a given speed. Ships also have a
radar, which gives its controller a view of its surroundings.
The radar also serves another purpose; it functions like an
array of sensors, allowing the ship’s controller to know where
its target is.

Figure 1: Example of sensor layout

This sensor layout represents what the ship’s controller
can see at any given time

2. PROBLEM AND APPROACHES
There are two species: Military and Pirate, each with

different ships and consequently different play styles. The
military has a much more powerful ship than the pirate, has
more hit points and more shield power providing the basis
for a more relaxed type of combat, in which the military
rarely flees its attacker. The military also makes use of its
superior ship’s hp, soaking up some damage so that it has
more time to shoot at it’s target.

The pirate on the other hand has a much more fragile ship,
but its ship is much faster and more agile. This provided the
basis for a hit-and-run combat tactic, where the pirate made
use of its faster ship to its advantage. Both ships have the
same controls, meaning the only real difference between the
two species is the space ship characteristics. One is fragile
but fast, the other slow and powerful.

In order to evolve the combat algorithms of both species,
two approaches were addressed: classic co-evolution and
Random Opponent Evolution. The goal was to evolve a
behaviour - decision tree - that enabled the individual to
fight its opponent using various sensors and two basic be-
haviours that were previously evolved: attack and flee. The
sensors are no more than function sets like if-enemy-ahead,
if-enemy-weapon-range, etc. The evolution process evolved
two distinct species that achieved the main goal: deal more
damage than it receives.

2.1 Evolution Process
We used two evolution processes to obtain results: Classi-

cal Co-Evolution and another one we called Random Oppo-
nent Evolution. We then used both results to compare the
evolution processes while comparing the same results with
human-coded alternatives.

Random Opponent Evolution was used in order to find a
faster alternative to the classic co-evolution: the species still
evolve together, however instead of each individual fighting
all the individuals of the opposite species, each individual
fights one random opponent per generation. This produce
much faster results, but not as generic.

Each generation from both evolution process were divided
into 35 second “rounds”, much like the rounds in a box
match. The classic co-evolution had X number of rounds, in
which X is the number of individuals in each species. In the
random opponent evolution, each generation had one round.
All the individuals fought in that round against a random
opponent.

3. EXPERIMENTS AND RESULTS

3.1 Environment
The environment is a “system” of the game’s universe. It

is 5000 by 5000 pixels and can have an unlimited number
of spaceships. For the evolution process the configuration
presented in Table 1 was used.

3.2 Fitness Functions
The fitness function of the both species is done by the

Equation 1, where DmgD stands for Damage Dealt, DmgR
damage received, and Pen for potential penalties.

Fitness = Constant− (DmgD −DmgR + Pen) (1)

The penalty is applied when there is no damage dealt
and/or the ship is destroyed, which in this case are 1000
points.

3.3 Function set
We developed functions that would be easily understood

by humans, to allow quick-debug and a fast analysis. An-
other reason for this type of functions is the fact that we

1888

Table 1: Configurations used to insure that only the
best will reproduce

Number of military ships 10
Number of pirate ships 10
Military ship Speed 200 px/s

Acceleration 10 px/s
Turning Increment 9o

Turning Speed 50ms
Hit Points 100
Shield Points 50

Pirate ship Speed 300 px/s
Acceleration 3 px/s
Turning Increment 9o

Turning Speed 25ms
Hit Points 50
Shield Points 25

Projectile damage 5

only wanted to use functions the player would have “access”
too. The attack and flee terminals are behaviours that were
previously evolved[4]

• Terminals:

– Attack

– Flee

• Functions

– ifTargetLeft

– ifTargetRight

– ifTargetFront

– ifTargetWeaponRange

– ifLeftTarget

– ifRightTarget

– ifBehindTarget

– ifAggressorBehind

– ifAggressorFieldOfView

– ifWeaponRangeAggressor

– ifShieldPower

– ifHullPower

3.4 Random Opponent Evolution
We used random opponent evolution to compare results

with the classical co-evolution approach. The random oppo-
nent evolution is faster but not as good as the co-evolution
approach since the individuals do not combat every indi-
vidual from the opposite species. Figure 2 illustrates this
process. This enabled us to get faster results, but not as
generic as the results from the co-evolution approach.

With this approach we were able to evolve individuals
faster than co-evolution, 1 hour compared to the 10 hours
co-evolution took, and at the same time obtain some inter-
esting results.

In almost all the runs, the pirates best behaviour was the
one were the pirate used its speed to combat the military,
employing hit and run tactics. The Pirate normally gets

Figure 2: Random Opponent Evolution

close to the military, shoots a few projectiles and then puts
some distance between itself and its target, avoiding the
military weapon range. Since the pirate’s ship is faster and
more agile the military cannot fight back and this normally
means that the pirate caused severe damage without getting
hit.

Figure 3 shows the evolution process of the Pirate species
in Random Opponent Evolution.

Figure 3: Random Opponent Evolution Fitness Re-
sults - Pirate

Best R.O.E Pirate decision tree:

(if-left-target (if-aggressor-behind Retreat (if-target-left

Attack (if-left-target Attack (if-left-target (if-aggressor-behind

Retreat (if-target-left Attack (if-left-target

Attack (if-left-target Attack Attack)))) Attack))))

Attack)

The best military result, was one where the military would
let the pirate get close and then try to lay some hits, using
its superior ship to his advantage. The military lured the
pirate, by “faking” a retreat, and as soon as the pirate was
upon it the military would start its attack run. This is a very
interesting result, and one that is plausible in the real world.

Figure 4 shows the evolution process of the Military species
in Random Opponent Evolution.

Best R.O.E Military decision tree:

(if-aggressor-weapon-range (if-target-weapon-range

Attack Retreat) (if-target-right (if-hull-power

(if-hull-power (if-target-front Retreat

Retreat) (if-target-left Retreat Attack) (if-behind-target

Retreat (if-shield-power Retreat Retreat Retreat))) (if-aggressor-behind

(if-behind-target Attack Attack) (if-target-weapon-range

(if-target-weapon-range (if-aggressor-weapon-range

(if-left-target Retreat (if-target-left Retreat

Attack)) (if-aggressor-weapon-range (if-target-front

(if-shield-power Retreat Retreat Attack) (if-shield-power

Retreat Retreat Attack)) (if-aggressor-weapon-range

Attack Retreat))) (if-aggressor-behind (if-aggressor-behind

(if-shield-power Retreat Retreat Retreat) (if-aggressor-weapon-range

1889

Figure 4: Random Opponent Evolution Fitness Re-
sults - Military

Attack Retreat)) (if-target-weapon-range (if-behind-target

(if-aggressor-fov (if-target-weapon-range

Attack Retreat) (if-aggressor-weapon-range

Attack Attack)) Attack) (if-aggressor-weapon-range

Attack Retreat)))) (if-aggressor-weapon-range

(if-shield-power Retreat Retreat Retreat) (if-aggressor-weapon-range

(if-aggressor-fov Retreat Retreat) (if-aggressor-weapon-range

Attack Retreat))))) Attack) (if-aggressor-fov

(if-right-target (if-target-left (if-hull-power

(if-right-target Attack Attack) (if-target-right

Attack Attack) (if-aggressor-weapon-range

(if-aggressor-behind (if-aggressor-weapon-range

Attack Attack) (if-hull-power (if-target-front

Retreat Retreat) (if-aggressor-weapon-range

Attack Retreat) (if-aggressor-fov Retreat

Attack))) (if-hull-power (if-aggressor-behind

(if-shield-power Retreat Retreat Retreat) (if-hull-power

Attack Attack Retreat)) (if-target-weapon-range Attack

Retreat) (if-target-weapon-range (if-target-right

Retreat Retreat) (if-target-weapon-range Attack Attack)))))

(if-aggressor-weapon-range (if-aggressor-fov

Attack Retreat) (if-aggressor-fov Retreat

Attack))) (if-target-weapon-range (if-aggressor-weapon-range

Attack Retreat) (if-target-weapon-range Attack Attack)))

(if-aggressor-weapon-range Attack Attack))))

Although this approach evolved some interesting results,
it revealed some problems. Since the individuals are not
tested against every other individual of the other species, as
in the classical co-evolution process, the evolved behaviour
is not as generic as it should be. This means that a good
random opponent evolution result maybe better than a co-
evolution result for a specific problem, but when a new prob-
lem arises it can’t cope with it as well as the co-evolution re-
sults can. This was observed when we tried to use a capable
pirate behaviour and pitted it against a military behaviour
from another run.

We also evolved behaviours using other attack and flee
trees[4], and the results achieved the main goal while em-
ploying tactics that took advantage of the attack and flee
trees strong points. Even the worst attack and flee trees
could be used to achieve the main goal.

3.5 Classic Co-Evolution
Since we decided to use co-evolution, we created an evo-

lution process in which each individual of a species fought
against all individuals of the opposing species. Every Mili-
tary had to fight every pirate, and vice versa and only then
would a round be completed and the evolution process al-
lowed to continue. Figure 5 illustrates this process. This
approach was very time consuming, nearing 10 hours per
run, but wielded the most interesting results since the best
individual from a generation was the individual that had the
best average score, since it fought against every opponent.

Figure 5: Classical Co-Evolution

In terms of the pirate results, almost all of the results
showed that the pirate evolved in a way to use its ship speed
to gain the advantage and at the same time to value its ship.

In all the runs not one pirate was destroyed. There was
also one result in which the pirate employed hit-and-run tac-
tics, which was chosen as the“best result”. This pirate result
used its ship speed to stay out of the harm’s way (aggressor’s
weapon range) while manouvering its ship so that it would
be behind its target. We can say that this fitness function
and evolution process is ideal to evolve a Pirate.

Figure 6 shows the evolution process of the Pirate species
in Co-Evolution.

Figure 6: Classic Co-Evolution Fitness Results - Pi-
rate

Co-Evo Pirate Decision tree:
(if-aggressor-fov (if-left-target (if-aggressor-weapon-range

(if-hull-power Attack Attack Retreat) (if-target-front

Retreat Attack)) (if-hull-power (if-target-weapon-range

Retreat Retreat) Attack (if-right-target Attack Attack)))

(if-left-target (if-aggressor-fov (if-left-target

(if-aggressor-weapon-range (if-target-right

(if-left-target Retreat Attack) (if-aggressor-fov

Retreat Attack)) (if-target-front Retreat

Attack)) (if-hull-power (if-target-weapon-range

Retreat Retreat) Attack (if-right-target Attack Attack)))

(if-agressor-tras (if-target-right (if-target-left

Retreat Attack) (if-aggressor-fov Retreat

Attack)) (if-target-weapon-range (if-target-left

(if-hull-power Attack Attack Retreat) Attack)

(if-tras-target Attack Retreat)))) (if-hull-power

(if-target-weapon-range Retreat Retreat) Attack (if-right-target

Attack Attack))))

The military on the other hand did not fare, fitness wise,
so well since its ship is slower than the pirates ship. The best

1890

result was a military that tried to intercept its target, and
at the same time use its ship hit points has an advantage.
Upon inspection of the resulting tree we found that the best
military result only used the attack pattern, suggesting the
best way to deal with a pirate is just to attack. We believe
this is so because of the way the attack behaviour deals with
fast targets. This shows that this evolution process can cre-
ate a combat algorithm that takes advantage of the basic
behaviours strong points. While not as complex as most of
the other results, this also shows that the fitness function
was correct and that one could use this evolution process to
evolve a “peace keeper”.

Figure 7 shows the evolution process of the Military species
in Co-Evolution

Figure 7: Classic Co-Evolution Fitness Results -
Military

Co-Evo Predator Decision tree:

Attack

When compared to the Random Opponent Evolution, the
results are less complex but much more generic. A pirate
behaviour evolved via co-evolution could for instance fight a
random military behaviour and still achieve its goal, whereas
a pirate from the Random Opponent Evolution could not.

4. HUMAN COMPETITIVENESS
To test the competitiveness of the evolved algorithms against

human coded algorithms we chose the best results from both
approaches and pitted them against simple, yet effective hu-
man coded algorithms. We used the same rules as before, to
insure no competitor had the advantage. To better explain
the test procedure we give an example. For instance, to test
the human competitiveness of the co-evolution approach we
first chose the best result, Result A. We then pitted the
human coded algorithms against each other, taking note of
their results. Afterwards we tested the pirate from Result
A against the human coded military, and the military from
Result A against the human coded pirate. If the evolved al-
gorithms scored better or close results to the human coded
algorithms, we considered them human competitive.

The algorithms we develop to test our approaches were
based on the following: a Pirate that employed hit and run
tactics, and a never-say-die Military.

Our Military only flees when it is on the aggressor’s weapon
range and its ships hit points are bellow 33%. Otherwise it
attacks

Our Pirate employs hit and run tactics, avoiding its ag-
gressor’s weapon range at all time. If the pirate is out of the
aggressor’s weapon range, it attacks using its superior speed

4.1 Co-Evolution Human Competitiveness

Figure 8: Classic Co-Evolution Military Human
Competitiveness

Figure 9: Classic Co-Evolution Pirate Human Com-
petitiveness

When we compared the Co-Evolution approach algorithms
to the human coded algorithms we noticed that the co-
evolution results were better than their human counterparts.
The military, with a negative Damage Difference, had a 12%
difference and the pirate a 36% difference.

Based purely on numbers one could say that the Co-
Evolution approach is ideal to create an algorithm that beats
a human coded algorithm. These results also support the
previous co-evolution results, that co-evolution produces very
generic behaviours.

1891

4.2 Random Opponent Evolution Human Com-
petitiveness

Figure 10: Random Opponent Evolution Military
Human Competitiveness

Figure 11: Random Opponent Evolution Pirate Hu-
man Competitiveness

The Random Opponent Evolution wasn’t so successful in
producing human competitive results. While the pirate re-
sult was up to par with its human counterpart, with only a
-6% difference, the military scored worse with a -20% differ-
ence. The low military score is due to the fact we previously
mention, that the Random Opponent Evolution produces
non-generic results. Also when analysing the “test” we re-
alized that the human coded pirate exploited the military
weaknesses. This doesn’t mean the approach should be con-
sidered invalid, since it was able to produce a very capable
pirate and with time, or luck, one could evolve a capable
military. Also it took only one hour to evolve these results,
whereas the co-evolution approach took 10 hours.

5. CONCLUSION
It can be concluded that it is possible to use genetic pro-

gramming to create various combat strategies, strategies
that take into account the characteristics of the vehicle that
the behaviour will control. The algorithms generated with

genetic programming can, in some cases, rival those done
by hand (hard coded). Also one must take into account
that the approaches suggested in this paper evolve com-
bat tactics based on the “basic behaviours” it has. If one
were to change these basic behaviours, one would only have
to get new results, whereas a hard coded solution would
have to be rewritten. We also showed the theory behind
the evolution process. When we used various attack and
flee tress, all the resulting behaviours achieved the main
goal, deal more damage than it receives employing differ-
ent tactics and strategies, according to its attack and flee
behaviours.

Although some results don’t fare so well, there are those
that are good to challenge hard coded ones. On top of that,
with this solution it is possible to evolve any number of
algorithms for any number of problems, games or real-life
applications.

We also showed that there are two different approaches
that can be used to create an acceptable combat strategy.
One approach showed that it could evolve decent behaviours
that were not generic in a small time frame while maintain-
ing a hint of human competitiveness. On the other hand
if there is no time limit, the co-evolution approach seems
the best since it produce the best results, both human-
competitively and generically.

6. FUTURE WORK
We would like to improve the Random Opponent Evolu-

tion approach, in a way that will enable us to get better
human competitive results. We would also like to redo the
entire experiment with the following characteristics: Instead
of different ships, both military and pirate would have the
same ship but different fitness functions. We would then
compare those results to the ones present in this paper, and
see which approach is the best. In the near future we would
like to evolve team tactics, so that military and pirate coop-
erate with their species for better results.

7. REFERENCES
[1] J. Westra. Evolutionary neural networks applied in first

person shooters. Master’s thesis, University Utrecht,
March 2007.

[2] N. Cole, S. Louis, and C. Miles. Using a genetic
algorithm to tune first-person shooter bots. In
Proceedings of the 2004 IEEE Congress on
Evolutionary Computation, pages 139–145, Portland,
Oregon, 20-23 June 2004. IEEE Press.

[3] D. Fogel, T. Hays, and D. Johnson. A platform for
evolving characters in competitive games, 2004.

[4] T. Francisco and G. Reis. Evolving predator and prey
behaviors with co-evolution using genetic programming
and decision trees. In GECCO ’08: Proceedings of the
2008 GECCO conference companion on Genetic and
evolutionary computation, New York, NY, USA, 2008.
ACM Press.

1892

