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ABSTRACT
Many sectors of the military are interested in Self-Organized
(SO) systems because of their flexibility, versatility and eco-
nomics. The military is researching and employing autonomous
and swarming ground robots, Unmanned Aerial Vehicles
(UAVs) and Water Vehicles, medical agents, and ‘Cyber-
craft’ security agents. The processes for effectively devel-
oping these systems are still in their infancy. Currently,
little effort is focused on building simple agent rules with
low-level SO systems communication in order to facilitate
emergent behaviors. Note that only with the use of effec-
tive control structures can the full potential of these systems
realized. Presented is an innovative new paradigm for devel-
oping SO-based autonomous vehicles. Using a formal design
model, the Interactive Partially Observable Markov Decision
Process, a full understanding of this SO domain is possible.
With this design model and a focused effort on the min-
imization of computational and informational complexity,
emergent entangled control hierarchies allow the SO rules
to operate efficiently and effectively. This work extends the
formal model decomposition technique, and in doing so ties
in the information theoretic optimization to develop emer-
gent structures. Preliminary computational results reflect
limited success.
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1. INTRODUCTION
State of the art autonomous control systems use SO! (SO)

based techniques [1]. These systems are ”popping up” in a
large spectrum of industrial applications, from network and
data storage, to medical systems, to engineering applica-
tions, and of course the military. Although arguments exist
over the particulars of SO, shown in figure 1, fundamen-
tally these type autonomous systems use “simple” agents
synergistically with localized knowledge, neighborhood ef-
fect operators and stigmergy, to develop complex behaviors
or structures. In the natural/bio-inspired world examples
such as mold, ants, and birds inspire techniques applied in
a myriad of engineering disciplines [2].

Currently, developing these systems focuses on simple rules
and interaction sets. However, effective engineering SO sys-
tems requires the establishment of a process and toolbox set
that look at the system as a whole. However, this toolbox
should include three key pieces:

• Proper decomposition of the problem domain into im-
plementable pieces.

• Exacting approach to development of simple low-level
operators. (Biologically and Naturally Inspired)

• A construct in which the operators cannot only de-
velop external behaviors but also allows internal con-
trol structures to emerge.

This effort outlines the initial steps for thrusting SO de-
velopment into common practice and the establishes the pro-
cesses in which development of these types of SO systems is
possible.

This paper provides a structured approach to organizing
a SO! (SO) development technique that can be crossed uti-
lized in multiple disciplines. First, in Section II, the back-
ground of human investigation into nature’s SO! (SO) sys-
tem forms the foundation of what makes a system an SO
system. This includes discussions on emergent behaviors
and structure and informational complexity. In Section III,
a new twist to an familiar decomposition approach defines
the way that the development of SO solutions take shape.
Third, in Section IV, a discussion on facilitating emergent

control structures is presented. A small scope implementa-
tion, in Section V, with UAV! (UAV) swarms, using these
techniques gives an example of how these techniques are
structured. Finally a vector for the future of SO engineer-
ing is presented.
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Figure 1: SO definitions [3] [2] [4]

2. OTHER WORKS
Initially, a discussion of SO literature is presented. It

provides the background on autonomous control, Emergent
Structure, Information Complexity and a swarm problem
domain math model called Interactive Partially Observable
Markov Decision Process (I-POMDP). The desired goal is
the articulation of an SO system development process. All
of these pieces set the stage for designing an SO system in
an efficient and effective manner.

There are three foundational works on SO: Camazine’s
book on Biological SO systems [2], Bonabeau’s book on
Swarm Intelligence [5] and Heylighen’s work on Cybernet-
ics [4, 6]. Camazine’s work provides a survey of biological
investigations in SO developed operators and the describes
them using mathematical models. (Some of these and other
operators are described in 10.) Bonabeau dealt more heav-
ily with the integration of the benefits of the natural sys-
tems, especially swarms, into computational implementa-
tions. Heylighen sets out with a different goal in mind. Us-
ing the knowledge gained through cybernetics, he describes
the way the world developed and works through SO princi-
ples. All of these works outline the ideas of Self Organization
and an attempt to the them together in order to explain the
structure and order that exists in the world.

Through these works several levels of SO emergent sys-
tems have been described. Although naturally occurring
SO system are not constrained to these categories, the chart
in Figure 2 helps in outlining the variability and capability
of SO systems. Studies of Self Organization show natural
examples happen internal to single species, throughout an
entire population, and subsets there in.

Internal Sub System Global
Intra-Agent Inter-Agent Inter-Agent

Visual Pattern 
(Geometric)

Immediate 
Response

Structures and 
Repeatable 
Behaviors

Temporary Temporary Long Term
Single Emergent 

Property
Single 

Emergent 
Property

Several 
Emergent 
Properties

Homogeneous Homogeneous Heterogeneous
Animal Coat 

Patterns
Ant Bridges Termite Mounds

Figure 2: Levels of SO classification

2.1 Autonomous control
Translating Inspired SO operators into a usable system

requires an understanding of the controls world. Figure 3
shows the commonly accepted levels of automation. Al-

though SO techniques could be applied in almost any system
a true SO implementation focuses on the 10th level of this
hierarchy, complete autonomous control.

Automation
Level

1 The computer offers no assistance: human must 
take all decision and actions.

2 The computer offers a complete set of 
decision/action alternatives, or

3 narrows the selection down to a few, or
4 suggests one alternative, and
5 executes that suggestion if the human approves, or

6 allows the human a restricted time to veto before 
automatic execution, or

7 executes automatically, then necessarily informs 
humans, and

8 informs the human only if asked, or
9 informs the human only if it, the computer, 

decides to.
The computer decides everything and acts

 autonomously, ignoring the human.

Automation Description

10

Figure 3: Sheridan & Verplank (1978) Levels of Au-
tomation [7]

Braitenburg, a psychologist, produced any interesting re-
search into this type of control. In [8] utilizing only simple
sensors and actuators he produced reactive automaton. The
classification hierarchy purposed in his work focused primar-
ily on the 10th layer, but broke into to complexity of tasks
accomplished.

In [9], Brooks took control from a linear process to a hi-
erarchal process. This allowed the system to work multiple
levels of action at once. From this new style many TLA!
(TLA)s spawned. The most notable of which is Gat’s TLA!
(TLA) [10], shown in Figure 4, but also include [11–13].

Figure 4: Gat’s Three Layer Architecture [10]

From this framework [14] defined a three layer architecture
for SO. Through further research this was shown to constrain
the capabilities of the SO operators and emergent structure.

2.2 Emergent Structures
Synergy is the defined by the coalescing of effects in a sys-

tem to create a greater result, structure, behavior or effect.
Haken defined Synergetics in the early sixties. In [15] pulled
these ideas into the movement, structure and control of in-
formation. Holland furthered the argument through [16],
noting that complexity and structure of system effectively
develop from within.

In SO systems emergence happens throughout the sys-
tem. Most commonly thought of is the emergence of behav-
iors external to a system of agents, bird swarms, and ants
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Figure 5: Levels of SO Systems [14]

trails. Emergent structures external to the system are also
well-known, such as termite mounds and bee hives. Less
commonly thought of are structures internal to the system
or agents, such as SO agent hierarchies, Zebra strips and
slime molds. This third aspect provides a leaping off point
for internal control structures.

If the agent can be broken into independent sub-sections,
each of those sub sections can be treated as an agent it-
self. Application of the SO principles now refocus the usu-
ally outward emergence to and inward development of struc-
ture in relation to the over arching agent. Object-oriented
(OO) programming already lends itself to this effect. Dif-
ferent pieces are independent developed, utilized and reuti-
lized through decoupling techniques. The emergent struc-
ture stems from the optimal interaction of the individual
OO objects. This requires definition of optimal interaction
which is interpreted many different ways to include through
information theoretics.

2.3 Information complexity
Understanding complexity in system with emergent prop-

erties requires proper definition of complexity and emergence
in relation to information. In [17], Prokopenko tries to un-
tangle the complexity. Eight rules scope the complex sys-
tem used for the analysis: 1) Complex systems are open; 2)
Component interaction; 3) Non-Trivial interactions result
in internal constraints; 4) Thereby creating more organiza-
tion (Self-Organization); 5) The organization gives rise to
emergent behaviors; 6) This response shows adaptation; 7)
Temporal adaption is evolution; 8) And the resulting forms
responses more effective than the single agent. Equation
1 shows Shannon’s information theoretic. This gives the
amount of information need to define a state as a relation
to its probability.

H(X) =
∑

xǫχ

P (x)
1

logP (x)
(1)

From this the mutual information between two agents de-
rives to the information need to assure the agents are in
the same state, shown in Equation 2, known as information
entropy.

I(X;Y ) = H(y) − H(Y |X) (2)

This information description boils down to mutual infor-
mation = receiver’s state diversity - state understanding of
the receiver about the source. A SO systems is defined by
information transfer I , where the information received from
the outside the system is less than the change in informa-
tion internal to the system, Iexternal < ∆Isystem. Define
the complexity by the amount of information and its trans-
fer, the system complexity change is also greater then the
external complexity forces, Cexternal < ∆Csystem. Using
this a complex or SO system defines it complexity through
Equation 3.

C
external
i + C

system
i (t) < C

system
i (t + 1) (3)

Equation 7 efficiency of state prediction e is defined by
total system entropy E and the complexity change Ci.

e =
E

Ci

(4)

Simply put the efficiency of the system is determined by
the total space over the ability to represent it accurately.
In order to optimize a SO system in terms of complexity
the minimization of the information complexity in order to
maintain effective state prediction must be accomplished.
This, however is dependent on the model.

2.4 I-POMDP
A constrained problem model provides the framework for

describing the state information and allowing the system
to minimize the resulting computation complexity. Markov
models are used for swarm systems in complex domains. The
Partially Observable Markov Model is commonly used be-
cause it allows for uncertainty in the global state and in the
transition between states. In [18] Doshi outlines the exten-
sion of a Partially Observable Markov Decision Process to
include independent agent modeling. The POMDP provides
a global model for autonomous agents, utilizable in complex-
ity analysis, but the I-POMDP! (I-POMDP) focus on the
agents and allows for optimization on the interaction infor-
mation complexity. Through this the system uses beliefs
about neighboring agent states and interactive probabilities
to define the state transition. Equation 5 shows the basic
tuple where ISi defines the state through known state and
interaction probability of the other agents.

I − POMDPi = 〈ISi, A, Ti, Ωi, Ri〉 (5)

Again, ISi is the interactive state distribution, A is the
action set, Ti is the transition set based on the agent, Ωi

is the individual agent observation set and Ri is the agent
reward. The minimization of the interaction and state pre-
dictions from the I-POMDP provides the direct link to the
efficiency calculation in Equation 7. The interactive state
ISi depends on the state S and the belief that other agents
interact with that state, θj , using ISi = S × θj . In this
the belief state of other agents Θj effecting the state derives
from Equation 6.

Θj = 〈bj , A, Ωj , Tj , Oj , Rj , OCj〉 (6)
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Most of the pieces of this belief state derive from the
POMDP but focus on the agent j. The OCj outlines the
optimum criterion for the agents. This representation mir-
rors the actuality of the simulation and the stochastic nature
of interaction and transitions. Further description of the I-
POMDP and the proof of its mapping is seen in works by
Doshi [18]. Through the POMDP the totality of the do-
main is represented and the I-POMDP pulls out the domain
model of the individual agent and ties the two together.

The understanding of the state for any individual j is
based on the belief bj . This belief is a function of the ob-
servation, action and knowledge of the transition set. The
information passed between the rules inside an agent work
on this belief state. The assumptions of the optimum cri-
terion are uniform over the agents helps constrain the state
possibilities. However, the size is still the magnitude of the
actions to the cardinality of agents O(an). Abstraction of
the belief state minimizes the information needed to hold
the state.

Tying the I-POMDP to the information theoretic provides
entrance point for use of an optimizer. In Equation 7, effi-
ciency of the information representation can be applied to
the belief state bj . The entropy in Equation 7 is defined by
the amount of state information known and the complexity is
applied as the amount of information need to represent that
state [17]. Applying this to the I-POMDP the state infor-
mation is tied to the ISi and the amount need to represent
that state is defined by the complexity of the belief state
θj . Equation 7 shows efficiency is therefore a representation
of total state over the belief state complexity. This means
minimizing the belief complexity maximizes that efficiency.

e =
ISi

Θj

(7)

3. SO DECOMPOSITION TECHNIQUE
In order to effectively develop SO system a new twist on

a combination of the conventional development models is
needed. Inclusion of the mathematical model (I-POMDP)
leads to definition of the state and the overall entropy of
the domain or sub-domain. Decomposition from this point
provides a iterative approach to addressing each sub-domain
using independent rules (or operators) for independent ob-
jectives. If each rule is treated like an agent then they too
utilize Prokopenko’s complexity definition to minimize inter-
action. Minimization of the resulting interaction complexity
internal to the state of the greater agent results in a stream-
lined, efficient, and emergent control architecture. The co-
alesced system is evolved providing feed back to the lowest
operates. And with change the information complexity and
efficiency is effected and the structure is modified.

3.1 Example Decomposition
To provide basic example to illustrate the how this pro-

cess works, let’s look at flocking (already solved). The basic
intent is to group agents together through movement. De-
composing the process there are three states inside a flock:
to close, to far, collision eminent. If the agent is to close to
its neighbors it moves aware. Implementation for this is a
separation function based on neighbor proximity. The sec-
ond aspect, to far, requires the agents to move closer to its
neighbors if outside a threshold. Once again this uses an op-
erator based on the proximity of the neighbors, but his time

pulls the agent towards. Finally, collision avoidance requires
that if agents are on a path to colloid action to avoid must
be taken. The agents must correct their vectors to cooper-
ate, this operator is borrowed from fish lateral lines which
detect neighbor heading. The result of this action matches
the two agents vectors.

Building the control structure forms from these three op-
erators. The common state information between the sepa-
ration and attraction combined them in order to minimize
the information needed to determine the state. The vec-
tor match (collision avoidance) is some what independent of
that because of its uses of independent state information.
From this point an optimizer provides the proper threshold
and strength weightings for these operators, providing feed-
back from testing the resultant behavior. The final product
gives an swarm capability to the agent.

Figure 6: ’U’-Decomposition Technique for Devel-
oping Self Organized Systems [1]

To reiterate the impetus for this approach stems from the
need to allow internal structure of the agents to emerge and
not force an architecture, such as the TLAs in Section 2.1.

3.2 Emergent Entangled Control Hierarchies
As a result of this decomposition technique entangled con-

trol hierarchies are formed. Figure 7 illustrates the possibil-
ity of intertwined hierarchal and operator dependencies. It is
possible that an operator could join with another hierarchy
of operators because the information difference is minimized
in that configuration.

4. EXAMPLE APPLICATION, RESULTS, AND
ANALYSIS

The work in [1] provides an effective example in a simple
case. A UAV swarm was developed using this decomposition
process. Specifically it was applied to the target engage-
ment aspects of the autonomous swarm problem. Through
the ‘U’-Decomposition process the system took its shape
with an emergent hierarchy shown in Figure 8. From the
high level objective of effective target engagement, several
steps of derivation are needed to find operators. First sep-
arating the problem into two sub-objective, getting to the
target and attack target refocused the decomposition. A
simple migration operator that pulled the individual agents
to the target areas through waypoints was used. Then target
engagement consisted of three separate stages: local recon-
naissance, target decision, and threshold based attack. In all
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Figure 7: Generalized Emergent Entangled Control
Hierarchies [1]

cases the target list was known and emergent behaviors hap-
pened through the aggregated effect of each agents decision
process. From this the control relations and state depen-
dencies formed. Notice the state dependencies between the
different layers of the operator tree, creating an entangled
control structure.

Figure 8: Emergent Entangled Control Hierarchy
for UAV swarms in target engagement scenarios. [1]

4.1 Experiment
To test the new attack control architecture and behavior

set requires integration into the existing SO Swarm control
structure originally defined in [11]. To the test the new sys-
tem a GA is used. Inside the GA a 6 scenario schedule al-
lowed iterative growth of the control structures over epochs.
At the end of each epoch a Pareto front defined the opti-
mized values and an associated fitness. comparison between
the old and new architectures utilizes the Pareto Fronts and
full populations.

4.2 Results
Figure 9, shows the resulting Pareto Fronts known of the

MOEA! (MOEA) run on the testing set. Notice in all
cases the fronts of the Emergent Entangled Attack Hierarchy
pushes further forward than the original control structure.

4.3 Analysis
Hypervolume indicators are used in MOEA comparisons

where the true front is not known. The value is the area

Figure 9: Comparison of Pareto fronts. [1]

encompassed by the curve to a given origin point, in this case
0 (no damage) and 200 (total casualties). Table 1 shows the
hypervolume of those fronts. The difference in the control
structures are emphasized in the later epochs where the new
control structure out performs the old.

Scenario Original New

1 39871.522 37193.39
2 39334.54 35796.68
3 34729.26 31480.9
4 26172.31 28310.08
5 22354.73 26385.31
6 34132.44 47407.84

Table 1: Hypervolume values for old and new attack
control techniques

Another indicator used in MOEA analysis is the epsilon
indicator. It shows the amount of area that would be need
to cover the other front. In this case the last epoch shows
the greatest increase of dominance of the emergent control
structure over the old.

Scenario Original-New New-Original

1 19.3 3.6
2 21.3 5
3 40 15.6
4 16.3 28.6
5 93.3 24.3
6 31.3 72

Table 2: ǫ-Indicator values for old and new attack
control techniques

Finally the Kruskal-Wallis P-values show the indepen-
dence of populations. This test is used when it is not know
if the distribution is normal. Here the populations are show
to be independent in almost every case, always favoring the
new control structure.

5. CONCLUSION & FUTURE WORK
This investigation developed a new paradigm for devel-

opment of self organizing systems with military and indus-
trial applications. The new formal decomposition technique
is articulated for the system designer. It suggested that
the approach is a quantifiable way to model and decom-
pose the problem. Further the I-POMDP provides a model
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Objective Objective
Scenario Damage Casualties

1 .1765 .2306
2 .1671 .0988
3 .001 .2628
4 .1578 0010
5 .0010 .0010
6 .0010 .0010

Table 3: Kruskal-Wallis P-Value for old and new
attack control techniques

in which the information-theoretic framework can be ”op-
timized.” The ideas of emergent structure based on these
building blocks are outlined. Finally a small but effective
implementation shows the feasibility of the approach.

Note that the referenced theories are built on firm mathe-
matical models and sound reasoning. The interlinking of
the information-theoretic analysis and optimization to I-
POMDP provides a point in which the model can be op-
timized. Though this approach does need maturation, it
serves as a beginning of a paradigm shift in autonomous
swarms design.

Given this is a novel approach there are multiple areas in
which further research can extend. Investigation into the de-
composition technique would provide better understanding
of the technique’s capabilities. A full mathematical analysis
and integration of the information-theoretic and I-POMDP
aspects could provide mathematical proofs of optimization
in the environment. Also further articulation of the math
model would prove helpful, but would likely be problem
specific. In order to truly prove the viability of the emer-
gent control structure problems with domains of much larger
magnitudes than those currently being addressed must be
studied. Most current autonomous control does not truly
test the capability and complexity of the emergent control
structures. Finally, these techniques can be used in various
agent applications such Cybercraft security swarm research.
Some ideas are outlined in [19].
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AMT
Species /     Sub-

species Operator
Parameter / 

Sensor
Condition / 

Knowledge Base AF Uses Rules Remarks

Path Solver Molds Chemical induced movement cAMP sensor
internal and external cAMP 

levels Movement pg 104-105 (1)

Massing Bark Beetle

Pheromone production, 
autonomous movement 

(larvae Density) pheromone (chemical)
Pheromone 

concentration/gradient Massing
dispersion, time, distance based pg 

132 (1)
possible mass of attacks 

applications

Synchronization Firefly
light, locomotion, timing 

mechanism visual pulse time constant Communication undefined pg 151-155 (1)
synchronization of timing sources 

or mass of attacks applications

Construction Termites
retrieval & placement dirt, 

path follow pheromone (chemical) queen attributes unknown pg 392 (1)

Construction Wasp Nest construction touch/visual
Foundational structure, # 

adjacent cell walls unknown pg 430-432

Dominance / 
Hierarchy Wasp Challenge touch Force, Rank Structuring 460-461 (1) (Tsu)

Foraging Bee Dance, Foraging visual dance rhythm IR
based on number of foragers and 

dance length 207-208 (1)
transfer of data and resource re-

supply point

Cluster control Bee Swarm Thermoregulation heat
temperature range, radius, 

density unknown
separation and movement 

inward/outward 294-297 (1)

Classification Bee Hive Honeycomb fill structure visual
oviposition, fill rates, 

depletion rates Classification pg 331 (1)

Foraging Ant
foraging, marking, feeding, 

path following pheromone (chemical)
chemical production,  

pheromone interpretation path to target

number of travelers, length, chemical 
deposit strength, time 229,232-

234,239-241 (1)

Offensive Mass  Ant Raiding
foraging, marking, Carrying 

prey, path following pheromone (chemical)
crowding, pheromone 
product/interpretation Military Mass pg 269-274 (1)

 Multiple speeds, raid size OM: 
100Ks

Construction Ant Nest carrying, pushing, deposit Touch (Pheromone 2nd)
structure resistance, brood 

size/location Building or classifying Pg 356-360(1)
distribution of pheromones around 

brood 

Path Solver Ant
 locomotion, path laying, path 

following pheromone (chemical)
Pheromone 

concentration/gradient unknown pg 1 (2) Leafcutter

Classification Ant Nest Brood and corpse pickup, drop adjacent items, threshold unk Pg 152(2)

Construction Ant Weaver chaining, weaving touch
larva silk weaving, agent 

bridge construction unknown pg 1 (2)

Schooling Fish
locomotion, predator, 

schooling visual, lateral line Adjacent agent information defense/ swarming
proximity, repulsion, matching and 

search; pg 180-181 (1) Swarming, obstacle gradients

morphology Ant
task distribution has a high 

plasticity varied agent based UAV swarms
sub species allow for more specific 

task application 

Multiple species (minor or 
minims, medium workers, sub-

majors, major)

Abstract Model Types (AMT)

Figure 10: Abstract Model Types - Biologically inspired low-level operators [1]
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